JPS58121387A - Gate valve used under vacuum - Google Patents

Gate valve used under vacuum

Info

Publication number
JPS58121387A
JPS58121387A JP135282A JP135282A JPS58121387A JP S58121387 A JPS58121387 A JP S58121387A JP 135282 A JP135282 A JP 135282A JP 135282 A JP135282 A JP 135282A JP S58121387 A JPS58121387 A JP S58121387A
Authority
JP
Japan
Prior art keywords
pressure
gate
operating
pulp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP135282A
Other languages
Japanese (ja)
Inventor
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP135282A priority Critical patent/JPS58121387A/en
Publication of JPS58121387A publication Critical patent/JPS58121387A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/16Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with special arrangements for separating the sealing faces or for pressing them together
    • F16K3/18Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with special arrangements for separating the sealing faces or for pressing them together by movement of the closure members
    • F16K3/182Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with special arrangements for separating the sealing faces or for pressing them together by movement of the closure members by means of toggle links

Abstract

PURPOSE:To obtain excellent sealing performance at all times by a method wherein an automatic controlling means for operating air pressure is provided so as not to apply excessive contact force by pressure during baking. CONSTITUTION:When a pressure instruction S is inputted, the opening of a pressure regulating valve is turned to be smaller so as to lower the operating air pressure. The operating air pressure is set at a value, in which a suitable contact force by pressure is obtained between a gate seal 13 and a seal ring 12 under the condition that an operating device 28 and the like are in the thermally enough elongated states with the rise of the temperature of their own. Accordingly, even during baking, no deterioration of sealing performance due to the yield of the knife edge of the gate seal 13 caused from excess contact force by pressure occurs, resulting in obtaining excellent sealing performance.

Description

【発明の詳細な説明】 本発明は真空用ゲートパルプに係り、特に超高真空用に
好適なオールメタルゲートパルプのゲートシール操作装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gate pulp for vacuum use, and more particularly to a gate seal operating device for an all-metal gate pulp suitable for ultra-high vacuum use.

この種のオールメタルゲートパルプは、最近の核融合装
置等のような超高真空装置において、プラズマ観測、粒
子入射装置等のボート群にボートの全断面を開閉する必
要上さかんに使用されるようになりてきたが、そのシー
ル性能を左右する最重要点は、メタルゲートシールとメ
タルシールリングとのナイフェツジ的な押圧接触による
シール面での弾性変形を維持することと、微細なごみ等
によってシール面が損傷しないようにすることである。
This type of all-metal gate pulp is often used in ultra-high vacuum equipment such as recent nuclear fusion equipment, where it is necessary to open and close the entire section of the boat for plasma observation, particle injection equipment, etc. However, the most important points that affect the sealing performance are maintaining elastic deformation on the sealing surface due to knife-like pressure contact between the metal gate seal and the metal seal ring, and the sealing surface being damaged by fine dust etc. The purpose is to prevent damage to the product.

このうち、前者は真空装置を高温でペイキングするとき
に特に問題となる。
Of these, the former poses a particular problem when baking a vacuum device at high temperatures.

鄭1図は従来のオールメタルゲートバルブの駆動方式を
示す系統図である。オールメタルゲートバルブlは、ボ
ート2を介して真空容器8とプラズマ観測装置尋の外部
装置会との中間に設置されており、これらの外側にはヒ
ータ(図示せず)および断熱材からなるペイキング装置
5が被覆されている。6はゲートバルブ駆動用シリンダ
1.7は電磁切換弁、8は空気配管、9は空気タンク、
10は圧縮機で、これらによりゲートバルブの駆動系が
構成さ餐ている。
Figure 1 is a system diagram showing the driving method of a conventional all-metal gate valve. The all-metal gate valve l is installed between the vacuum vessel 8 and the external equipment of the plasma observation device via the boat 2, and a heater (not shown) and a paving made of heat insulating material are installed outside of these. The device 5 is coated. 6 is a gate valve driving cylinder 1. 7 is an electromagnetic switching valve, 8 is an air pipe, 9 is an air tank,
10 is a compressor, which constitutes a drive system for the gate valve.

また、第2図はオールメタルゲートバルブの構造を示す
断面図である。ゲートバルブlは給排口および中空室を
有するバルブボデー11と、このバルブボデー11に取
付けられたメタルシールリング12と、バルブボデー1
1の中空室内を移動してシールリング12との相互作用
によりバルブの開閉を1 6ケ、ipv、j−)ツー2
□8.ヵ、うゆえあわ11、る。そして、その閉動作、
すなわちボート2のシールはリンク機構を用いた操作装
置によって行なわれるが、この操作装置28は駆動用シ
リンダ6のロッド14と°、このロッド14に結合され
たブラケット15と、このブラケット15にピン16で
回転自在に支承されバルブボデー2の中空室の土壁に沿
って転動するローラ17,18と、一端が同様にブラケ
ッ) 15にビン16で回転自在に支承され他端がゲー
トシール18にビン16で回転自在に支承されたリンク
19.20と、シールリング12の反ロッド14側に突
設された支持アーム21にピン16で回転自在に支承さ
れたローラ22とから構成されている。
Moreover, FIG. 2 is a sectional view showing the structure of an all-metal gate valve. The gate valve l includes a valve body 11 having a supply/discharge port and a hollow chamber, a metal seal ring 12 attached to this valve body 11, and a valve body 1.
It moves inside the hollow chamber of 1 and opens and closes the valve by interaction with the seal ring 12.
□8. Ka, uhue bubble 11, ru. And its closing action,
That is, the boat 2 is sealed by an operating device using a link mechanism, and this operating device 28 is connected to the rod 14 of the driving cylinder 6, a bracket 15 connected to the rod 14, and a pin 16 connected to the bracket 15. Rollers 17 and 18 are rotatably supported by a bracket and roll along the earthen wall of the hollow chamber of the valve body 2; It is composed of links 19 and 20 rotatably supported by a pin 16, and a roller 22 rotatably supported by a pin 16 on a support arm 21 protruding from the side opposite to the rod 14 of the seal ring 12.

すなわち、空気タンク9から圧力空気が空気配管8、電
磁切換弁7を介して駆動用シリンダ6に与えられると、
ロッド14が左方へ伸び、これに伴って操作装置28も
そのローラl? 、 18が中空室の土壁に沿って転動
しながら左方へ移動する。そし □て、そのローラ22
が中空室の反ロッド14側の個 。
That is, when pressurized air is supplied from the air tank 9 to the driving cylinder 6 via the air piping 8 and the electromagnetic switching valve 7,
The rod 14 extends to the left, and accordingly the operating device 28 also moves its roller l? , 18 moves to the left while rolling along the earthen wall of the hollow chamber. Then, that roller 22
is the piece on the side opposite to rod 14 of the hollow chamber.

壁に当接する1点鎖線で示す位置まで到達すると、ゲー
トシール18のそれ以上の移動は阻止されるが、ブラケ
ット15は依然として左方へ移動し続けるので、ゲート
シール18はp−ラ22によって案内されながらリンク
19.20により下方へ押し下げられ、迩切な押圧力で
シートリング12と緊密に接触させられる。
When the gate seal 18 reaches the position indicated by the dashed line where it contacts the wall, further movement of the gate seal 18 is prevented, but the bracket 15 still continues to move to the left, so the gate seal 18 is guided by the p-ra 22. While being pushed downwards by the links 19 and 20, the seat ring 12 is brought into close contact with the seat ring 12 with a sharp pressing force.

ところで、超高真空を得るために、真空装置を高温T!
(約200℃)でペイキングすることが行なわれるが(
このときバルブlは閉)、この場合、第8図に示すよう
に、ペイキング開始時点1.以前のn温Tt(約20℃
)時におけるバルブリーク量Q+ (約1 x 10 
 Torrl /s)に比較してペイキング終了時点1
を以後の呈温T1時におけるバルブリークt’4が約2
 X IQ ’Torrl / sと一1ti[100
〜200倍栃度増大し、シール性能が損なわれる。
By the way, in order to obtain an ultra-high vacuum, the vacuum equipment is heated to a high temperature of T!
(approximately 200℃)
At this time, the valve l is closed), and in this case, as shown in FIG. Previous n temperature Tt (approximately 20℃
) Valve leakage amount Q+ (approximately 1 x 10
Torrl/s) at the end of paking 1
Valve leak t'4 at temperature T1 after that is approximately 2
X IQ 'Torrl/s and one 1ti [100
~200 times increase in stiffness and loss of sealing performance.

その原因を種々災験によって調べたところ次の如きこと
が判りた。すなわち、ペイキング時、ゲートバルブIに
おいては、まず最初にバルブボデー■およびシールリン
グ12が加熱されて高温となるが、ゲートシルプ1の中
空室に配置されたゲートシール18およびその操作装置
28はバルブボデー11等と接触している部分が少なく
、しかも真空中にあるため、加熱されて高温になるまで
時間がかかる。一方、前述のように、ゲートシール1B
は空気タンク9からの圧力空気(圧力P、一定)による
操作装置28の適切な押下刃によりてシールリングII
K押圧接触させられるが、ペイキング時の初期には、前
述のようにパルプボデー11等と操作装置28等との間
に温度差があり、前者が熱伸びし【その中空室内の上下
の間隔が大きくなっているのに対して、後者は殆んど熱
伸びせず、そのままの寸法を保持しているため、一定の
操作空気圧力P、が加えられた場合、室温10時よりも
ロッド14およびブラケット15が左方へ移動し、リン
ク19.20が直立に近い状態になって室温時と同じ適
切な押下刃でゲートシール18をシールリング12に抑
圧接触させることKなる。しかし、その後ペイキングが
進み、操作装置28等の温度も次第に上昇して操作装置
28等が熱伸びを生じ、その上下方向の寸法が太き(な
ってくると、このときバルブボデー11はす、でに伸び
きった状態にありその中空室内の上下の間隔ははぼ一建
に保持されているため、操作装置28による押下刃、つ
まりゲートシール18とシールリング12の抑圧接触力
は迩切な値より過大となる。しかも、ペイキング時、ゲ
ートシール18は高温に加熱されてそのナイフェツジ1
8aは変形し易くなっているため、前記の如き過大な押
圧接触力が加えられると、第4図の破線18a′に示す
如く1へたり“、シールリング12との接触面積が増大
して、ナイフェツジ的な抑圧接触によるシール面で・つ
弾性変形を維持できず、シール性能が損なわれることが
判った。
After investigating the cause through various disaster experiences, we found the following. That is, at the time of paking, in the gate valve I, the valve body ■ and the seal ring 12 are first heated and reach a high temperature, but the gate seal 18 disposed in the hollow chamber of the gate seal 1 and its operating device 28 are heated to a high temperature. Since there are few parts in contact with 11 etc. and it is in a vacuum, it takes time for it to heat up to a high temperature. On the other hand, as mentioned above, gate seal 1B
sealing ring II by means of a suitable pressing blade of the operating device 28 with pressurized air (pressure P, constant) from the air tank 9.
However, in the initial stage of paking, there is a temperature difference between the pulp body 11, etc. and the operating device 28, etc., as described above, and the former expands due to heat. On the other hand, the latter undergoes almost no thermal expansion and maintains the same dimensions, so when a constant operating air pressure P is applied, the rod 14 and bracket are 15 moves to the left, the links 19 and 20 become nearly upright, and the gate seal 18 is pressed into contact with the seal ring 12 using the same appropriate pressing blade as at room temperature. However, as the paking progresses, the temperature of the operating device 28 etc. gradually rises, causing thermal expansion of the operating device 28 etc., and the vertical dimension of the operating device 28 etc. becomes thicker. Since it is in the fully extended state and the vertical distance in the hollow chamber is maintained at approximately the same level, the pressing contact force between the pushing blade by the operating device 28, that is, the gate seal 18 and the seal ring 12, is at an appropriate value. Moreover, the gate seal 18 is heated to a high temperature during paking, and the knife 1
8a is easily deformed, so when an excessive pressing contact force as described above is applied, the contact area with the seal ring 12 increases by 1" as shown by the broken line 18a' in FIG. It was found that elastic deformation could not be maintained on the sealing surface due to knife-like suppressive contact, and sealing performance was impaired.

なお、この様な問題は操作装置として前記の如きリンク
機構を用いる場合以外にも同様に生じる。
Incidentally, such a problem also occurs in cases other than the case where the link mechanism as described above is used as the operating device.

本発明はこの点に鑑みてなされたもので、その目的は、
ペイキング時におけるゲー゛°トシールのナイフェツジ
の1へたり′をなりシ、良好なシール性能を有する真空
用ゲートパルプを提供することば にある。
The present invention has been made in view of this point, and its purpose is to
The purpose of this invention is to provide a vacuum gate pulp that has good sealing performance and is one of the drawbacks of the gate seal knife during paking.

この目的を達成するため、本発明は、操作圧力口IAi
ti制御手段を設げ、ゲートシール操作装置によるメタ
ルゲートシールをメタルシールリングに押圧接触させる
ための操作圧力をペイキング時に自動的に下げ1ことに
より、ペイキング時に過大な抑圧接触力が加わらないよ
うにしたことを特徴とする。
To achieve this objective, the present invention provides an operating pressure port IAi
ti control means is provided to automatically lower the operating pressure of the gate seal operating device to press the metal gate seal into contact with the metal seal ring at the time of pecking1, thereby preventing excessive suppressing contact force from being applied during pecking. It is characterized by what it did.

以下、本発明の一実施例を第5図について詳細に説明す
る。なお、第5図中、第1図と同一符号は同一物または
相当物を示す。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. In FIG. 5, the same reference numerals as in FIG. 1 indicate the same or equivalent components.

この実施例が第1図の従来例と異なる点は、サーチコイ
ルなどからなるゲートパルプ温度検出器24と、A−D
変換器、マイクロコンビエータ、D−A変換器などから
なる圧力指令発生装置t25と、圧力調整弁などからな
る空気圧調整装置z6とより構成された操作圧力自動制
御系が設けられていることである。
This embodiment differs from the conventional example shown in FIG.
An automatic operating pressure control system is provided, which is comprised of a pressure command generator t25 consisting of a converter, micro combinator, D-A converter, etc., and an air pressure regulator z6 consisting of a pressure regulating valve, etc. .

ペイキング時、ゲートパルプ1の温度が室温T。During baking, the temperature of gate pulp 1 is room temperature T.

より次第に上昇すると、これに伴って温度検出器   
□24からのアナログ検出信号S、も増大し、これが圧
力指令発生装置25に入力される。圧力指令発生装置2
5においては、そのA −D変換器で前記アナログ検出
信号Slをディジタル、検出信号に変換した後、マイク
ロコンビ具−夕でこのディジタル検出信号の値を所定の
ゲートパルプ温度Tax(Tt<T−+ (Tt )に
対応する設定値と比較する。そして検出信号が設定値を
越えたと判定したとき(時点ts )には、ディジタル
圧力指令を出力し、これをD−A変換器でアナ四グ圧力
指令S!に変換して望気圧調整装置2潰に加える。空気
圧調整装置26では、常時、つまり圧力指令S、が出力
されていない室温T、時には、81図の従来例と同様な
操作空気圧力P1となる様に、その圧力調整弁の開度が
設定されているが、圧力指令S、が入力すると、圧力調
整弁の開度を不にして第6図に示す如(操作空気圧力を
P2に下げる。この操作空気圧力P。
As the temperature rises more gradually, the temperature sensor
The analog detection signal S from □24 also increases and is input to the pressure command generator 25. Pressure command generator 2
5, the analog detection signal Sl is converted into a digital detection signal by the A-D converter, and then the value of this digital detection signal is converted to a predetermined gate pulp temperature Tax (Tt<T- + (Tt).When it is determined that the detection signal exceeds the set value (time ts), a digital pressure command is output, and this is converted into an analog signal using a D-A converter. It is converted into a pressure command S! and added to the desired pressure adjustment device 2.The air pressure adjustment device 26 always uses operating air similar to the conventional example shown in Fig. 81 at room temperature T when the pressure command S is not output. The opening degree of the pressure regulating valve is set so that the pressure becomes P1, but when the pressure command S is input, the opening degree of the pressure regulating valve is set to zero and the operating air pressure is changed as shown in Fig. 6. This operating air pressure P is lowered to P2.

としては、操作装置28等がその温度上昇に伴って光分
な熱伸び状態になったときに1ゲートシール18とシー
ルリング12との間に適切な押圧接触力が得られる様な
値に設定する。したがって、ペイキング時に?いても、
前記抑圧接触力が過大と7、Cりてゲートシール18の
ナイフェツジ18aカ5へたり“、シール性能が劣化す
ることはない。
The value is set to such a value that an appropriate pressing contact force can be obtained between the 1-gate seal 18 and the seal ring 12 when the operating device 28, etc. is in a state of light thermal expansion due to a rise in temperature. do. Therefore, when paying? Even if
If the suppressing contact force is excessive, the sealing performance will not deteriorate even if the contact force is excessive and the knife blade 18a of the gate seal 18 is damaged.

また、ペイキングの終期において、ペイキング装置5に
よる加熱が終ったとき、パルプボデー11等の温度がま
ず低下し、しばらくしてから操作装置28等の温度が低
下する。すなわち、両者の熱収縮時点に遅れがあるため
、直ちに操作空気圧力を元のPlに戻すと、前記抑圧接
触力が過大となる虞れがある。そこで、この実施例では
、ペイキングが終りてから操作装置28等の温度が充分
に低下し、室温T1に近(なるまで待りて、はじめて操
作空気圧力なPlに戻すようにしている。
Further, in the final stage of pacing, when the heating by the pacing device 5 is finished, the temperature of the pulp body 11 and the like first decreases, and after a while, the temperature of the operating device 28 and the like decreases. That is, since there is a delay in the timing of thermal contraction of both, if the operating air pressure is immediately returned to the original Pl, there is a risk that the suppressing contact force will become excessive. Therefore, in this embodiment, the temperature of the operating device 28 and the like is sufficiently lowered after the paking is completed, and is returned to the operating air pressure Pl only after waiting until it approaches the room temperature T1.

すなわち、ペイキングの終期において、圧力指令発生装
置25のマイクロコンビエータでは、第6図に示す如く
、ディジタル検出信号の値を所定のゲートパルプ温度T
I2 (Tt (Tax (T、 )に対応する設定値
と比較し、そしてこの設定値以下になったと判定したと
ぎ(時点14)から所定時間τ(この時間τはカウンタ
等で設定する)経過後の時点t、にディジタル圧力指令
の出力を停止する。したがって、空気圧調整装置26へ
のアナログ圧力指令S、入力がなりて操作空気圧力は元
のPIK戻る。
That is, at the end of pacing, the micro combinator of the pressure command generator 25 changes the value of the digital detection signal to a predetermined gate pulp temperature T, as shown in FIG.
After a predetermined time τ (this time τ is set by a counter, etc.) has elapsed from the time when it is determined that the value is less than or equal to this set value (time point 14) after comparing it with the set value corresponding to I2 (Tt (Tax (T, )). The output of the digital pressure command is stopped at time t.Therefore, the analog pressure command S is input to the air pressure regulator 26, and the operating air pressure returns to the original PIK.

この実施例が適用されたゲートパルプにおいては、第6
図に示す様に、ペイキング後のリーク量Qx’が従来例
に比べて著しく減少することが実験により確認された。
In the gate pulp to which this example is applied, the sixth
As shown in the figure, it was confirmed through experiments that the leakage amount Qx' after pacing was significantly reduced compared to the conventional example.

なお前述の様に、ペイキングの初期および終期において
時点t、およびt、で−挙に操作空気圧力をPlからP
tK下げ、またPlからP、 [上げると、初期におい
ては時点1.から操作装置等の温度がT2に達して充分
に熱伸びする時点t6までの間、および終期においては
時点t、から操作装置等の温度がT、に低下して充分に
熱収縮する時点tllまでの間、つまり前記遅延時間τ
では、それぞれ操作空気圧力が小さすぎ、前記押圧′接
触力が適切な値を下回り、リーク量が増大することが懸
念される。しかし、一般に知られている様に、真空中に
おいては大気中に比べて、リンク機構等の各関連部材間
のJ1ml係数が大きく、各関連部材間は固渋状態にあ
るため、前記抑圧接触力が暫時適切な値を下回ってもそ
のままのシール状態を保持し、リーク量が接触力の調整
が望まれる場合には、第6図の2点鎖線A、Hに示す様
に、圧力指令S宜のオン、オフにより操作空気圧力が順
次下がったり、あるいは順次上がる様に空気圧力調整装
置25を構成すればよい。
As mentioned above, at times t and t in the initial and final stages of paking, the operating air pressure is changed from Pl to P.
Lowering tK and increasing Pl to P [initially, time 1. to time t6 when the temperature of the operating device, etc. reaches T2 and is sufficiently thermally expanded, and in the final stage from time t to time tll when the temperature of the operating device, etc. decreases to T and sufficiently thermally shrinks. that is, the delay time τ
In this case, there is a concern that the operating air pressure is too low, the pressing force' contact force is less than an appropriate value, and the amount of leakage increases. However, as is generally known, in a vacuum, the J1ml coefficient between each related member such as a link mechanism is larger than in the atmosphere, and each related member is in a stiff state, so the suppressing contact force If the seal state is maintained as it is even if the pressure drops below an appropriate value for a while, and if the amount of leakage requires adjustment of the contact force, the pressure command The air pressure adjusting device 25 may be configured so that the operating air pressure is sequentially lowered or increased by turning on and off.

また、操作圧力自動制御手段としては、前記実施例の様
なゲートパルプ温度検出’a 24 、圧力指令発生装
置25および空気圧v!4整装置26からなるものに限
らず、その他の手段を用いることもできる。
Further, as the operating pressure automatic control means, the gate pulp temperature detection 'a 24 as in the above embodiment, the pressure command generation device 25, and the air pressure v! It is not limited to the one consisting of the four adjustment device 26, but other means can also be used.

すなわち、例えば前記実施例のゲートパルプ温度検出器
24および圧力指令発生装置25に代えて、圧力指令発
生用スイッチおよびタイマを設け、ペイキング装置5の
ヒータ電源用スイッチのオンに連動して圧力指令発生用
スイッチを自動的にオンすることにより圧力指令S、を
発生し、また前記ヒ □−タ電源用スイッチがオフにな
りたときKはタイ 1マを介して所定時間経過後に圧力
指令発生用スイッチを自動的にオフするととにより圧力
指令S、の発生を停止することもできる。
That is, for example, a pressure command generation switch and a timer are provided in place of the gate pulp temperature detector 24 and pressure command generation device 25 of the embodiment described above, and a pressure command is generated in conjunction with turning on the heater power switch of the pacing device 5. Pressure command S is generated by automatically turning on the heater power switch, and when the heater power switch is turned off, K is the timer. After a predetermined time has passed, the pressure command generation switch is activated. It is also possible to stop the generation of the pressure command S by automatically turning off the pressure command S.

以上説明した様に、本発明によれば、操作圧力自動制御
手段を設け、ゲートシール操作装置によるメタルゲート
シールをメタルシールリングに押圧接触させるための操
作圧力をペイキング時に自動的に下げることにより、ペ
イキング時に過大な抑圧接触力が加わらないよう忙した
ので、ペイキング時におけるゲートシールのナイフェツ
ジの−へたり′をなくし、常に良好なシール性能を得る
ことができる。
As explained above, according to the present invention, the operating pressure automatic control means is provided, and by automatically lowering the operating pressure for bringing the metal gate seal into pressure contact with the metal seal ring by the gate seal operating device at the time of paking, Since an excessive suppressing contact force is not applied during pacing, it is possible to eliminate the fatigue of the gate seal knife during pacing, and always obtain good sealing performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のゲートパルプの駆動方式を示す系統図、
第2rI!Jはゲートパルプの断面図、第8図(a)、
 (b)は従来のゲートパルプ・における操作空気圧力
、パルプ温度およびリーク量の関係を示す特性図、第4
図はゲートシールのナイフェツジの1へたり′状態を示
す拡大断面図、第5図は本発明の一実施例に係るゲート
パルプの駆動方式を示す系統図、第6図(a)、(b)
は本発明の一実施例に係るゲートパルプの操作空気圧力
、パルプ温度およびリーク量の関係を示す特性図である
。 l・・・・・・ゲートパルプ、8・曲・真空容器、5・
曲・ペイキング装置、6・・曲部動用シリンダ、9・・
・・・・空気タンク、11・曲・パルプボデー、12・
・曲シールリング、  1B・・・・・・ケートシール
、28・・・・・・操作装置、24・・・・・・ゲート
パルプ温度検出器、25・・・・・・圧力指令発生装置
、26・・・・・・空気圧調整装置? 1 図 t 2 ロ ア 3 打 ttl) 74 図
Figure 1 is a system diagram showing the conventional gate pulp driving system.
2nd rI! J is a cross-sectional view of gate pulp, FIG. 8(a),
(b) is a characteristic diagram showing the relationship between operating air pressure, pulp temperature, and leakage amount in conventional gate pulp.
The figure is an enlarged cross-sectional view showing the state of the knife of the gate seal in the 1' set state, FIG. 5 is a system diagram showing the driving method of the gate pulp according to an embodiment of the present invention, and FIGS. 6 (a) and (b).
FIG. 2 is a characteristic diagram showing the relationship between operating air pressure, pulp temperature, and leakage amount of gate pulp according to an embodiment of the present invention. l...Gate pulp, 8. Song, Vacuum container, 5.
Curving/paking device, 6... Cylinder for bending section movement, 9...
・・・・Air tank, 11・Song・Pulp body, 12・
・Curved seal ring, 1B... Kate seal, 28... Operating device, 24... Gate pulp temperature detector, 25... Pressure command generator, 26...Air pressure adjustment device? 1 figure t 2 lower 3 stroke ttl) 74 figure

Claims (1)

【特許請求の範囲】 1、給排口、メタルシールリングおよび中空室を有する
パルプボデーと、メタルゲートシールと、このメタルゲ
ートシールを前記ポデーの中空室内において前記メタル
シールリングに押圧接触させて前記給排口を閉じるゲー
トシール操作装装置とを備えたもの属おいて、前記ゲー
トシール操作装置によるメタルゲートシールをメタルシ
ールリングに押圧接触させるための操作圧力をペイキン
グ時に自動的に下げる操作圧力自動制御手段を設けたこ
とを峙畝とする真空用ゲートパルプ。 2、特許請求の範囲第1項において、前記操作圧力は空
気圧力であり、前記操作圧力自動制御手段は、ゲートパ
ルプの温度を検出する温度検出手段と、この温度検出手
段で検出されたゲートパルプの温度が所定値を越えたと
き圧力指令を発生する出力指令発生手段と、この圧力指
令発生手段からの圧力指令に応じて前記操作空気圧力を
調整する調整手段とを備えたことを特徴とする真空用ゲ
ートパルプ。 8、  @許錆求の範囲第1項において、前記操作圧力
自動制御手段は、ペイキング時のゲートパルプの温度上
昇に伴りて前記操作圧力を順次下げるものであることを
特徴とする真空用ゲートパルプ。
[Claims] 1. A pulp body having a supply/discharge port, a metal seal ring, and a hollow chamber, a metal gate seal, and the metal gate seal pressed into contact with the metal seal ring in the hollow chamber of the pod. and a gate seal operating device that closes the discharge port, automatic operating pressure control that automatically lowers the operating pressure of the gate seal operating device for bringing the metal gate seal into pressure contact with the metal seal ring at the time of paking. Vacuum gate pulp with facing ridges provided with means. 2. In claim 1, the operating pressure is air pressure, and the operating pressure automatic control means includes a temperature detection means for detecting the temperature of the gate pulp, and a temperature detection means for detecting the temperature of the gate pulp detected by the temperature detection means. The apparatus is characterized by comprising: an output command generation means for generating a pressure command when the temperature of the pressure command exceeds a predetermined value; and an adjustment means for adjusting the operating air pressure in accordance with the pressure command from the pressure command generation means. Gate pulp for vacuum. 8. The vacuum gate pulp according to Item 1, wherein the operating pressure automatic control means sequentially lowers the operating pressure as the temperature of the gate pulp increases during paking.
JP135282A 1982-01-09 1982-01-09 Gate valve used under vacuum Pending JPS58121387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP135282A JPS58121387A (en) 1982-01-09 1982-01-09 Gate valve used under vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP135282A JPS58121387A (en) 1982-01-09 1982-01-09 Gate valve used under vacuum

Publications (1)

Publication Number Publication Date
JPS58121387A true JPS58121387A (en) 1983-07-19

Family

ID=11499094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP135282A Pending JPS58121387A (en) 1982-01-09 1982-01-09 Gate valve used under vacuum

Country Status (1)

Country Link
JP (1) JPS58121387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138452A1 (en) * 2007-05-16 2008-11-20 Vat Holding Ag Valve having a sealing member
JP2010534302A (en) * 2007-07-24 2010-11-04 バット ホールディング アーゲー Vacuum valve control method
CN105351604A (en) * 2015-11-27 2016-02-24 四川九天真空科技股份有限公司 Opening structure and opening method of valve under large pressure difference
EP3940269A1 (en) * 2020-07-15 2022-01-19 King Lai Hygienic Materials Co., Ltd. Gate valve with locking function
WO2023083574A1 (en) * 2021-11-15 2023-05-19 Asml Netherlands B.V. Valves with reduced particle generation and increased cycle life

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008138452A1 (en) * 2007-05-16 2008-11-20 Vat Holding Ag Valve having a sealing member
JP2010526974A (en) * 2007-05-16 2010-08-05 バット ホールディング アーゲー valve
US8002238B2 (en) 2007-05-16 2011-08-23 Vat Holding Ag Valve having a sealing member
JP2010534302A (en) * 2007-07-24 2010-11-04 バット ホールディング アーゲー Vacuum valve control method
KR101534359B1 (en) * 2007-07-24 2015-07-06 배트 홀딩 아게 Method for controlling or regulating a vacuum valve
CN105351604A (en) * 2015-11-27 2016-02-24 四川九天真空科技股份有限公司 Opening structure and opening method of valve under large pressure difference
EP3940269A1 (en) * 2020-07-15 2022-01-19 King Lai Hygienic Materials Co., Ltd. Gate valve with locking function
US11231113B1 (en) 2020-07-15 2022-01-25 King Lai Hygienic Materials Co., Ltd Gate valve with locking function
WO2023083574A1 (en) * 2021-11-15 2023-05-19 Asml Netherlands B.V. Valves with reduced particle generation and increased cycle life

Similar Documents

Publication Publication Date Title
US3974844A (en) Valve
JPS58121387A (en) Gate valve used under vacuum
US4934399A (en) Pipeline pressure control system
JPH0989139A (en) Vacuum opening/closing valve
US4068820A (en) Valve
US5188145A (en) Valve
JPH09317995A (en) Carriageable natural gas supply equipment
JP3145895B2 (en) Electric water heater
JP3606753B2 (en) Vacuum pressure control valve
CN107963354B (en) A kind of oil storage tank nitrogen controlled atmosphere technique
US4453563A (en) Non-chattering float controlled pilot operated diaphragm valve
JPH0581540B2 (en)
JPS59103088A (en) Valve making use of shape memory alloy
EP0488635A2 (en) Process for vulcanising elastomeric article and apparatus for the same
US829810A (en) Temperature-controlling apparatus.
USRE19507E (en) Heating system
US2831639A (en) Temperature pilot valve
JPS54120437A (en) Solar hot-water supply device
CN212106955U (en) Possesses fixed electronic butterfly valve switch remote control device that opens
CN2210374Y (en) Non phase change and liquid expand type temp. adjustment device
US3349559A (en) Door-operating apparatus
US1962999A (en) Heating system
SU849058A2 (en) Plant for pipeline internal surface flaw detection
JPS59117963A (en) Valve
JPS6241996Y2 (en)