JPS5811995B2 - Seikikuhouhou - Google Patents

Seikikuhouhou

Info

Publication number
JPS5811995B2
JPS5811995B2 JP8917675A JP8917675A JPS5811995B2 JP S5811995 B2 JPS5811995 B2 JP S5811995B2 JP 8917675 A JP8917675 A JP 8917675A JP 8917675 A JP8917675 A JP 8917675A JP S5811995 B2 JPS5811995 B2 JP S5811995B2
Authority
JP
Japan
Prior art keywords
koji
oxygen
temperature
koji making
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8917675A
Other languages
Japanese (ja)
Other versions
JPS5215897A (en
Inventor
泉正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8917675A priority Critical patent/JPS5811995B2/en
Priority to GB25801/76A priority patent/GB1556178A/en
Priority to US05/702,605 priority patent/US4048340A/en
Priority to DE19762632139 priority patent/DE2632139A1/en
Priority to FR7621932A priority patent/FR2318595A1/en
Publication of JPS5215897A publication Critical patent/JPS5215897A/en
Publication of JPS5811995B2 publication Critical patent/JPS5811995B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、製麹方法に関するものであるが、特に酸素濃
度を一定値に保持するとともに、製麹室内の温度を間接
的な方法によって調節しながら密閉系内において連続的
に麹を製造する全く新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for making koji, and in particular, it is made continuously in a closed system while maintaining the oxygen concentration at a constant value and controlling the temperature inside the koji making chamber by an indirect method. This invention relates to a completely new method for producing koji.

従来より、系全体を密閉した製麹方式は知られているが
、これら既知のシステムにおいては、製麹室の温度調節
システムは、該室内に送入する気体を、最初からその温
湿度、風量、風速をコントロールしながら直接、製麹室
に送る方式をいづれも採用している。
Conventionally, koji production methods in which the entire system is sealed are known, but in these known systems, the temperature control system of the koji production room adjusts the temperature, humidity, and air volume of the gas introduced into the room from the beginning. In both cases, the wind speed is controlled and the koji is sent directly to the koji making room.

従って、製麹室内の麹をあまり加温したくない場合には
、送入される気体の風速、風量が少なくなるため、麹堆
積体の全体が均一の温度とならないし、炭酸ガスの除去
もうまく行なわれないので、切返し及び盛といった作業
に相当する機械的な攪拌を行なう必要があった。
Therefore, if you do not want to heat the koji in the koji making chamber too much, the speed and volume of the gas being introduced will decrease, which will prevent the entire koji deposit from being at a uniform temperature, and will prevent the removal of carbon dioxide. Since this was not done well, it was necessary to perform mechanical stirring equivalent to the operations of cutting and filling.

また従来の密閉式製麹法においては、系内の酸素濃度に
は考慮が拡われていない場合がほとんどであり、考慮が
なされていても当該製麹方式における最適な酸素条件は
何も具体的に示されていないし、ましてやこれを科学的
にチェックして製麹な行なうことは全くなされていない
In addition, in the conventional closed type koji making method, in most cases, consideration is not given to the oxygen concentration in the system, and even if consideration is given, there is no concrete explanation of the optimal oxygen conditions for the koji making method. It is not shown in the above, and even less has it been scientifically checked before making koji.

また、従来のように送入気体の温度、風速、風量条件を
直接コントロールしながら直接的に製麹室に気体を送入
する従来方法においては、気体発止源から製麹室入口ま
でに到達するには、ファン、除塵及び加温加湿用のサイ
クロンを経るために、温度、風速、風量のロスがあり、
エネルギー的な損失もさることながら、温度のコントロ
ールをするためにはこれらファン、サイクロン等をその
たび毎に微妙に調整せねばならず、しかもそれは不正確
であり、しかも容易な作業ではなかった。
In addition, in the conventional method of directly feeding gas into the koji making room while directly controlling the temperature, wind speed, and air volume conditions of the incoming gas, it is difficult to reach the koji making room from the gas source to the koji making room entrance. In order to do this, there is a loss in temperature, wind speed, and air volume because the air passes through a fan, dust removal, and cyclone for heating and humidification.
In addition to the energy loss, in order to control the temperature, these fans, cyclones, etc. had to be delicately adjusted each time, which was inaccurate and not an easy task.

そのうえ、製麹室で必要とする条件に適応するにはどう
してもタイムラグが出てくる欠陥を免れることは不可能
であった。
Moreover, it was impossible to avoid the drawback that there was a time lag in adapting to the conditions required in the koji making room.

本発明は、これらの欠点を解決するためになされたもの
であって、この方式の製麹方法における最も重要な因子
が温度と酸素条件であることを発見し、従来の製麹室の
温度調節方式の発想を完全に転換して、全く新規な発想
にその解決策を求めた煮及び酸素の自動調節ならびにそ
の最適条件を決定した点に重要な特徴を有する。
The present invention was made in order to solve these drawbacks, and it was discovered that the most important factors in this type of koji making method are temperature and oxygen conditions, and the present invention was made to solve the conventional koji making chamber temperature control. The important feature is that the idea of the system was completely changed, and the solution was determined based on a completely new idea, automatic adjustment of boiling and oxygen, and the optimum conditions for it.

従来の方式は、製麹室内へは、気体発生源においてすべ
ての条件を整えた気体を直接的に送入する方式が採られ
ていた。
The conventional method has been to directly feed gas into the koji making chamber after all conditions have been met at the gas generation source.

従って、これら製麹室内へ送入する気体の温度その他の
条件を変化させるには、気体発生源の条件をその都度変
えていくことになる。
Therefore, in order to change the temperature and other conditions of the gas fed into the koji making chamber, the conditions of the gas generation source must be changed each time.

しかし直接的に気体の条件を変化させることは非常に困
難であるし、前述のとおり数多くの欠点が存するので、
気体それ自体の条件は同一にして邦いて、変動させない
でおき、製麹室9温度を間彰的に調節する方法を検討し
た結果、発生源と製麹室入口とを結ぶパイプと、排出気
体パイプとを結合して、いわゆるバイパスを作り、この
バイパスの通風量を変化させたところ、気体自体の条件
はたとえ同一であっても、結果的には製麹室内へ送入さ
れる気体の条件がそれに応じて変わっていくこと、及び
、バイパス通風量の変化に応じて時間的な間隔をおくこ
となく直ちに一車内の温度が変、化していくこと、を発
見し、それと同時に、この製麹方法に最も適合した酸素
条件を鋭意研究の結果つきとめ本発明を完成したのであ
る。
However, it is extremely difficult to directly change the gas conditions, and there are many drawbacks as mentioned above.
As a result of considering a method of periodically adjusting the temperature of the koji making room 9 while keeping the conditions of the gas itself the same and not changing it, we found that the pipe connecting the source and the entrance of the koji making room and the exhaust gas By connecting the pipes and creating a so-called bypass, and changing the ventilation volume of this bypass, even if the conditions of the gas itself are the same, the conditions of the gas sent into the koji making chamber will change as a result. They discovered that the temperature inside a car changes accordingly, and that the temperature inside a car changes immediately without any time interval in response to changes in the amount of bypass ventilation. As a result of intensive research, the oxygen conditions most suitable for the method were determined, and the present invention was completed.

密閉式製麹システムとしては、従来より、酸素取入口、
ファン、各種サイクロン(除塵、加温、加湿用)と、製
麹室とをパイプで連続したものが使用されているが、発
生気体自体、の条件を直接的に変えるために、ファン、
サイクロン等には更に付属装置が取り付けられている。
As a closed type koji making system, conventionally, an oxygen intake port,
A fan, various cyclones (for dust removal, heating, and humidification), and a koji making chamber connected via a pipe are used, but in order to directly change the conditions of the generated gas itself, a fan,
Additional equipment is attached to the cyclone and the like.

しかしながら本発明においては、これらの付属装置は不
必要であり、その代りに通気パイプと排出パイプ、を、
製麺室とは並列又はほぼ並列に、直接結合し不バイパス
奪構成し、バイパス内にダンパ等を配設して通気量を変
えるようにしておけば、それで充分なのである。
However, in the present invention, these ancillary devices are unnecessary, and instead a vent pipe and a discharge pipe are provided.
It is sufficient to connect directly to the noodle-making chamber in parallel or almost parallel, so that there is no bypass, and to arrange a damper or the like in the bypass to change the amount of ventilation.

バイパス内の通気量調節手段としては、ダンパの外、し
ぼり、スリット、じゃま板等を可変自在に且つ1個〜複
数個配設しても良い。
As the ventilation amount adjusting means in the bypass, one to a plurality of restrictors, slits, baffle plates, etc. may be variably provided outside the damper.

更に、製麹室付4の通気パイプと排出パイプに検出器を
設けおき、これらを接続して温度の昇化を読み取り、こ
れをバイパス内の通風量調節手段に粋続して自動的に製
麹室内の温度を、製麹至適温度である約3.0〜32℃
に調節することも可能である。
Furthermore, a detector is installed in the ventilation pipe and discharge pipe of the koji making chamber 4, and these are connected to read the rise in temperature, and this is connected to the ventilation amount adjustment means in the bypass to automatically start the production process. The temperature in the koji chamber is approximately 3.0 to 32℃, which is the optimum temperature for making koji.
It is also possible to adjust to

また、不発一方法のもう1つの特徴は、この方法に最も
適した酸素の最適量を決定し、自動的にその酸素レベル
を維持する点にある。
Another feature of the non-explosion method is that it determines the optimum amount of oxygen most suitable for this method and automatically maintains that oxygen level.

実験研究をくり返し行なった結果、このような密閉系の
製麹方法においては系内は少し嫌気的にしておく方が麹
の生育に良いことが判明し、酸素濃度の適量は0.5〜
3%であり、最適量は1〜2%であることがわかった。
As a result of repeated experimental research, it has been found that in such a closed system koji making method, it is better for the koji to grow if the system is made slightly anaerobic, and the appropriate oxygen concentration is 0.5~
3%, and the optimum amount was found to be 1-2%.

本方法においては、上記のように酸素濃度の適量を保持
する必要があると同時に、特に酸素量の下限についても
厳密な条件を満足する必要がある。
In this method, as mentioned above, it is necessary to maintain an appropriate amount of oxygen concentration, and at the same time, it is also necessary to satisfy strict conditions especially regarding the lower limit of the amount of oxygen.

換言すれば、酸素濃度を測定して特定下限隼になった時
に酸素又は酸素含有気体(空気が最適)を系内に導入す
る必要があやのである。
In other words, when the oxygen concentration is measured and reaches a specific lower limit, it is necessary to introduce oxygen or an oxygen-containing gas (air is best) into the system.

つまり、製麹室の通気部及び排気部−酵素検出轡を配置
して、酸素濃度をチェックし、酸素濃度が0.05〜0
.7%(特に好適には0.1〜0.5%)にまで低下し
た時に酸素を供給して0.5〜3%く好適には1〜2%
)の酸素一度を常に保持するのである。
In other words, the oxygen concentration is checked by arranging the ventilation part and exhaust part of the koji making room and the enzyme detection pipe, and the oxygen concentration is 0.05 to 0.
.. 7% (particularly preferably 0.1 to 0.5%), supply oxygen to 0.5 to 3%, preferably 1 to 2%.
) of oxygen at all times.

酸素濃度が上記下限値よりも低くなると麹菌が窒息した
り、発育不良になったりするので注意を要する。
If the oxygen concentration is lower than the above lower limit, the koji mold may suffocate or suffer from poor growth, so care must be taken.

酸素検中器を酵素取入口のパルプと連動させることも可
能である。
It is also possible to link an oxygen analyzer to the pulp at the enzyme intake.

そのうえ、米、麦の種類、その量、麹菌の種類、品質等
に応じて最適な温度条件、酸素条件及び加温時間等の製
麹条件を予じめコンビ夛−ターにプログラミングしてお
き、これと本発明に係るシステムとを連動させて完全自
動化することもできる。
In addition, the optimum koji making conditions such as temperature conditions, oxygen conditions, and heating time are programmed into the combinator in advance according to the type and amount of rice and wheat, the type and quality of koji mold, etc. This and the system according to the present invention can be linked to achieve complete automation.

次に、本発明の実施例を、倒示のために添付した図面に
記載の装置を使用して詳述していくことにする。
Embodiments of the invention will now be described in detail using the apparatus shown in the accompanying drawings for purposes of illustration.

製麹室1の棚2には、製麹原料Kを均一の厚さに広げて
お、<7が、製麹原料としては、蒸米に種麹を植えつけ
るいわゆる床揉み処理を棚?土で行なっても良いげ些ど
唱、本実施例においては常法により床揉みを行ない該処
理終了後の製麹原料を用いた。
On the shelf 2 of the koji making room 1, the koji making raw material K is spread to a uniform thickness. Although it may be possible to carry out the process using soil, in this example, the koji making raw material was used after the floor rolling was carried out by a conventional method.

製麹室1は、その下部及び上部に通気パイプ3及び排気
パイプ4をそれぞれ設け、これらのパイプ3,4は、パ
イプPによって結合させてゼミ、密閉系の製麪装置を構
成する。
The koji making room 1 is provided with a ventilation pipe 3 and an exhaust pipe 4 at its lower and upper parts, respectively, and these pipes 3 and 4 are connected by a pipe P to form a closed type koji making apparatus.

パイプPには酸素(又は辛気)取入口りを敗は不おき、
製麹工程中に消費される酸素を補なうことになるが、そ
のためには次のようケ新規なシステムを採る必要があり
、これ力1本発明の大きな特徴の1つである。
Pipe P does not have an oxygen (or air) intake,
Oxygen consumed during the koji making process is to be supplemented, but for this purpose it is necessary to adopt a new system as described below, which is one of the major features of the present invention.

酸素量を、通気パイプ3及び排気パイプ4のG及び8点
において検出器で検出し、これを調整装置Jで調整して
、木製麹システムにおける必須衆作である酸素量の調節
を行なう。
The amount of oxygen is detected by a detector at points G and 8 of the ventilation pipe 3 and the exhaust pipe 4, and this is adjusted by an adjustment device J to adjust the amount of oxygen, which is essential in a wooden koji system.

つまり、G点においては、製麹に多裂な酸素濃度が0.
5〜3%(好適には1〜2%)となる様にチェックし、
H点においては、酸素濃度がこのシステムにおける最少
必要量である0、05〜0.7(特に好ましくは0.1
〜0.5%)以下にならない様にチェックして、調整器
Jの調整指令に基づいて酸素取入口りのパルプの開閉を
行なう。
In other words, at point G, the multi-fiber oxygen concentration in the koji is 0.
Check that it is 5-3% (preferably 1-2%),
At point H, the oxygen concentration is the minimum required amount in this system of 0.05 to 0.7 (particularly preferably 0.1
-0.5%) or less, and open/close the pulp at the oxygen intake port based on the adjustment command from the regulator J.

調整器Jと酸素取入口りのバルブの開閉を連動さすてお
くと完全に自動化することがヂきる。
Complete automation is possible by linking the opening and closing of the regulator J and the oxygen intake valve.

このようにして系内の酸素濃度は、常に最適なものが保
持されることになる。
In this way, the oxygen concentration within the system is always maintained at an optimum level.

酸素取入口りから取入られた酸素(又は空気)は、除湿
器も兼ねるファンF1を通って除湿、加速されて、ファ
ンF2に送られ、そこで風速及び風量を調節してサイク
ロン5,6,7に送られる。
Oxygen (or air) taken in from the oxygen intake port is dehumidified and accelerated through fan F1, which also serves as a dehumidifier, and sent to fan F2, where the wind speed and volume are adjusted and the cyclones 5, 6, Sent to 7.

サイクロン5は、比較的大きな塵を除去するためのもの
である。
The cyclone 5 is for removing relatively large dust.

次に気体は、サイクロン6に導入されるが、このサイク
ロンにはスチームエジェクターSから必要量のスチーム
を供給して、気体の小さな塵の除去と同時に、加温及び
加湿処理を行なう。
Next, the gas is introduced into the cyclone 6, which is supplied with a required amount of steam from the steam ejector S to remove small dust particles from the gas and at the same time perform heating and humidification processes.

このようにして温湿度が調整された気体は、サイクロン
7に送られて水滴を分離した後、製麹室10通気パイプ
3へと送ら些るのである。
The gas whose temperature and humidity have been adjusted in this way is sent to the cyclone 7 to separate water droplets, and then sent to the koji making room 10 and the ventilation pipe 3.

しかしながら、本発明方法では、サイクロン7と通気パ
イプ3を結ぶパイプと、排気パイプ4からファンF1へ
達するパイプとを、部分10及び11においてバイパス
パイプ8で結合しており、この点が本発明における最も
重要な特徴の1つである。
However, in the method of the present invention, the pipe that connects the cyclone 7 and the ventilation pipe 3 and the pipe that reaches the fan F1 from the exhaust pipe 4 are connected by the bypass pipe 8 at the portions 10 and 11, and this point is in accordance with the present invention. This is one of the most important features.

バイパスパイプ8には、適宜な通風量調節手段9を設け
て、通風量の調節を行なうが、本実施例においてはダン
パを使用している。
The bypass pipe 8 is provided with an appropriate ventilation amount adjusting means 9 to adjust the ventilation amount, and in this embodiment, a damper is used.

また、本実施例においては、通気パイプと排気パイプ内
での気体の温度差をチェックするために、検出器をそれ
ぞれA、B点に配設してこれを接続し、更にバイパスパ
イプ8のダンパ調節部Cと接続連動せしめて、製麹室内
の温度を調整するのである。
In addition, in this embodiment, in order to check the temperature difference between the gases in the ventilation pipe and the exhaust pipe, detectors are installed at points A and B, respectively, and these are connected. It is connected and interlocked with the adjustment section C to adjust the temperature inside the koji making chamber.

つまり、パイプ内を流れる気体量は常に一定であるので
、ダイパ9を開げることによって、通気パイプ3を通過
する気体は一部バイパス8内に流入し、その分だげ製麹
室内への流入量が低下する。
In other words, since the amount of gas flowing through the pipe is always constant, by opening the diameter pipe 9, a portion of the gas passing through the ventilation pipe 3 will flow into the bypass 8, and that amount will flow into the koji making chamber. Inflow rate decreases.

従って、製麹室内の温度が低下する。Therefore, the temperature inside the koji making chamber decreases.

麹自体が発熱している時であって、適温にまで降下冷却
させたい時には、このようにダンパ9を開け、逆に、製
麹開始当初の項であって、麹自体を加熱しだい時には、
ダンパ9を閉じて、加温された気体を充分供給すれば良
いのである。
When the koji itself is generating heat and you want to cool it down to an appropriate temperature, open the damper 9 like this.On the other hand, when the koji itself is heated at the beginning of koji production, as soon as the koji itself is heated,
All that is required is to close the damper 9 and supply a sufficient amount of heated gas.

しかもこれらの調整は、A、B、Cを接続連動せしめる
ことによって、自動的に制御されるのである。
Furthermore, these adjustments are automatically controlled by interlocking connections of A, B, and C.

そのうえ、ダンパの開閉角度も自由に変えられるので、
温度の微調整を行なうことも可能である。
Moreover, the opening and closing angle of the damper can be changed freely.
It is also possible to make fine adjustments to the temperature.

また、このバイパス8は、パイプに対して直角に付設し
ているが、角度をつけて付設しても良い。
Moreover, although this bypass 8 is attached at right angles to the pipe, it may be attached at an angle.

このようにして、バイパス8の付設及びダンパ9の作用
によって、―麹室の温度を各工程に従って随時調節する
ことができるのである。
In this way, by providing the bypass 8 and the action of the damper 9, the temperature of the koji chamber can be adjusted at any time according to each process.

製麹開始後15〜20時間後には温度が上昇するので、
ダンパ9を少し開いて多量の気体を製麹室内に送入して
温度を下げる。
The temperature will rise 15 to 20 hours after the start of koji making, so
The damper 9 is slightly opened to introduce a large amount of gas into the koji making chamber to lower the temperature.

この場合酸素も多量に消費されるので、調整器J及び酸
素取入口りを作動させて酸素を必要値である1〜5%と
なるように取り込む。
In this case, a large amount of oxygen is also consumed, so the regulator J and the oxygen intake port are operated to take in oxygen to the required value of 1 to 5%.

このように、温度と酸素条件がうまく麹に適用されるの
で盛といった機械的な作業は全く必要としないのである
In this way, the temperature and oxygen conditions are properly applied to the koji, so there is no need for any mechanical work such as mashing.

この操作終了後2〜3時間後に品温が多少上昇するので
上記のようにして少し冷却し、同様にして酸素も補給す
る。
Two to three hours after the end of this operation, the temperature of the product will rise a little, so it is cooled down a little as described above, and oxygen is also supplied in the same way.

従って、仲仕事、共蓋に相癌するような機i的な作業は
全く行なう必要がない。
Therefore, there is no need to perform opportunistic work such as intermediary work or co-paying.

この操作終了後品温に!多少上昇するけれどもそれだけ
では不充分でもあり、また必要温度にまで上昇させるに
は時間がかかるので、ここではダンパを閉じて少し製麹
室の温度を高めてやる必要がある。
After completing this operation, the temperature will be reached! Although the temperature rises a little, it is not enough and it takes time to raise the temperature to the required level, so it is necessary to close the damper and raise the temperature of the koji making room a little.

そして中麹午するのである。なおこの場合、気体自隼の
温度、麪の品温等によっては、タッパの開閉が上記の、
場合とは逆になることもある。
Then we have a mid-day meal. In this case, the opening and closing of the tapper may vary depending on the temperature of the gas, the temperature of the sake, etc.
Sometimes the situation is the opposite.

以上詳記したように、上記のような方式、つまり適正猷
素濃産の維持、及び密閉系システムにおいてバイパスを
設けて通風量の調節を行なう方式を採用したことによっ
て、次のような顕著な効果が得られるのである。
As described in detail above, by adopting the method described above, that is, maintaining appropriate soybean concentration and adjusting the ventilation amount by providing a bypass in a closed system, the following remarkable results have been achieved. The effect can be obtained.

本発明方法は、このシステムに最も適合した酸素濃度を
つきとめ、これを科学的に維持するため、測定地点、測
定方法を詳しく検討して、上記のような方法を採用した
ことに大きな特徴の1つを有するものである。
One of the major features of the method of the present invention is that in order to find the most suitable oxygen concentration for this system and maintain it scientifically, the measurement points and measurement methods were carefully considered and the method described above was adopted. It has two features.

従って、系内においては常に酸素量が適正に保たれてお
り、しかも製麹原料に均一に酸素が分布しているので、
酸素不足とならず、炭酸ガス除去のための各種の機械的
作業が全く必要ないのである。
Therefore, the amount of oxygen in the system is always maintained at an appropriate level, and oxygen is evenly distributed in the raw materials for koji making.
There is no oxygen shortage and there is no need for various mechanical operations to remove carbon dioxide gas.

もう1つの本発明方法の特徴は、全く新規な温度調節手
段を採用した点にある。
Another feature of the method of the present invention is that it employs a completely new temperature control means.

つまり、本発明方法は、通気気体自体の温度を調節する
ものではなく、通気気体自体は一定温度、一定風量とす
れば良く、ダンパの開閉のみで温度のコントロールが出
来るため操作が非常に簡素化される。
In other words, the method of the present invention does not adjust the temperature of the ventilation gas itself; instead, the ventilation gas itself only needs to be kept at a constant temperature and air volume, and the temperature can be controlled simply by opening and closing the damper, making the operation extremely simple. be done.

そのうえ、製麹室の温度変化に対して、直ちに適応でき
、しかも精度が非常に高いという利点が得られる。
Moreover, it has the advantage of being able to adapt immediately to changes in temperature in the koji making room and having very high accuracy.

また、温度の自動制御が可能であるし、大量の麹を連続
的に製造でき、且つ、製麹期間も一般的に短縮されるし
、通気気体の温湿度及びダンパの開閉を調整することに
よって、味噌用節は勿論のこと、清酒用の「突き破精麹
」及び「総破精麹」等各種の用途に用いる品質の異なつ
よ麹を容易に製造することも可能である。
In addition, the temperature can be automatically controlled, a large amount of koji can be produced continuously, and the koji production period is generally shortened. It is also possible to easily produce tsuyo koji of different quality for use in various uses, such as ``Tukiha Seikoji'' and ``Soha Seikoji'' for sake, as well as ``bushi'' for miso.

そのうえ、酸素調節機構と酸素取入口との連動、及び温
度調節機構とダンパ開閉部との連動が可能であるので、
各工程における酸素量と温度条件とを予じめ決定してお
き、これをコンピュータにインプットしてコンピュータ
とこれら調整機構を連動しておけば従来自動化不可能と
さえいわれていた製麹工程を完全に自動化することがで
きるという極めて顕著な効果も得られるのである。
Furthermore, it is possible to link the oxygen adjustment mechanism and the oxygen intake port, and to link the temperature adjustment mechanism and the damper opening/closing part.
By determining the amount of oxygen and temperature conditions for each process in advance, inputting these into a computer, and linking the computer and these adjustment mechanisms, the koji making process, which was previously said to be impossible to automate, can be completed. It also has the extremely remarkable effect of being able to automate the process.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明に係る製麹方式を模式的に示したもので
あり、図中の各番号は以下の事項を表わす。 1……製麹室、3……通気パイプ、4……排出パイプ、
Fl ……ファン、5,6,7……サイクロン、8……
バイパス、9……ダンパ、G、H2J……酸素調節機構
The drawing schematically shows the koji making method according to the present invention, and each number in the drawing represents the following items. 1... Koji making room, 3... Ventilation pipe, 4... Discharge pipe,
Fl...Fan, 5, 6, 7...Cyclone, 8...
Bypass, 9... Damper, G, H2J... Oxygen regulation mechanism.

Claims (1)

【特許請求の範囲】 1 通気口及び排気口を備えた製麹室をパイプで連結し
た密閉式製麹システムにおいて、酸素濃度勾配を該通気
口及び排気口において測定し、酸素濃度が低下した時に
酸素又は酸素含有気体を添加して系内の酸素濃度を0.
3〜5%となるように保持することを特徴とする密閉式
製麹方法。 2 通気口及び排気口を備えた製麹室をパイプで連結し
た密閉式製麹システムにおいて、酸素濃度勾配を該通気
口及び排気口において測定し、酸素濃度が0.05〜0
.7%に低下した時に酸素又は酸素含有気体を添加して
系内の酸素濃度を常に0.3〜5%となるように保持す
るとともに、温度、風速及び風量を一定にしてi製麹室
に通気を行ない、それと同時に通気システムと排気シス
テムとを直接、且つ製麹室とは並列に結合し、しカーも
該結合部内において通気量の調節を行なうことによって
、製麹室内の温度を調節しながら製麹することを特徴と
する密閉式製麹方法。
[Claims] 1. In a closed koji-making system in which a koji-making chamber equipped with a vent and an exhaust port is connected by a pipe, the oxygen concentration gradient is measured at the vent and the exhaust port, and when the oxygen concentration decreases, Oxygen or oxygen-containing gas is added to reduce the oxygen concentration in the system to 0.
A closed type koji making method characterized by maintaining the koji at 3 to 5%. 2. In a closed koji making system in which a koji making chamber equipped with a vent and an exhaust port is connected by a pipe, the oxygen concentration gradient is measured at the vent and the exhaust port, and the oxygen concentration is 0.05 to 0.
.. When the concentration drops to 7%, add oxygen or an oxygen-containing gas to maintain the oxygen concentration in the system at 0.3 to 5%, and keep the temperature, wind speed, and volume constant in the i-koji making room. At the same time, the ventilation system and exhaust system are connected directly and in parallel with the koji making room, and the car also adjusts the amount of ventilation within the connection to adjust the temperature inside the koji making room. A closed type koji making method characterized by making koji while the process is in progress.
JP8917675A 1975-07-21 1975-07-23 Seikikuhouhou Expired JPS5811995B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8917675A JPS5811995B2 (en) 1975-07-23 1975-07-23 Seikikuhouhou
GB25801/76A GB1556178A (en) 1975-07-21 1976-06-22 Koji making method
US05/702,605 US4048340A (en) 1975-07-21 1976-07-06 Koji making method
DE19762632139 DE2632139A1 (en) 1975-07-21 1976-07-16 METHOD OF MAKING KOJI
FR7621932A FR2318595A1 (en) 1975-07-21 1976-07-19 KOJI MANUFACTURING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8917675A JPS5811995B2 (en) 1975-07-23 1975-07-23 Seikikuhouhou

Publications (2)

Publication Number Publication Date
JPS5215897A JPS5215897A (en) 1977-02-05
JPS5811995B2 true JPS5811995B2 (en) 1983-03-05

Family

ID=13963453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8917675A Expired JPS5811995B2 (en) 1975-07-21 1975-07-23 Seikikuhouhou

Country Status (1)

Country Link
JP (1) JPS5811995B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889569U (en) * 1981-12-14 1983-06-17 株式会社飯田製作所 sliding door device
JPH063090B2 (en) * 1988-10-17 1994-01-12 鹿島建設株式会社 Open / close door of clean room
JPH0712605Y2 (en) * 1989-01-30 1995-03-29 昭和鋼機株式会社 Opening and closing structure of sliding door

Also Published As

Publication number Publication date
JPS5215897A (en) 1977-02-05

Similar Documents

Publication Publication Date Title
US3810327A (en) Atmosphere control system for growing mushrooms and the like
CN102778009B (en) Temperature-humidity control device and method for variable-air-volume air-conditioning system
US4608961A (en) Exhaust damper control
GB1304793A (en)
CN111296183A (en) Edible mushroom room environment control system and method
CN110013044B (en) Method for obtaining barrel temperature by calculating dehydration amount of KLD-2 cut-tobacco drier
SE448357B (en) SET AND DEVICE FOR SEATING AND ADJUSTING THE VOLUME WEIGHT OF AN EXPANDED PARTICULAR MATERIAL
CN108192654A (en) A kind of medium-sized experimental facilities of catalytic cracking and experimental method
JPS5811995B2 (en) Seikikuhouhou
GB1131646A (en) Method and apparatus for drying tobacco
CN106805282A (en) A kind of method for controlling water content of chimneying formula dried material
CN104013090B (en) A kind of drum drying method for tobacco scrap prodn and drying device
CN112665357A (en) Gypsum board drying device and drying method thereof
CN110850836A (en) Quantitative control method for water content of outlet material of tunnel type heating and humidifying equipment
CN214746147U (en) High-efficient humidification device of constant temperature and humidity control equipment
GB729186A (en) Improvements in or relating to drying of materials in the form of particles
US5051267A (en) Installation for and a method of drying or ripening foodstuffs
JP3189130B2 (en) Automatic product temperature control method and apparatus for koji making apparatus
JPS6018076Y2 (en) Automatic koji making equipment
CN106369705A (en) Constant temperature and constant humidity system device suitable for precision casting environment
CN207811680U (en) A kind of medium-sized experimental facilities of catalytic cracking
RU2350850C1 (en) Technique of automatic control over air parameters
JPS6315960B2 (en)
AU2022268395B2 (en) Method and system for drying salts, in particular hydrated salt
SU1531951A1 (en) Method of automatic control of production of puffed grains