JPS58119216A - Piezoelectric tuning fork for high frequency - Google Patents

Piezoelectric tuning fork for high frequency

Info

Publication number
JPS58119216A
JPS58119216A JP151182A JP151182A JPS58119216A JP S58119216 A JPS58119216 A JP S58119216A JP 151182 A JP151182 A JP 151182A JP 151182 A JP151182 A JP 151182A JP S58119216 A JPS58119216 A JP S58119216A
Authority
JP
Japan
Prior art keywords
tuning fork
electrode
piezoelectric
legs
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP151182A
Other languages
Japanese (ja)
Inventor
Koji Nishiyama
浩司 西山
Takeshi Nakamura
武 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP151182A priority Critical patent/JPS58119216A/en
Publication of JPS58119216A publication Critical patent/JPS58119216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils

Abstract

PURPOSE:To excite the primary harmonic strongly, by coupling an electrode lead provided at the side of a tuning fork oscillator base and an electrode of piezoelectric transducer with a narrow straight line connecting electrode formed by being made excentric at the outside from the center line of oscillator legs. CONSTITUTION:One outer side surface of the tuning fork oscillating legs 12, 12 and one side surface of a base 13 leading to it are formed with a piezoelectric film 14, a square electrode 15 is formed on the film 14 and the electrode 15 and the film 14 form a piezoelectric transducer 16. The electrode 15 of the transducer 16 is formed between a bottom 18 and a tip of the legs 12, 12 by taking the bottom 18 of a tuning fork groove 17 formed between the legs 12, 12 of the oscillator 11 as a reference. The electrode lead 19 is provided on the film 14 of the base 13 of the oscillator 11. The electrode lead 19 and the electrode 15 of the transducer 16 are mutually coupled with the narrow straight line connecting electrode 20 formed by being made excentric to the outside than the center line of the legs 12, 12. Thus, the fundamental wave is suppressed and the primary harmonic is excited.

Description

【発明の詳細な説明】 本発明は高次モードの高調波を利用した高周波用圧電音
叉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-frequency piezoelectric tuning fork that utilizes harmonics in higher-order modes.

一般に、音叉振動子の共振周波数を高くするには、音叉
振動子の振動脚部の長さを短くするとともに、振動脚部
の巾を広くすればよい。
Generally, in order to increase the resonant frequency of a tuning fork vibrator, it is sufficient to shorten the length of the vibrating leg of the tuning fork vibrator and increase the width of the vibrating leg.

従来、例えば1QQKHzを越える高い周波数領域の圧
電音叉を得るため、音叉振動子の振動脚部の長さを短く
するとともに、振動脚部の巾を広くすると、音叉振動子
の基本波を利用する限り、直列共振抵抗が大きくなる等
により共振特性が悪く実用できなかった。
Conventionally, in order to obtain a piezoelectric tuning fork in a high frequency range exceeding, for example, 1QQKHz, the length of the vibrating leg of the tuning fork vibrator is shortened and the width of the vibrating leg is widened.As long as the fundamental wave of the tuning fork vibrator is used, However, due to the large series resonance resistance, the resonance characteristics were poor and it could not be put to practical use.

そこで、他の振動モードを使うもの、例えば、音片振動
子を使うことも考えられるが、形状が大きくなる等の欠
点がある。そこで、高次モード、特に第1次高調波で音
叉振動子を励振することが考えられる。
Therefore, it is conceivable to use a device that uses another vibration mode, such as a vibrating unit vibrator, but this has drawbacks such as an increase in size. Therefore, it is conceivable to excite the tuning fork vibrator in a higher order mode, particularly in the first harmonic.

特開昭55−8172号公報には、水晶のような圧電体
を音叉形状にしたものにおいて、高次モード、特に第1
次高調波を利用した音叉形水晶振動子が開示されている
。そしてその公報の第1図には基本波と第1次高調波に
おける発生電荷の分布状態が示されている。しかしこの
ようないわゆる音叉形水晶振動子は、構造が複雑である
という欠点があった。
Japanese Unexamined Patent Publication No. 55-8172 discloses that a piezoelectric material such as crystal is shaped into a tuning fork, and that high-order modes, especially the first
A tuning fork crystal resonator using harmonics has been disclosed. FIG. 1 of the publication shows the distribution of generated charges in the fundamental wave and the first harmonic. However, such a so-called tuning fork crystal resonator has a drawback of having a complicated structure.

したがってたとえば100 K Hz以上の高周波領域
で外形寸法、コスト、性能等の諸要素を勘案したときも
つとも適当品と考えられる圧電音叉構造で実用的なもの
が望まれていた。
Therefore, there has been a desire for a practical piezoelectric tuning fork structure that is considered to be suitable for use in the high frequency range of 100 KHz or higher, considering various factors such as external dimensions, cost, and performance.

本発明は従来の高周波用圧電音叉における上記事情に鑑
みてなされたものであって、圧電音叉において、高次モ
ード特に第1高調波を利用して、従来のように基本波の
使用により実現することのできない高周波領域において
実用できる高周波用圧電音叉を提供することを目的とし
ている。
The present invention has been made in view of the above-mentioned circumstances regarding the conventional piezoelectric tuning fork for high frequency, and is realized by using the fundamental wave as in the conventional piezoelectric tuning fork by utilizing the higher order mode, especially the first harmonic. The purpose of the present invention is to provide a piezoelectric tuning fork for high frequencies that can be put to practical use in high frequency regions where it is impossible to perform high frequency applications.

このため1本発明は、音叉振動子の振動脚部に圧電トラ
ンスデユーサを設けてなる圧電音叉において、上記音叉
振動子の両振動脚部を結合する音叉振動子基部側面に電
極引出し部を設け、該電極引出し部と上記圧電トランス
デユーサの電極とを振動脚部の中心線より外側に偏心さ
せて形成した細巾の直線状接続電極で結合したことを特
徴としている。
For this reason, 1 the present invention provides a piezoelectric tuning fork in which a piezoelectric transducer is provided on the vibrating legs of a tuning fork vibrator, and an electrode lead-out portion is provided on the side surface of the base of the tuning fork vibrator that connects both vibrating legs of the tuning fork vibrator. , the electrode extension part and the electrode of the piezoelectric transducer are connected by a narrow linear connection electrode formed eccentrically outward from the center line of the vibrating leg part.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図、において、11は音叉振動子であって、その構
成材料は、エリンバ−等の恒弾性金属、ガラス、樹脂等
任意である。12.12は上記音叉振動子11の振動脚
部、13はこれら振動脚部12゜12を結合する音叉振
動子基部(以下、基部と略記する。)である。
In FIG. 1, reference numeral 11 denotes a tuning fork vibrator, and its constituent material may be arbitrary, such as a constant elastic metal such as Elinvar, glass, or resin. Reference numeral 12 and 12 are vibrating legs of the tuning fork vibrator 11, and 13 is a tuning fork vibrator base (hereinafter abbreviated as the base) to which these vibrating legs 12 and 12 are connected.

上記振動脚部12.12の一方の外側面およびそれに連
なる基部13の一側面には、Z z O、AI N。
On one outer surface of the vibrating leg portion 12.12 and one side surface of the base portion 13 connected thereto, Z z O, AI N are provided.

ZnS  CdS  LiNb0   LiTaO3゜
3+ γ−Bi203族化合物、チタン酸ジルコン酸鉛系圧電
セラミックス等の周知の圧電材料からなる圧電膜14が
形成されている。
A piezoelectric film 14 made of a well-known piezoelectric material such as ZnS CdS LiNb0 LiTaO3°3+ γ-Bi203 group compound, lead zirconate titanate piezoelectric ceramics, etc. is formed.

上記圧電膜14の上には、金(Au)もしくはアルミニ
ウム(Al)等からなる四角形状の電極15を形成し、
該電極15と上記圧電膜14とにより、圧電トランスデ
ユーサ16を形成している。
A rectangular electrode 15 made of gold (Au), aluminum (Al), etc. is formed on the piezoelectric film 14,
The electrode 15 and the piezoelectric film 14 form a piezoelectric transducer 16.

圧電トランスデユーサ16の上記電極15は、音叉振動
子11の振動脚部12.12の間に形成される音叉溝1
7の底部18を基準として、該底部18と上記振動脚部
12.12の先端との間の位置に形成される。
The electrode 15 of the piezoelectric transducer 16 is connected to the tuning fork groove 1 formed between the vibrating legs 12.12 of the tuning fork vibrator 11.
7 is formed at a position between the bottom 18 and the tip of the vibrating leg 12.12.

一方、音叉振動子11の上記基部13の圧電膜14上で
、電極引出し部19を設けている。
On the other hand, an electrode extension portion 19 is provided on the piezoelectric film 14 of the base portion 13 of the tuning fork vibrator 11.

上記電極引出し部19と圧電トランスデユーサ16の電
極15とは、上記振動脚部12.12の中心線よりも外
側に偏心させて形成した細巾の直線状接続電極20で相
互に結合している。
The electrode extension part 19 and the electrode 15 of the piezoelectric transducer 16 are connected to each other by a narrow linear connecting electrode 20 formed eccentrically outward from the center line of the vibrating leg part 12.12. There is.

上記直線状接続電極20の巾はできるだけ細く、例えば
50μm以下で、かつ、短くすることが好ましい。
It is preferable that the width of the linear connection electrode 20 is as narrow as possible, for example, 50 μm or less, and short.

上記のように、圧電トランスデユーサ16とその引出し
電極部19を設けた音叉振動子11は、絶縁性を有する
円板状のステム21に水直に貫通させた2本の外部接続
端子22.23の一方と、上記ステム21から突出させ
た支柱24とに音叉振動子11の上記基部13を固定し
、他方の外部接続端子23と上記電極引出し部19とを
ワイヤ25でワイヤボンドしている。
As described above, the tuning fork vibrator 11 provided with the piezoelectric transducer 16 and its extraction electrode portion 19 has two external connection terminals 22. The base 13 of the tuning fork vibrator 11 is fixed to one of the terminals 23 and a support 24 protruding from the stem 21, and the other external connection terminal 23 and the electrode extension part 19 are wire-bonded with a wire 25. .

上記のようにすれば、次に述べるように、音叉振動子1
1の基本波が抑制される一方、第1次高調波が強力に励
振され、また、第1次高調波でのQが高く、共振子とし
ての特性が大きく改善される。
If you do the above, the tuning fork vibrator 1 will be
While the fundamental wave of 1 is suppressed, the first harmonic is strongly excited, the Q of the first harmonic is high, and the characteristics as a resonator are greatly improved.

因みに、第2図(a)、(b)、(C)および(d)に
夫々示すように、直線状接続電極20の形成位置および
巾の異なる4種類の圧電音叉30a、30b、30Cお
よび30dを作成し、その基本波および第1次高調波の
並列共振抵抗Ra、直列共振抵抗kOおよびこれら並列
共振抵抗Raと直列共振抵抗ROとの比Ra/Roを求
めたところ、次の第1表のようになった。
Incidentally, as shown in FIGS. 2(a), (b), (C), and (d), four types of piezoelectric tuning forks 30a, 30b, 30C, and 30d have different forming positions and widths of the linear connection electrodes 20. was created, and the parallel resonant resistance Ra, series resonant resistance kO, and the ratio Ra/Ro of these parallel resonant resistances Ra and series resonant resistance RO of the fundamental wave and first harmonic were determined, as shown in Table 1 below. It became like this.

但し、上記第1表において、圧電音叉30a。However, in Table 1 above, the piezoelectric tuning fork 30a.

30b、30Cおよび30dの圧電トランスデユーサ1
6の電極15は、第2図(a) 、 (b) 、 (C
)オヨヒ(d)に夫々示すように、同一寸法で長さI 
O=2.47mの振動脚部13の先端からX□=0.2
5mと、 X 2=2.0■の範囲に形成され、その巾
WOはW o ==0、4 mである。
30b, 30C and 30d piezoelectric transducer 1
2 (a), (b), (C
) As shown in Oyohi (d), the same dimensions and length I
From the tip of the vibrating leg 13 of O=2.47m X□=0.2
5 m, and the width WO is 4 m.

また、電極引出し部19は、上記振動脚部12の先端か
らX  = 3.5 m トx4 = 4.5 ttm
(D1m囲ニ形成され、その巾WOはW O= 0.4
 msである。
Further, the electrode pull-out section 19 is located at a distance of
(D1m surrounding area is formed, and its width WO is WO=0.4
It is ms.

圧電音叉30a 、30b 、30Cおよび30dの各
直線状接続電極20の巾′は夫々50μm。
The width of each linear connection electrode 20 of the piezoelectric tuning forks 30a, 30b, 30C and 30d is 50 μm.

100μmy50μfiおよび100μmで、圧電音叉
30aと30bの直線状接続電極20は振動脚部12の
中心線上に形成され、圧電音叉3’、O,Cと30dの
直線状接続電極20は上記中心線から偏心して形成され
ている。
100μmy50μfi and 100μm, the linear connection electrodes 20 of the piezoelectric tuning forks 30a and 30b are formed on the center line of the vibrating leg 12, and the linear connection electrodes 20 of the piezoelectric tuning forks 3', O, C and 30d are offset from the center line. It is formed with care.

上記第1表からも分るように、第1次高調波におけるR
a/Roが大きく、基本波におけるRa/ Roが小さ
いのは、巾50μmの直線状接続電極20を偏心させて
形成した圧電音叉30Cである。
As can be seen from Table 1 above, R at the first harmonic
The piezoelectric tuning fork 30C having a large a/Ro and a small Ra/Ro in the fundamental wave is formed by eccentrically forming a linear connection electrode 20 with a width of 50 μm.

上記のように、第1次高調波におけるRa/R。As mentioned above, Ra/R at the first harmonic.

が大きくなると、第1次高調波における圧電音叉30C
のQは、次の理由により大きくなる。
When becomes larger, the piezoelectric tuning fork 30C at the first harmonic
Q becomes large for the following reason.

即ち、一般に圧電音叉のQは、これら直列共振周波数F
O1並列共振周波数Fa、直列共振抵抗kOおよび並列
共振抵抗Raにより、次の第1式上記第1式から分るよ
うに、Qを大きくするには、F o / 2(Fa−F
o)もしくはRa/Roを大きくすればよいが、F o
 / 2(Fa−Fo)は圧電音叉の寸法が決まるとは
マ′決まるため、Qを大きくするには、Ra/Roを大
きくすればよいことが分る。
That is, in general, the Q of a piezoelectric tuning fork is determined by the series resonance frequency F.
O1 Parallel resonant frequency Fa, series resonant resistance kO, and parallel resonant resistance Ra.
o) Or you can increase Ra/Ro, but F o
/2(Fa-Fo) is determined by determining the dimensions of the piezoelectric tuning fork, so it can be seen that in order to increase Q, it is sufficient to increase Ra/Ro.

上記のことから、巾が例えば50μm以下の直線状接続
電極20を振動脚部12.12の中心線から偏心させて
形成すれば、Qの高い安定な高周波用圧電音叉を得るこ
とができる。
From the above, if the linear connecting electrode 20 having a width of, for example, 50 μm or less is formed eccentrically from the center line of the vibrating leg portion 12.12, a stable high-frequency piezoelectric tuning fork with a high Q can be obtained.

以上、詳細に説明したことからも明らかなように、本発
明は、圧電音叉において、音叉振動子基部側面に設けた
電極引出し部と圧電トランスデユーサの電極とを振動脚
部の中心線より外側に偏心させて形成した細巾の直線状
接続電極で結合するようにしたから、基本波が抑制され
るのに対して第1次高調波が強力に励振され、基本波を
利用したときは実用できないような高周波領域でも実用
でき、しかも、共振子としての特性が大きく改善された
高周波用圧電音叉を得ることができる。
As is clear from the above detailed explanation, the present invention provides a piezoelectric tuning fork in which the electrode lead-out portion provided on the side surface of the base of the tuning fork vibrator and the electrode of the piezoelectric transducer are placed outside the center line of the vibrating leg. Since the connection is made using a narrow linear connecting electrode formed eccentrically from the center, the fundamental wave is suppressed while the first harmonic is strongly excited, which makes it practical when using the fundamental wave. It is possible to obtain a piezoelectric tuning fork for high frequencies that can be put to practical use even in a high frequency range where it would otherwise be impossible, and has greatly improved characteristics as a resonator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高周波用音叉の一実施例の斜視図
、第2図(a)、第2図(b)、第2図(C)および第
2図(dlは夫々直列共振抵抗および並列共振抵抗を測
定するために使用した種々の直線状接続電極を有する圧
電音叉の側面図である。 11・・・音叉振動子、12・・・振動脚部、13・・
・基部、14・・・圧電膜、15・・・電極、16・・
・圧電トランスデユーサ、19・・・電極引出し部、2
0・・・直線状接続電極。 特 許 出 願 人 株式会社村田製作所代 理 人 
弁理士 青白 葆 ほか2名第1図
FIG. 1 is a perspective view of an embodiment of a tuning fork for high frequency according to the present invention, FIG. 2(a), FIG. 2(b), FIG. 2(C), and FIG. and a side view of a piezoelectric tuning fork having various linear connection electrodes used to measure parallel resonance resistance. 11... tuning fork vibrator, 12... vibrating leg, 13...
・Base, 14... Piezoelectric film, 15... Electrode, 16...
・Piezoelectric transducer, 19... electrode extraction part, 2
0...Linear connection electrode. Patent applicant Murata Manufacturing Co., Ltd. Agent
Patent attorneys Aohaku Ao and 2 others Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)音叉振動子の振動脚部に圧電トランスデユーサを
設けてなる圧電音叉において、上記音叉振動子の両振動
脚部を結合する音叉振動子基部側面に電極引出し部を設
け、該電極引出し部と上記圧電トランスデユーサの電極
とを上記振動脚部の中心線より外側に偏心させて形成し
た細巾の直線状接続電極で結合したことを特徴とする高
周波用圧電音叉。
(1) In a piezoelectric tuning fork in which a piezoelectric transducer is provided on a vibrating leg of a tuning fork vibrator, an electrode drawer is provided on a side surface of a tuning fork vibrator base that connects both vibrating legs of the tuning fork vibrator; and an electrode of the piezoelectric transducer are connected to each other by a narrow linear connecting electrode formed eccentrically outward from the center line of the vibrating leg.
JP151182A 1982-01-07 1982-01-07 Piezoelectric tuning fork for high frequency Pending JPS58119216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP151182A JPS58119216A (en) 1982-01-07 1982-01-07 Piezoelectric tuning fork for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP151182A JPS58119216A (en) 1982-01-07 1982-01-07 Piezoelectric tuning fork for high frequency

Publications (1)

Publication Number Publication Date
JPS58119216A true JPS58119216A (en) 1983-07-15

Family

ID=11503502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP151182A Pending JPS58119216A (en) 1982-01-07 1982-01-07 Piezoelectric tuning fork for high frequency

Country Status (1)

Country Link
JP (1) JPS58119216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059348U (en) * 1991-07-18 1993-02-09 タケヤ化学工業株式会社 Partition structure for storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059348U (en) * 1991-07-18 1993-02-09 タケヤ化学工業株式会社 Partition structure for storage

Similar Documents

Publication Publication Date Title
JP4756426B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JPS62230108A (en) Piezoelectric viblator
JP2004135357A5 (en)
JP4379119B2 (en) Crystal oscillator
JPS58119216A (en) Piezoelectric tuning fork for high frequency
JPH0124368B2 (en)
JP2003273703A (en) Quartz vibrator and its manufacturing method
JP3749917B2 (en) Manufacturing method of crystal oscillator
JPS6225039Y2 (en)
JPH07254839A (en) Crystal vibrator
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP3077551B2 (en) Piezoelectric resonance components
JP3077535B2 (en) Chip type piezoelectric resonance component
JP2005094734A (en) Resonator, resonator unit, oscillator, and electronic apparatus
JPH0349467Y2 (en)
JP2003273696A (en) Method for manufacturing crystal unit and method of manufacturing crystal oscillator
JPH08265093A (en) Chip type piezoelectric resonance component
JPH0278313A (en) Structure for overtone oscillating piezoelectric resonator
JP2709315B2 (en) Free-ended bending quartz crystal unit
JPH03191607A (en) Thickness slip crystal resonator
JP3141709B2 (en) Piezoelectric resonator
JPS5824216A (en) Ceramic oscillator
JP2003273647A (en) Crystal oscillator and method of manufacturing the same
JP2003273698A (en) Electronic equipment
JPH03195111A (en) Longitudinal crystal resonator