JPS58119168A - Fused carbonate cell lamination starting system - Google Patents

Fused carbonate cell lamination starting system

Info

Publication number
JPS58119168A
JPS58119168A JP57001029A JP102982A JPS58119168A JP S58119168 A JPS58119168 A JP S58119168A JP 57001029 A JP57001029 A JP 57001029A JP 102982 A JP102982 A JP 102982A JP S58119168 A JPS58119168 A JP S58119168A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
fuel
gas
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57001029A
Other languages
Japanese (ja)
Inventor
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Masatsugu Yoshimori
吉森 正嗣
Hitoshi Kuraki
倉木 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57001029A priority Critical patent/JPS58119168A/en
Publication of JPS58119168A publication Critical patent/JPS58119168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To rise the temperature and to perform the starting while heating from the interior of a lamination uniformly in short time, by providing a catalyst at the gas supply side of a fuel electrode while mixing the fuel gas and an oxidizing agent to the condensation below the explosion limit then burning at the fuel electrode interface. CONSTITUTION:The groove side of a porous nickel anode 1 associated with ribs is isolated from a cathode gas supply wave board 3 through a separator plate 2, while the end section 2a of the plate 2 is integrally folded to the opposite side of said groove. A platinum is provided to the amount of 0.1mg/cm<2> through the non-electrolytic galvanization to the fuel gas supply side 4 of said groove. Fuel cell lamination elements composed of such anode 1 and separator plate 2, cathode gas suply waveboard 3 and a porous nickel oxide cathode 5 are laminated then a gas mixed to hydrogen concentration of 3.5vol%, oxygen concentration of 20% and nitrogen concentration of 76.5% is fed under normal temperature to produce the combustion to considerably shorten the time required for the temperature rise at the starting while to achieve the uniform heating of the lamination.

Description

【発明の詳細な説明】 発明の技術分野 本発明は溶m炭酸塩燃料電池積層体の起動方式発明の技
術的背景とその問題点 従来、溶融炭酸塩燃料電池積層体の昇温起動には燃料ガ
ス、IN化剤ガス供給用配管を外部加熱し、加熱された
供給ガスにより燃料電池積層体を昇温させる方法、燃料
電池積層体外部にヒーターを設は熱伝導(二より昇温さ
せる方法(例えば燃料電池積層体エンドプレート6ニヒ
ーターを埋設し積層体上下方向から加熱昇温する)があ
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a starting method for a molten carbonate fuel cell stack.Technical background of the invention and its problems Conventionally, in order to start up a molten carbonate fuel cell stack at elevated temperature, fuel A method of externally heating the gas and IN agent gas supply piping and raising the temperature of the fuel cell stack with the heated supply gas, and a method of installing a heater outside the fuel cell stack by heat conduction (a method of raising the temperature from two ways) For example, a heater is embedded in the fuel cell stack end plate 6 and the stack is heated and heated from above and below.

前者の方法では燃料電池積層体の内部に大きな温度分布
を生じせしめないが一方作動温度650〜700℃まで
昇温させるには加熱の効率が悪く昇温に長時間を要する
The former method does not create a large temperature distribution inside the fuel cell stack, but on the other hand, heating efficiency is poor and it takes a long time to raise the temperature to an operating temperature of 650 to 700°C.

又、後者の方法では、燃料電池外部から燃料電池中央部
までの熱伝導(二頼っているため(エンドプレート(=
ヒーターを埋設した場合は燃料電池積層体上下方向から
中央部)やはり加熱の効率は悪く昇温(二長時間を要す
る。さらく:、燃料電池積層体の積層数の場加とともに
、昇温時間が長くなるだけでなく積層体厚さ方向の温度
分布の不均一性が増す。また外部ヒーターを設ける仁と
は燃料電池積層体のコンパクト性を損うこと5二なる。
In addition, the latter method relies on heat conduction from the outside of the fuel cell to the center of the fuel cell (end plates (=
If the heater is buried (from the top and bottom of the fuel cell stack to the center), the heating efficiency is poor (it takes two hours to raise the temperature). This not only increases the length of the fuel cell stack, but also increases the non-uniformity of the temperature distribution in the thickness direction of the stack.Additionally, the provision of an external heater impairs the compactness of the fuel cell stack.

発明の目的 本発明は、従来技術の問題点(二鑑み、溶融炭酸塩燃料
電池積層体の昇温起動を短時間C二か′)積層体内部よ
り均一に加熱するための起動方式を提供すること(=あ
る。
OBJECTS OF THE INVENTION The present invention provides a starting method for uniformly heating the inside of a molten carbonate fuel cell stack from within a short period of time (2). Koto (= there is.

発明O*要 本発明は、溶融炭酸塩燃料電池積層体の燃料極jス供給
溝に貴金属等の常温で駿素、水素の燃焼反応を生起する
よう凍触媒を付与し、燃料電池積層体O昇温週動時口、
水素を含有した燃料ガスとWl素を含有した醸化剤ガス
を水素の爆発限界(4チ)以下の混合比で混合し、これ
を燃料極に供給し、触媒付与した燃料界面で水素、酸素
燃焼反応を生起させ、この時の燃焼熱1二より該燃料電
池積層体を積層体内部より短時間;二、しかも均一に加
熱する昇温、起動方式でおる。
Invention O*Summary The present invention provides a fuel electrode supply groove of a molten carbonate fuel cell stack with a frozen catalyst so as to cause a combustion reaction of hydrogen and hydrogen at room temperature, such as a precious metal. Temperature rise week movement time,
Fuel gas containing hydrogen and fermenter gas containing Wl element are mixed at a mixing ratio below the explosive limit of hydrogen (4 g), and this is supplied to the fuel electrode, where hydrogen and oxygen are mixed at the catalyst-applied fuel interface. A heating and starting method is used in which a combustion reaction occurs and the fuel cell stack is uniformly heated from the inside of the stack for a short period of time using the combustion heat generated at this time.

発明の効果 本発明により従来、供給ガス(燃料ガス、酸化剤ガス)
の加熱又は、外部ヒーターによる加熱4二よシ行なって
いた溶融炭酸塩燃料電池積層体の起動時の昇温ζ二景す
る時間が著しく短縮され、又、積層体の積層方向ott
iut差が減少し均一加熱が達成される。
Effects of the Invention The present invention provides a supply gas (fuel gas, oxidant gas)
The time required to raise the temperature at startup of the molten carbonate fuel cell stack, which previously had to be heated by an external heater or heated by an external heater, has been significantly shortened, and the stacking direction of the stack has been significantly reduced.
The iut difference is reduced and uniform heating is achieved.

発明の実施例 以下本発明C二係る一実施例を図面盛二従って述べる。Examples of the invention An embodiment of the present invention C2 will be described below with reference to the drawings.

溶融炭酸塩燃料電池積層体の構成要素を第1図に示す。The components of a molten carbonate fuel cell stack are shown in FIG.

リプ付多孔質ニッケルアノード1の溝側な、セパレータ
ープレート2(二よシカノードガス供給波状板3と隔絶
し、セパレータープレート2の端部2aはリプ付多孔質
ニッケルアノード1の 溝と反対側(二折り曲げ一体化
した。リプ付多孔質ニッケルアノード1の溝の燃料ガス
供給@4(二無電解メッキ処理ζ=よシ白金を0.19
/dの量になるようζ:付与した。このようにして製作
した燃料ガス供給側に白金触媒を付与したリプ付多孔質
ニッケルアノードlとセパレータープレート2と、カソ
ードガス供給波状板3と、多孔質酸化ニッケルカンード
5からなる燃料電池積層体構成要素な加セル積層し、燃
料電池積層体として構成した。この燃料電池積層体の燃
料ガス供給側(=、燃料ガスと酸化剤ガスとを水素濃度
3.5容量チ、酸素濃度加チ、窒素76.5%(−なる
よう(二混合したガスを常温で供給した。i&合金ガス
供給時起動時として起動時から燃料電池動作温度までの
時間と温度の関係を第2図に実線ムとして示す。本発明
の他(二比較の為従来例として加熱された燃料ガス、酸
化剤ガス一二よる昇温の#に令を31外部ヒーター(燃
料電池積層体エンドプレートに埋め込んだヒーター)に
よる燃料電池積層体の昇温の場合なC1両者併用した昇
温O場合をD4二ついても同様1:42図ζ二二足、い
づれも温度は積層体中央部で測定した。
The separator plate 2 (2) is isolated from the anode gas supply corrugated plate 3 on the groove side of the porous nickel anode 1 with a lip, and the end 2a of the separator plate 2 is on the side opposite to the groove of the porous nickel anode 1 with a lip (bi-folded). Integrated. Fuel gas supply in groove of porous nickel anode 1 with lip 4 (2 electroless plating treatment
ζ: was added so that the amount was /d. A fuel cell stack component consisting of the lip-attached porous nickel anode l with a platinum catalyst applied to the fuel gas supply side produced in this manner, the separator plate 2, the cathode gas supply corrugated plate 3, and the porous nickel oxide canard 5. The cells were stacked together to form a fuel cell stack. The fuel gas supply side of this fuel cell stack (=, the fuel gas and the oxidizing gas were mixed at room temperature so that the hydrogen concentration was 3.5%, the oxygen concentration was 76.5%), and the mixed gas was kept at room temperature. Figure 2 shows the relationship between time and temperature from startup to fuel cell operating temperature as a solid line when i & alloy gas is supplied. 31 In the case of temperature rise of the fuel cell stack using an external heater (heater embedded in the end plate of the fuel cell stack), C1 temperature rise when both are used together. Even if there are two D4 cases, the temperature is measured at the center of the laminate in the same way.

また第3図に第2図と同符号を付して本発明の場合と、
比較としての従来の場合の燃料電池積層体の積層方向の
温度分布を示す。第2図(二足したように、従来、溶融
炭酸塩燃料電池の作動温度である650〜700℃まで
昇温するの6二、9〜14時間を要していたOζ二対し
て本発明では約1時開田分で作動温度まで昇温可能でお
る。また第3図1−示したように、積層体の積層方向の
温度分布も従来例では中央5o8E層体温度口対して約
50〜70℃の温度差がおったが1本発明では温度差が
約10〜15℃でToシ均均一加熱行なわれた。
In addition, FIG. 3 is given the same reference numerals as those in FIG. 2, and the case of the present invention,
For comparison, the temperature distribution in the stacking direction of a conventional fuel cell stack is shown. Figure 2 (Just like adding two together, in the past, it took 62 and 9 to 14 hours to raise the temperature to 650 to 700°C, which is the operating temperature of a molten carbonate fuel cell, but in the present invention, It is possible to raise the temperature to the operating temperature in about 1 hour.Also, as shown in Fig. 3, the temperature distribution in the stacking direction of the laminate is about 50 to 70 degrees with respect to the center 5o8E layer temperature opening in the conventional example. Although there was a temperature difference of 10°C to 15°C, in the present invention, uniform heating was performed with a temperature difference of about 10 to 15°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ζ=係る燃料電池積層体の要部を示す斜
視図、第2図は不発8Ac二係る昇温の状態を示す特性
、第3図は本発明ζ二係る積層体の温度分布を示す特性
図である。 1・−・リプ付多孔質ニッケルアノード、2・−・セパ
レータプレート、 2a・−セパレータプレート端部、 3・・・カソードガス供給波状板、 4・・・燃料ガス供給溝、 5・−・多孔質酸化ニッケルカソード
Fig. 1 is a perspective view showing the essential parts of a fuel cell stack according to the present invention ζ, Fig. 2 is a characteristic showing the state of temperature rise according to unexploded 8Ac2, and Fig. 3 is the temperature of the stack according to the present invention ζ2. It is a characteristic diagram showing distribution. 1: Porous nickel anode with lip, 2: Separator plate, 2a: Separator plate end, 3: Cathode gas supply corrugated plate, 4: Fuel gas supply groove, 5: Porous quality nickel oxide cathode

Claims (1)

【特許請求の範囲】[Claims] 溶融炭酸塩燃料電池積層体の燃料極のガス供給1II(
″−常温燃焼用の触媒を付与するとともζ二該燃料電池
積層体の昇温起動時(=は燃料ガスと酸化剤ガスを爆発
限界以下の濃度に混合し、これを燃料極側(=供給して
、該燃料極界面で燃焼反応を起こさせ、この燃焼熱によ
夕波燃料電池の昇温起動を行わせることを特徴とする溶
融炭酸塩燃料電池積層体起動方式。
Gas supply for the fuel electrode of the molten carbonate fuel cell stack 1II (
″-When a catalyst for normal temperature combustion is provided, ζ2: When the temperature of the fuel cell stack is started (= is, the fuel gas and oxidizer gas are mixed to a concentration below the explosion limit, and this is added to the fuel electrode side (= supply A method for starting a molten carbonate fuel cell stack, characterized in that a combustion reaction is caused at the interface of the fuel electrode, and the heat of combustion is used to raise the temperature of the Yuha fuel cell.
JP57001029A 1982-01-08 1982-01-08 Fused carbonate cell lamination starting system Pending JPS58119168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001029A JPS58119168A (en) 1982-01-08 1982-01-08 Fused carbonate cell lamination starting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001029A JPS58119168A (en) 1982-01-08 1982-01-08 Fused carbonate cell lamination starting system

Publications (1)

Publication Number Publication Date
JPS58119168A true JPS58119168A (en) 1983-07-15

Family

ID=11490131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001029A Pending JPS58119168A (en) 1982-01-08 1982-01-08 Fused carbonate cell lamination starting system

Country Status (1)

Country Link
JP (1) JPS58119168A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184774A (en) * 1986-02-07 1987-08-13 Hitachi Ltd Starting method for fuel cell power generating system
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
WO1997048144A1 (en) * 1996-06-13 1997-12-18 Keele University Fuel cell power generating system
US5952116A (en) * 1995-02-16 1999-09-14 Siemens Aktiengesellschaft Solid electrolyte high temperature fuel cell module and method for its operation
WO2000054356A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with improved cold-start performance and method of cold-starting a fuel cell battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184774A (en) * 1986-02-07 1987-08-13 Hitachi Ltd Starting method for fuel cell power generating system
WO1996025773A1 (en) * 1995-02-16 1996-08-22 Siemens Aktiengesellschaft Solid electrolyte high-temperature fuel cell module and method of operating the latter
US5952116A (en) * 1995-02-16 1999-09-14 Siemens Aktiengesellschaft Solid electrolyte high temperature fuel cell module and method for its operation
WO1997048144A1 (en) * 1996-06-13 1997-12-18 Keele University Fuel cell power generating system
WO2000054356A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with improved cold-start performance and method of cold-starting a fuel cell battery

Similar Documents

Publication Publication Date Title
KR0130905B1 (en) Solid electrolyte fuel cell
US4631238A (en) Cobalt doped lanthanum chromite material suitable for high temperature use
JP3448876B2 (en) Solid oxide fuel cell
CN1429417A (en) An electrochemical device and methods for energy conversion
JPS61225777A (en) Pressure boosting for electrochemical battery
JPS60236465A (en) Method of operating fused carbonate fuel battery
JPS58119168A (en) Fused carbonate cell lamination starting system
US3522103A (en) Process for the densification of mixed nickel oxide and stabilized zirconia
JPS6035471A (en) Electrode for fuel cell
JPH08273676A (en) Fuel electrode of solid lectrolyte fuel cell and its film forming method
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
US3492162A (en) Fuel cell and method for generating electrical energy by burning a portion of the fuel
JPS5998471A (en) Melting carbonate type fuel cell device
US4250231A (en) Acid electrolyte fuel cell method having improved carbon corrosion protection
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell
JPS61101971A (en) Solid electrolyte fuel cell
JP2981571B2 (en) Solid electrolyte fuel cell
JPH0282456A (en) Fuel cell
JPS6391961A (en) Molten carbonate type fuel cell
JPH0346951B2 (en)
JPH05225987A (en) Manufacture of fuel electrode of solid electrolyte type fuel cell
JPH0745289A (en) Solid electrolyte fuel cell
JP2600752B2 (en) Thermal battery
JPS6012670A (en) Molten carbonate fuel cell
JPS6035468A (en) Electrolyte matrix for fuel cell