JPS5811891A - Stretch tube for underwater pump of reactor - Google Patents

Stretch tube for underwater pump of reactor

Info

Publication number
JPS5811891A
JPS5811891A JP56110151A JP11015181A JPS5811891A JP S5811891 A JPS5811891 A JP S5811891A JP 56110151 A JP56110151 A JP 56110151A JP 11015181 A JP11015181 A JP 11015181A JP S5811891 A JPS5811891 A JP S5811891A
Authority
JP
Japan
Prior art keywords
reactor
stretch tube
less
stretch
scc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56110151A
Other languages
Japanese (ja)
Other versions
JPH0371676B2 (en
Inventor
成雄 服部
浦山 義直
常信 横須賀
正岡 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56110151A priority Critical patent/JPS5811891A/en
Publication of JPS5811891A publication Critical patent/JPS5811891A/en
Publication of JPH0371676B2 publication Critical patent/JPH0371676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 原子炉一次冷却水を炉内強制循環させ、出(1) 力を制御するために用いられる水中ポンプは第1図に示
すような構造である。炉水を循環させるインペラ1はポ
ンプシャフト2に直結され回転する。
DETAILED DESCRIPTION OF THE INVENTION A submersible pump used to forcefully circulate the reactor primary cooling water within the reactor and control the output (1) has a structure as shown in FIG. An impeller 1 that circulates reactor water is directly connected to a pump shaft 2 and rotates.

ディフューザ3は循環水の流路を形成する。ここで炉水
の漏洩を防ぐためポンプシャフトの周辺に下方より加圧
したパージ水を流すが、その流路を保ち、かつ上記ディ
フューザを固定するために薄肉円筒のストレッチチュー
ブ4が用いられる。
The diffuser 3 forms a flow path for circulating water. Here, in order to prevent leakage of reactor water, pressurized purge water is flowed from below around the pump shaft, and a thin cylindrical stretch tube 4 is used to maintain the flow path and to fix the diffuser.

このような機能を果すため、ストレッチチューブには炉
水温度焼く300℃付近での高強度及び、周辺構造材で
あるマルテンサイト系ステンレス鋼あるいはフェライト
系ステンレス鋼と同程度の熱膨張特性が要求される。従
来の水中ポンプではこのような要求に沿って約16%の
Cr及び約7%のFeを含有するNi基合金のインコネ
ル600がストレッチチューブ材として用いられている
In order to perform this function, stretch tubes are required to have high strength at a reactor water temperature of around 300°C and thermal expansion characteristics comparable to those of the surrounding structural materials, such as martensitic stainless steel or ferritic stainless steel. Ru. In accordance with such requirements, conventional submersible pumps use Inconel 600, a Ni-based alloy containing about 16% Cr and about 7% Fe, as a stretch tube material.

しかし本発明者らは、第2図に示すとおり、ストレッチ
チューブが内外面とも周辺構造材との間に隙間が形成さ
れた状態で高応力を負担し、使用される点に着目して、
各種材料の高温水隙間環境(2) 下における応力腐食材割れ(以下SCCと記す)性を評
価した結果、インコネル600より成る従来のストレッ
チチューブは長期使用のうちにはSCC破損を生ずる可
能性のあることが判明した。従ってストレッチチューブ
材質には前記、機械的強度面及び熱膨張特性面以外に、
高温純水中隙間条件下での耐SCC性がその長期寿命を
確保するための必須項目として要求されることが判明し
た。
However, as shown in FIG. 2, the present inventors focused on the fact that the stretch tube is used while bearing high stress with gaps formed between the inner and outer surfaces and surrounding structural materials.
As a result of evaluating the stress corrosion cracking (hereinafter referred to as SCC) of various materials under a high-temperature water gap environment (2), it was found that conventional stretch tubes made of Inconel 600 have the possibility of SCC failure during long-term use. It turns out that there is something. Therefore, in addition to the above-mentioned mechanical strength and thermal expansion characteristics, the stretch tube material has
It has been found that SCC resistance under high-temperature pure water gap conditions is required as an essential item to ensure its long life.

本発明の目的は原子炉の長年月の運転においてSCC破
損の懸念がない長寿命のストレッチチューブを提供する
ものである。
An object of the present invention is to provide a stretch tube with a long life without fear of SCC damage during many years of operation of a nuclear reactor.

本発明者らは前記、各種材料の評価研究の結果、本請求
範囲のNi基合金がストレッチチューブ材として好適で
あることを見出した。特に、Crは20〜25%、Mo
は4〜10%、Cは0.1%以下の範囲が好ましい。ま
た原子炉の放射能低減のため、Coは0.2%以下とし
、同様の理由でTaの混入を極力抑制することが好まし
い。
As a result of the above-mentioned evaluation studies of various materials, the present inventors found that the Ni-based alloy according to the present claims is suitable as a stretch tube material. In particular, Cr is 20-25%, Mo
is preferably 4 to 10%, and C is preferably 0.1% or less. Further, in order to reduce the radioactivity of the nuclear reactor, it is preferable that Co be 0.2% or less, and for the same reason, it is preferable to suppress Ta contamination as much as possible.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

第1表はストレッチチューブ素材を示し、試番(3) A〜Dが本発明剤及び試番E、Fが従来材のインコネル
600の化学成分を示すものである。これらの材料はい
ずれも熱間鍛造後、1100℃、1時間の固溶化処理を
施したものである。
Table 1 shows stretch tube materials, sample numbers (3) A to D indicate the chemical composition of the present invention agent, and sample numbers E and F indicate the chemical components of the conventional material Inconel 600. All of these materials were subjected to solution treatment at 1100° C. for 1 hour after hot forging.

第1表 ※ 残余は不純物を除きNi ※※ インコネル600 第2表にこれら素材の機械的性質及び熱膨張特性を示す
。本発明のストレッチチューブの素材はいずれも原子炉
炉水の最高温度である300℃に(4) 第2表 おいて、強度がインコネル600より高く、熱膨張率が
インコネル600と同程度であり、これらの点でまず好
適な材質である。
Table 1 * The remainder is Ni ** excluding impurities. Inconel 600 Table 2 shows the mechanical properties and thermal expansion characteristics of these materials. All of the stretch tube materials of the present invention are heated to 300°C, which is the maximum temperature of the reactor water. From these points of view, it is a suitable material.

高温水中隙間条件下での耐SCC性試験は、板厚2mm
、板幅10mm、長さ50mmの短冊型試片を用いて行
った。試片は応力付加ジグにより半径100mmで締め
つけ、引張応力側表面にはグラファイトウールを介して
隙間を0.2mm形成させた。試片をこの状態で、28
8℃で8ppm(5) の溶存酸素を含む純水中に500時間浸漬させた後、ジ
グから解放させて、SCCの発生状態を顕微鏡により観
察した。第3表はSCC試験結果をまとめたものである
The SCC resistance test under high temperature underwater gap conditions was conducted using a plate with a thickness of 2 mm.
, using a rectangular specimen with a plate width of 10 mm and a length of 50 mm. The specimen was tightened with a stress applying jig to a radius of 100 mm, and a gap of 0.2 mm was formed on the tensile stress side surface with graphite wool interposed therebetween. In this state, the specimen was heated to 28
After being immersed in pure water containing 8 ppm (5) of dissolved oxygen at 8°C for 500 hours, it was released from the jig and the state of SCC generation was observed using a microscope. Table 3 summarizes the SCC test results.

第3表 ○:割れなし ●:SCC発生 インコネル600にはSCCを生じた試片があるのに対
して、本発明のストレッチチューブの素材は全くSCC
が生じなかった。
Table 3 ○: No cracks ●: SCC generation Inconel 600 has some specimens that have SCC, whereas the material of the stretch tube of the present invention has no SCC.
did not occur.

以上のとおり、本発明の特許請求範囲に示した素材を用
いたストレッチチューブは、原子炉水中ポンプにおいて
長寿命を保ち、その機能を発揮することが明らかになっ
た。
As described above, it has been revealed that the stretch tube using the material described in the claims of the present invention maintains a long life in a submersible reactor pump and exhibits its functions.

【図面の簡単な説明】[Brief explanation of drawings]

(6) 第1図は原子炉水中ポンプ断面構成図及び第2図は第1
図のストレッチチューブ近傍の拡大図である。 1インペラ、2ポンプシャフト、3ディフューザ、4ス
トレッチチューブ 代理人 弁理士 高橋明夫
(6) Figure 1 is a cross-sectional diagram of the reactor submersible pump, and Figure 2 is the
It is an enlarged view of the vicinity of the stretch tube shown in the figure. 1 Impeller, 2 Pump Shaft, 3 Diffuser, 4 Stretch Tube Agent Patent Attorney Akio Takahashi

Claims (2)

【特許請求の範囲】[Claims] 1.原子炉一次冷却水を炉内強制循環させる水中ポンプ
のストレッチチューブにおいて、該ストレッチチューブ
は重量で、15〜25%のCr、2〜10%のMo、0
.5%以下のAl、0.5%以下のTi及び20%以下
のFeを含み、残余がNiである合金より成ることを特
徴とする原子炉水中ポンプ用ストレッチチューブ。
1. In a stretch tube for a submersible pump that forcibly circulates reactor primary cooling water within the reactor, the stretch tube contains 15 to 25% Cr, 2 to 10% Mo, and 0% by weight.
.. A stretch tube for a nuclear reactor submersible pump, characterized in that it is made of an alloy containing 5% or less Al, 0.5% or less Ti, and 20% or less Fe, with the balance being Ni.
2.原子炉一次冷却水を炉内強制循環させる水中ポンプ
のストレッチチューブにおいて、該ストレッチチューブ
は重量で、Cr15〜25%、Mo2〜10%、Nb4
.5%以下、Al0.5%以下、Ti0.5%以下、F
e20%以下を含み、残余がNiである合金より成るこ
とを特徴とする原子炉水中ポンプ用ストレッチチューブ
2. In a stretch tube for a submersible pump that forcibly circulates the reactor primary cooling water within the reactor, the stretch tube contains 15 to 25% Cr, 10 to 10% Mo, and Nb4 by weight.
.. 5% or less, Al 0.5% or less, Ti 0.5% or less, F
A stretch tube for a nuclear reactor submersible pump, characterized in that it is made of an alloy containing 20% or less of e and the remainder being Ni.
JP56110151A 1981-07-14 1981-07-14 Stretch tube for underwater pump of reactor Granted JPS5811891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110151A JPS5811891A (en) 1981-07-14 1981-07-14 Stretch tube for underwater pump of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110151A JPS5811891A (en) 1981-07-14 1981-07-14 Stretch tube for underwater pump of reactor

Publications (2)

Publication Number Publication Date
JPS5811891A true JPS5811891A (en) 1983-01-22
JPH0371676B2 JPH0371676B2 (en) 1991-11-14

Family

ID=14528338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110151A Granted JPS5811891A (en) 1981-07-14 1981-07-14 Stretch tube for underwater pump of reactor

Country Status (1)

Country Link
JP (1) JPS5811891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145214A (en) * 1984-12-18 1986-07-02 Sony Corp Photocurable photosensitive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145214A (en) * 1984-12-18 1986-07-02 Sony Corp Photocurable photosensitive composition

Also Published As

Publication number Publication date
JPH0371676B2 (en) 1991-11-14

Similar Documents

Publication Publication Date Title
JPH04283698A (en) Method of suppressing stress corrosion cracking in primary coolant circuit of nuclear reactor
JPS5811891A (en) Stretch tube for underwater pump of reactor
Parker Initiation of stress corrosion cracks in a low alloy steel
Alomari et al. High-Temperature Burst Creep Properties of Nuclear-Grade FeCrAl Fuel Cladding
Grönwall et al. Intercrystalline stress corrosion cracking of INCONEL 600 inspection tubes in the Ågesta reactor
Yonezawa et al. A mechanistic study of stress corrosion crack propagation in heavily cold worked TT alloy 690 exposed to simulated PWR primary water
Lepkowski et al. Studies on repair welding age-hardenable nickel-base alloys
Semeniuk et al. Properties of TZM and nuclear behavior of TZM brazements
Bruemmer et al. Evaluating the Intergranular SCC Resistance of Sensitized Type 304 Stainless Steel in Low-Temperature Water Environments
Kashtanov et al. Corrosion-mechanical strength of structural materials in contact with liquid lead
Julien Alloy 800 for Liquid-Metal Fast Breeder Reactor Steam Generators
Nagano et al. Clarification of stress corrosion cracking mechanism on nickel base Alloys in Steam Generators for their Long Lifetime Assurance
Fedirko et al. Influence of Phase-Structural State on Corrosion Behavior of Chromium Steels in Static Liquid Lead under Loads
Steele Beryllium Corrosion
Shah et al. Failures of austenitic stainless steel components during storage: case studies
Brinkman Creep-fatigue effects in structural materials used in advanced nuclear power generating systems
Steklov et al. Threshold dimension of a corrosion crack
Guegnaud et al. Selection and Application of an Austenitic Stainless Steel for the Fabrication of the Pressure Vessel for the Fast Reactor Rapsodie
JP2023036390A (en) Nickel-based alloy, and structure
Zhong et al. Aging Degradation Characteristics and Long-Term Performance of Structural Materials for Energy Conversion Systems
Hashimoto Welding of zirconium
Lockhart 10. SPECIAL TOPICS
JPH0153340B2 (en)
Petersen et al. The effects of sulfate reducing bacteria on stainless steel and Ni-Cr-Mo alloy weldments
Magnani EFFECTS OF THE ENVIRONMENT ON THE CRACKING BEHAVIOR OF SELECTED URANIUM ALLOYS.