JPS58118540A - Recovery of unsaturated carboxylic acid - Google Patents

Recovery of unsaturated carboxylic acid

Info

Publication number
JPS58118540A
JPS58118540A JP3182A JP3182A JPS58118540A JP S58118540 A JPS58118540 A JP S58118540A JP 3182 A JP3182 A JP 3182A JP 3182 A JP3182 A JP 3182A JP S58118540 A JPS58118540 A JP S58118540A
Authority
JP
Japan
Prior art keywords
carboxylic acid
sulfuric acid
ester
acid
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3182A
Other languages
Japanese (ja)
Other versions
JPH0343259B2 (en
Inventor
Akira Iio
飯尾 章
Yoshihisa Nakase
中瀬 吉久
Masatoshi Arakawa
荒川 昌敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP3182A priority Critical patent/JPS58118540A/en
Publication of JPS58118540A publication Critical patent/JPS58118540A/en
Publication of JPH0343259B2 publication Critical patent/JPH0343259B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To recover the carboxylic acid remaining in waste sulfuric acid discharged from the esterification process of an unsaturated carboxylic acid with an alcohol using sulfuric acid as a catalyst, by esterifying the remaining carboxylic acid, and extracting the carboxylic acid and the ester with a hydrophobic organic solvent after the esterification step or before and after the step. CONSTITUTION:In the ester preparation process (P), a hydrophobic organic solvent and an unsaturated carboxylic acid are charged to the first stage reactor 7, and an aqueous solution of sulfuric acid and excess alcohol are charged to the final reactor 5 to carry out the esterification reaction. The crude ester composed mainly of the hydrophobic organic solvent and the ester is obtained from the final separator 19, and waste sulfuric acid is discharged from the first separator 21. The waste sulfuric acid is fed to the top of the extraction column 9, and the major part of the ester and a part of the carboxylic acid are extracted with the hydrophobic organic solvent supplied through the line 11. The extract is introduced into the reactor 13 to esterify the major part of the carboxylic acid in the waste sulfuric acid, and extracted in the extraction column 16 in the same manner as the above. The extract liquid is recycled through the line 11 to the extraction column 9.

Description

【発明の詳細な説明】 本発明は、触媒として硫酸を用いて不π・和カルボンI
I(以下単に「カルボン酢」という。)を低級アルコー
ル(I下車K 「アルコール」トいう。)とエステル化
反応せしめて行われる不飽和カルボン酸エステル(以下
単に「エステル」という。)の製iにおいて生ずる廃硫
酸中のカルボン酸の回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses sulfuric acid as a catalyst to produce
Production of unsaturated carboxylic acid esters (hereinafter simply referred to as "esters") by esterifying I (hereinafter simply referred to as "carboxylic vinegar") with lower alcohols (hereinafter simply referred to as "alcohols"). The present invention relates to a method for recovering carboxylic acid from waste sulfuric acid produced in .

カルボン酸のエステル化反応において、触媒として硫i
Iを用いることはよく知らjている。′iかエステル化
反応t:平衡反応であることtら、アルコールを当量以
上に加えてカルボン帛のy発率を向上せしめる方法もよ
く知られておル、これは工早的に有効なエステル化方法
ということができる。
In the esterification reaction of carboxylic acids, sulfur is used as a catalyst.
I am well aware of the use of I. Esterification reaction: It is an equilibrium reaction, and it is also well known that the rate of y-emission of carbon fibers is improved by adding more than an equivalent amount of alcohol. It can be said to be a method of conversion.

而してこのようにIFIIを触媒として用い、アルコー
ル[111の条件下でカルボン酸のエステル化を行つた
重合ff1i、得られる反応液中KFJ反応生鮫物であ
るエステル及び水のaに、朱反応のアルコール、カルホ
ン酸、硫酸等が含まれる。このような反応液から、エス
テル及びカルボン酸を分離する方法としては、疎水性有
機溶剤を抽剤として使用して抽出する方決が考えられる
。そして特開昭53−21114号公報に1撃されてい
るメタクリル乍のエステル化の例のように、エステル化
反応器Km剤としての有s1溶剤を供給し、エステル化
と分離とを同時に行い得る、工業的に有利な方法もある
Thus, in the polymerization ff1i in which carboxylic acid was esterified under the conditions of alcohol [111] using IFII as a catalyst, vermilion Reactions include alcohol, carbonic acid, sulfuric acid, etc. A possible method for separating the ester and carboxylic acid from such a reaction solution is extraction using a hydrophobic organic solvent as an extractant. As in the case of esterification of methacrylate, which is described in Japanese Unexamined Patent Publication No. 53-21114, it is possible to simultaneously carry out esterification and separation by supplying an s1 solvent as a Km agent to the esterification reactor. There are also industrially advantageous methods.

本発明者らの検討によれば、エステル化反応液tらのエ
ステルの分離は、疎水性有機溶剤を抽剤として用いる抽
出による方法によって比較的容易に実施することができ
る@しかしながら、カルボン!Iけ木及びamとの相溶
性が比較的高いことがら、疎水性有機溶剤による抽出に
よっては折全軒は抽出することかできず、廃硫酸中にカ
ルボン学が相当I19存するようになる。一方アルコー
ルはカルボン豪以上に水及びWI学との相溶性を高いた
め、その大半が廃i*酸中に残存するようになる〇従っ
てこの廃W!l酸をそのま曾廃齋することは、単に公害
間INを発生せしめるだけでなく、資源の鳴動利用の面
一・らも好ましくないので、廃−夢中の有用成分をでき
るだけ回収し、必要に応じて蒸留濃縮後、循環再使用す
ることが好着しい。ここに有用c分としては、アルコー
ル、エステル、カルボン酸等があるが、このうちアルコ
ールFi蒸留によシ容iに廃砕IF d−ら分離するこ
とができる。またエステルも蒸留によシ廃硫11:r・
ら分離することも可能でF!あるが、−#にエステルは
アルコールと共沸混合物を計数することが多いので、ア
ルコールの蒸留分離を行う前に、疎水性有機溶剤によシ
抽出して回収しておく方法が経済的に有利である。然る
にカルボン酸は肺点が高い上に重合性が大きいため、蒸
留による分lIlが困齋であル、一方疎水性有S溶剤を
用いて単に抽出する方法によっては、13の理由t・ら
十分に分離回収することができない。
According to the studies of the present inventors, separation of the esters from the esterification reaction solution t and others can be relatively easily carried out by an extraction method using a hydrophobic organic solvent as an extractant. Due to its relatively high compatibility with sulfuric acid and am, sulfuric acid cannot be extracted by extraction with a hydrophobic organic solvent, and a considerable amount of carbonyl is present in the waste sulfuric acid. On the other hand, since alcohol has higher compatibility with water and WI than carboxylic acid, most of it remains in the waste i*acid. Therefore, this waste W! Disposing of lactic acid as it is will not only cause pollution but also be undesirable in terms of resource utilization, so we will recover as much of the useful components as possible from the waste and use it as needed. Depending on the situation, it is preferable to recycle and reuse after distillation and concentration. Examples of useful c components here include alcohols, esters, carboxylic acids, etc. Among these, alcohol Fi can be separated from the crushed IF d to a volume i by distillation. Ester is also distilled and waste sulfur 11:r.
It is also possible to separate from F! However, since ester is often counted as an azeotrope with alcohol in -#, it is economically advantageous to extract it with a hydrophobic organic solvent and recover it before distilling the alcohol. It is. However, carboxylic acids have a high lung temperature and are highly polymerizable, so it is difficult to separate them by distillation.On the other hand, simple extraction using a hydrophobic S-containing solvent is insufficient due to the 13 reasons. cannot be separated and recovered.

また膵硫酢は再使用のために硫酸濃縮工程に付さt、実
rlKFiその沖点が水より高いために硫廖III用蒸
留塔$lE部に分配されるがイ以上のようにこの廃Wl
廖中にカルボン酸が残存していると、その高い重合性の
ために硫酸濃縮用蒸留塔塔rIE部において重合pス及
び重合生成物による装Vの閉塞を引き起こしてしまうと
いう欠点がある。それ放臭itsをVIm!濃縮工稈へ
工程する前に、当該廃Wf廖中のカルボン酸を極力回収
してお(ことが強く望まれていた。
In addition, pancreatic sulfur vinegar is subjected to a sulfuric acid concentration process for reuse, and since its offshore point is higher than water, it is distributed to the sulfuric acid distillation column $E section for sulfur reactor III. Wl
If carboxylic acid remains in the chamber, its high polymerizability causes clogging of the chamber V with polymerized PS and polymerization products in the rIE section of the distillation column for sulfuric acid concentration. VIm it stinks! It was strongly desired to recover as much carboxylic acid as possible from the waste Wf culm before processing it into the condensation culm.

なお、既述の抽出によるカルボン酸の回収において、抽
出工程に供給する疎水性有機溶剤の量を多くして全体と
しての抽出能力を向上させ、これKよってカルボン酸の
回収率を高くすることも可能ではあるが、この場合には
、疎水性有機溶剤とカルボン酸との分離に更するエネル
ギーコストが徒に増加すると共に抽出設備の容量の増加
が必要となって設備コストも増大し、却ってカルボン序
回収コス)が大幅に増大することKなる。
In addition, in the recovery of carboxylic acid by extraction as described above, it is also possible to increase the amount of hydrophobic organic solvent supplied to the extraction process to improve the overall extraction ability, thereby increasing the recovery rate of carboxylic acid. Although it is possible, in this case, the energy cost for separating the hydrophobic organic solvent and the carboxylic acid will increase needlessly, and the capacity of the extraction equipment will need to be increased, which will increase the equipment cost. (return cost) will increase significantly.

本発明者らは、上記の観点から廃硫酸中のカルボン酸の
回収について鋭倉検討した結果、■疎水性有機溶剤によ
る廃硫酸中のエステルの抽出は、力^ボン酸のそflK
比べて725にt易であること ■gem中のエステルを除去すれば、カルボン酸が過剰
のアルコールと容易に反応し、比較的速やかにエステル
が生醗すること 等を見い出し、これらの知見に基づいて本発明を完成す
るに至った。
As a result of our investigation into the recovery of carboxylic acids from waste sulfuric acid from the above-mentioned viewpoints, the present inventors found that: ■ The extraction of esters from waste sulfuric acid using a hydrophobic organic solvent is effective for the recovery of carboxylic acids from waste sulfuric acid.
725. Based on these findings, we discovered that if the ester in the gem is removed, the carboxylic acid easily reacts with excess alcohol, and the ester is produced relatively quickly. As a result, the present invention was completed.

すなわち本発明は、触媒としてitgiを用いて炭素数
が3又tlj4のカルボン酸とアルコールとを反応せし
めて行われるエステルCw造において生ずる廃i!酸中
のカルボンtit高い回収率で容J!に且つ有利に回収
することのできる方法t#供するものであシ、その特徴
とするところは、以下の工程(a)−(b)−(@)又
は工程(b)−(e)を行う点にある。
That is, the present invention deals with waste i! produced in the production of ester Cw, which is carried out by reacting a carboxylic acid having 3 or tlj4 carbon atoms with an alcohol using itgi as a catalyst. Carvone tit in acid with high recovery rate! It is a method that can be advantageously recovered and is characterized by carrying out the following steps (a) - (b) - (@) or steps (b) - (e). At the point.

(1)廃WI豪中に含まれるカルボンlI及びエステル
を疎水性有機溶剤によ)抽出回収する工程 (b)廃is中に残存するカルボン酸をアルコールとエ
ステル化反応させてエステルを生成させる工程 (e)工程(b)Kお−て得られる反応液を疎水性有機
溶剤と接触させ、カルボン酸及びエステルを抽出回収す
る工程 本発明方法の対象とする廃硫酸とは、カルボン酸とアル
コールとtilFWI触媒によ〕エステル化した反応液
から、例えば抽出等忙より大半のエステルとカルボン−
を除いた亀の、或ψは組成がそれに類似したものであシ
、主K ilF、酸、水、アルコールからなル、少量の
エステル、カルボン酸を含有する混合物である。ここに
カルボン11!け炭素数が3又F!4のものであり、具
体rAKFi、アクリル酸、メタクリル111f4が挙
けられる。
(1) A step of extracting and recovering the carboxylic acid and ester contained in the waste WI using a hydrophobic organic solvent. (b) A step of esterifying the carboxylic acid remaining in the waste with alcohol to produce an ester. (e) A step of bringing the reaction solution obtained in step (b) into contact with a hydrophobic organic solvent to extract and recover carboxylic acid and ester. From the reaction solution esterified with the tilFWI catalyst, most of the ester and carboxyl-
The tortoise shells, except for , are similar in composition and are a mixture of main K ilF, acids, water, alcohols, and small amounts of esters and carboxylic acids. Carbon 11 is here! The number of carbon atoms is 3 F! Specific examples include rAKFi, acrylic acid, and methacrylic acid 111f4.

本発明においては、廃硫酸中に残存するカルボン酸をア
ルコールと反応させてエステル化する工程(b)を必須
のものとして含むか、この工」にお−て用−るアルコー
ル轄、好ましくt−tp緊tが1〜3のものであ)、具
体的KFi、メタノール、エタノール、フロハノール等
が挙けられる。そして本発明の対象である廃WIllI
を生ずるエステルの製′Mにおいて−そのエステル化反
応がアルコール過剰の条件下で行われ、従って工程(b
)に供される廃硫酸中に十分多I C・アルコールが含
まれている場合KFi工程(b)を行うためにアルコー
ルを新たに供給することは不!である。しtしながらエ
ステル0製造において、アルコールがカルボン酸に対し
て当量以下の条件或いはアルコールがカルボンWINK
対して像かに過剰の条件下でそのエステル化反応が行わ
れた場合(は、工程(b)の実施に際し別途アルコール
を供給することが必要であ〕或いは極めて有効である。
In the present invention, the step (b) of reacting the carboxylic acid remaining in the waste sulfuric acid with alcohol to esterify it is essential, or the alcohol used in this process is preferably t- Specific examples include KFi, methanol, ethanol, and furohanol. And the waste WIllI which is the object of the present invention
In the preparation of esters giving rise to - the esterification reaction is carried out under conditions of alcohol excess, thus step (b)
) If the waste sulfuric acid used in step (b) contains a sufficient amount of IC/alcohol, it is not possible to newly supply alcohol to perform the KFi step (b)! It is. However, in the production of ester 0, under conditions where the alcohol is equivalent to or less than the carboxylic acid, or when the alcohol is less than the carboxylic acid.
On the other hand, it is extremely effective if the esterification reaction is carried out under extremely excessive conditions (in which case it is necessary to separately supply alcohol when carrying out step (b)).

そして工程(b)K供される廃vieを、これに残存す
るカルボン酸に対しモル比で10以上の景のアルコール
を含有するものとすることがカルボン酸の回収率を向上
せしめる上で好ましい。
In order to improve the recovery rate of carboxylic acid, it is preferable that the waste via to be subjected to step (b)K contains alcohol in a molar ratio of 10 or more to the remaining carboxylic acid.

以上の工程(b)におけるエステル化反応の反応温度は
、通常30〜100℃、好ましくは40〜70℃である
。反応温度が低すぎると反応速度が低くなり、また逆に
高すぎるとエステル、カルボン酸の重合、さらKは研酸
による装−の腐食が発生して別の間膠を生ずる場合があ
る。またこのエステル化反応の反応時間は、通常0.5
時間以上好ましくけ1〜6時間である◎しかし反応時間
が余シ長いと、エステル、カルボン酸の重合が進むこと
と、反応装曹を大きくすることが必要となる等の開動が
ある@リアクターの形SFi特に限定されず、いわゆる
種型反応器であってもよ−が、厳密な濃度制御或いは激
しい攪拌を必要としないため、例えばタンク或いは工程
(a)若しくtj (e)において用いられる塔の一部
をリアクターとして代用することも可能である・ 以上の工程(b)の原則として前9において、疎水性有
機溶剤を抽剤とする抽出回収工程即ち工程(a)及び工
程(e)が行われる。ここに用いられる疎水性有機溶剤
は、沸点θ〜250℃の脂肪族炭化水素、脂環族炭化水
素、芳香族炭化木輩から選ばれた1種又#′i2種以上
の混合物てトリ、その具体例としては、ブタン、ペンタ
ン、ヘキサン、ヘプタン、ノナン、オクタン、デカン、
シクロペンタン、シクロヘキサン、メチルシクロヘキサ
ン、プロピルシクロヘキサン、ベンぞン、トルエン、エ
チルベンゼン、キシレン、クメン等が挙ケラhる。
The reaction temperature of the esterification reaction in the above step (b) is usually 30 to 100°C, preferably 40 to 70°C. If the reaction temperature is too low, the reaction rate will be low; if the reaction temperature is too high, polymerization of esters and carboxylic acids may occur, and corrosion of the coating by the polishing acid may occur, resulting in the formation of other adhesives. The reaction time of this esterification reaction is usually 0.5
It is preferably 1 to 6 hours. However, if the reaction time is too long, the polymerization of esters and carboxylic acids will proceed, and the reactor will need to be increased in size. The SFi type reactor is not particularly limited and may be a so-called seed reactor, but since it does not require strict concentration control or vigorous stirring, it can be used, for example, in a tank or a column used in step (a) or tj (e). It is also possible to substitute a part of the reactor as a reactor. In principle, in step (b) above, the extraction and recovery process using a hydrophobic organic solvent as an extractant, that is, step (a) and step (e). It will be done. The hydrophobic organic solvent used here may be one or a mixture of two or more selected from aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons having a boiling point of θ to 250°C. Specific examples include butane, pentane, hexane, heptane, nonane, octane, decane,
Examples include cyclopentane, cyclohexane, methylcyclohexane, propylcyclohexane, benzene, toluene, ethylbenzene, xylene, and cumene.

以上の如き疎水性有機溶剤の使用量は、通常被抽出液に
対して重量比で0.05〜5.0、好ましくは0.3〜
1.0である。疎水性有機溶剤・C・せ用1が少ないと
カルボン酸及びエステルグ・回a率力・低くなり、また
逆に多すぎると、疎水性有I$氾斉・6分111反16
のためのコストが増大する。抽出1に・運転温度は通常
15〜100℃、好ましくは30〜70℃である。
The amount of the above-mentioned hydrophobic organic solvent used is usually 0.05 to 5.0, preferably 0.3 to 5.0, based on the weight ratio of the liquid to be extracted.
It is 1.0. If the amount of hydrophobic organic solvent C is small, the carboxylic acid and ester group will be low, and conversely if it is too large, the hydrophobic organic solvent will be 6 minutes 111 times 16
costs will increase. Extraction 1: The operating temperature is usually 15-100°C, preferably 30-70°C.

この温度を過度に低い温度に設定すると冷却のか約の冷
熱コストが大きくなって工秦的に不利となり、逆に一度
に高い温度に設定すると抽出効率が低下する結果、エス
テル、カルボン酸の仲)収率が低下する。
If this temperature is set to an excessively low temperature, the cooling and heating costs for cooling will increase, which is disadvantageous in terms of production efficiency.On the other hand, if the temperature is set to a high temperature all at once, the extraction efficiency will decrease, resulting in the formation of esters and carboxylic acids. Yield decreases.

ここに用いらjる抽田装Wけ、一般的に用いられる抽出
装置でよいが、疎水性有機溶剤と廃硫酸とが向流に効率
よ(V触できるものがSましく、例えばラシヒリング等
を充填しt充填塔、段塔型抽W@等を好避に用いること
ができる。
The extraction equipment used here may be any commonly used extraction equipment, but it is preferable that the hydrophobic organic solvent and waste sulfuric acid flow in countercurrent flow (preferably something that can be touched, such as a Raschig ring, etc.). A t-packed column, a tray column type extraction W@, etc. can be preferably used.

本発明においては、原則としてエステル化工程(工程(
b))の前後に合計2回の抽出工程が行われるが、抽剤
として使用する疎水性有機溶剤は必ず(も各々別伊に供
給する必要はなく、一方の抽出工程で得られる抽出液を
使方の抽出工程の抽IP1として供給することもできる
。これFi*水性有−渓声のムに対して被抽出液中のエ
ステル、カルボンPIが少ないたhK可許なことで1h
シ、このようにすることKよシ、全体における疎水性有
機溶剤L:r′便用I(を減少せしめることができて疎
水性有機溶剤回収のためのエネルギーコストを6L下さ
せること力・できる。
In the present invention, in principle, the esterification step (step (
A total of two extraction steps are performed before and after step b)), but the hydrophobic organic solvent used as the extracting agent does not need to be supplied to each separately, and the extract obtained in one extraction step is It can also be supplied as extraction IP 1 in the extraction process of how to use it.It can be supplied as extracting IP1 in the extraction process.
By doing this, it is possible to reduce the total amount of hydrophobic organic solvent L:r', thereby reducing the energy cost for recovering the hydrophobic organic solvent by 6L. .

本発明においては、通常、工程(b)の距に工程(纂)
を行なうことKよって、工程(b)及びこれKM<工程
(@ンによるカルボン! c′[0!収を高−効率で行
うことができるのであるが、エステルの1!造において
生ずる廃11PKおけるエステル含量が例えば0.5重
1%以下と非常ド小さい重合KFi、工程(b)の前の
抽出工程即ち丁11ii](a)を省略することができ
る。jlpち、この工程(a)における抽出け、工程(
b)のエステル化rおいて、その系の化学平衡を、エス
テル化がlilりされる方向へ移すことが主目的であり
、従ってpSSのエステル含量が少なくて廃1酸中のカ
ルボン酸がエステル化され得る状WKあるのであれば、
直ちに工程(b)を行うことができ、#終的に得られる
廃硫酸中のカルボン酸の含有量を棲めて停かなものとす
ることができる。
In the present invention, there is usually a step (compilation) at the distance of step (b).
By carrying out K, it is possible to perform step (b) and this KM < step (@ n) to yield carvone! If the polymerized KFi has a very small ester content, for example, 0.5 wt. Extract, process (
In the esterification of b), the main purpose is to shift the chemical equilibrium of the system in a direction where esterification is suppressed. Therefore, the ester content of pSS is small and the carboxylic acid in the waste acid is esterified. If there is a situation where it can be done,
Step (b) can be carried out immediately, and the content of carboxylic acid in the finally obtained waste sulfuric acid can be maintained.

なお、本発明による回収処理を行った徒に、さらに工程
(b)のエステル化及び工ll1I(e)の抽出を繰シ
返すことKより、カルボン酸の回a率を向上せしtoる
ことハ、挙合によっては有効であるが、工程(b)にお
けるエステル什y応が斤較的速やかに起こり、しかも工
程(C)におけるエステルの抽出率が高いので、−#t
cFi、■#(b)及び工程(c)は一度行らたけで、
十分高い回収率でカルボン酸を回収することができる。
In addition, after performing the recovery treatment according to the present invention, the conversion rate of carboxylic acid can be improved by repeating the esterification in step (b) and the extraction in step (e). C. It is effective depending on the reaction, but the ester reaction in step (b) occurs relatively quickly, and the extraction rate of ester in step (C) is high, so -#t
cFi,■#(b) and step (c) are performed only once,
Carboxylic acid can be recovered with a sufficiently high recovery rate.

以上のように本発明の主たる特徴とするところは、疎水
性有機溶剤1の抽出だけでは回収−テ困難な廃硫酸中の
カルボン*t、回収の容易なエステルに変化させて回収
することKlhる。そして本発明方丈は、エステルの製
造工程に付帯して行われるものであるので、カルボン番
をそのままの形で回収する必要Triなく、エステルの
形で回収がなされることは、結局エステルの収率が向上
することにもなる。しかもカルボン酸を回収の容JAな
エステルとして回収することによシ、カルボン酸の形で
口数する場合に比べ、同じ回収率を得ようとするなら、
抽剤として用いる疎水性有機溶剤の量管遷かに少なくす
ることができ、従って疎水性有機溶剤を分離回収するK
Wするエネルギーコストを大11に低下せし釣ることが
できるという利点がある。
As described above, the main feature of the present invention is that carvone*t in waste sulfuric acid, which is difficult to recover by extraction alone with a hydrophobic organic solvent, is recovered by converting it into an easily recoverable ester. . Since the method of the present invention is carried out incidentally to the ester production process, there is no need to recover carvone in its original form, and recovery in the form of ester ultimately increases the yield of ester. It will also improve. Moreover, if you want to obtain the same recovery rate by recovering the carboxylic acid as an ester, which is more difficult to recover than by recovering it in the form of the carboxylic acid,
The amount of hydrophobic organic solvent used as an extractant can be significantly reduced, and therefore the hydrophobic organic solvent can be separated and recovered.
It has the advantage of reducing the energy cost of W to 11 and making it possible to fish.

次に本発明の好ましい実施態様を図面を用いて説明する
Next, preferred embodiments of the present invention will be described using the drawings.

本発明が適用されるべき廃硫酸を生ずる工程、即ちカル
ボン酸とアルコールとをW豪鯉媒下てエステル化反応さ
せることによルエステルが合威され、反応Jに含まれる
大半のエステルとカルボン酸とが分離されて廃硫酸が生
蔽される工程は、特に限定されな−が、例として特開昭
53−21114号公報KIIした方法で行すれるエス
テルグ)I&l造を行うものとして説明する。
In the step of producing waste sulfuric acid to which the present invention is applied, esters are synthesized by esterifying carboxylic acids and alcohols in a carp medium of W, and most of the esters and carboxylic acids contained in reaction J are The step in which waste sulfuric acid is recovered by separating the sulfuric acid from the sulfuric acid is not particularly limited, but will be described by way of example as an esterg) I&l production process carried out by the method described in Japanese Patent Application Laid-Open No. 53-21114 KII.

第1WJKお−て、PFiエステル製造製造量し、この
JF13つの完全混合槽型リアクター5.fi、7がこ
れらリアクター5.6.7にそれぞれ接続された分離器
19,20.21を介して直列KW〆嘔れて成り、初段
のりアクタ−7KFi管lより反応媒体としてOII水
性有機溶剤及びカルボン酸が供給され、最終段のりアク
タ−5には管2により、触媒としてのio’*水溶液及
び過剰のアルコールが供給され、各リアクター5.6.
7においてFi供給された反応物gIIが向流に接触さ
れて反発し、得られた反応液は分111F器19.20
.21 において砕シ、水、アルコールを主成分とする
相と、カルボン学、エステル、疎水性有機溶剤を主成分
とする相とに分シされ、最終段の分@[9190管3か
らは、疎水性有機溶剤、エステルを主成分とする粗エス
テルが得られ、初段の分III器21の管4からは廃硫
酸が得られる。この廃isを、本発明においては次のよ
うに処理してカルボン酸を回収する。
The first WJK produced PFi ester, and the JF had 13 complete mixing tank reactors 5. Fi, 7 are connected in series to these reactors 5, 6, 7 through separators 19, 20, 21, respectively, and OII aqueous organic solvent and OII aqueous organic solvent as the reaction medium are supplied from the first stage reactor 7, KFi tube 1. Carboxylic acid is supplied, and the final stage glue reactor 5 is supplied with an io'* aqueous solution as a catalyst and excess alcohol through a pipe 2, and each reactor 5.6.
In step 7, the reactant gII supplied with Fi is brought into contact with the countercurrent and repulsed, and the resulting reaction liquid is transferred to the 111F reactor 19.20.
.. 21, it is separated into a phase mainly composed of crushed water, water, and alcohol, and a phase mainly composed of carboxylic acid, ester, and a hydrophobic organic solvent. A crude ester mainly composed of a synthetic organic solvent and ester is obtained, and waste sulfuric acid is obtained from the tube 4 of the first stage III reactor 21. In the present invention, this waste IS is treated as follows to recover carboxylic acid.

即ち、管4よシC廃硫lIは、必、要に応じて熱交換器
8で冷却された後、抽出塔9の塔上!!!に供給され、
管11を経て塔下1!に供給される疎水性有Ill溶剤
を主成分とする抽剤によ〕、前記廃硫酸中の大半のエス
テル及びカルボン酸の一部が抽出される。抽出塔9の塔
頂よ)の抽出液は管10を経て排出され、各成分の分離
工程(図示せずンへ送られる。この抽出塔9の塔底の管
12からは、大半のエステルと一部のカルボンallが
除去された廃硫酸カニ抜き出され、必要によル熱交換器
等で昇温シタ後、エステル化リアクター13に供給され
る。
That is, the waste sulfur from the pipe 4 is cooled in the heat exchanger 8 as necessary, and then transferred to the top of the extraction tower 9! ! ! supplied to,
Down the tower via tube 11! Most of the esters and a part of the carboxylic acid in the waste sulfuric acid are extracted by the extractant mainly composed of a hydrophobic Ill-containing solvent. The extract from the top of the extraction tower 9 is discharged through a pipe 10 and sent to a separation step (not shown) for each component.From a pipe 12 at the bottom of the extraction tower 9, most of the ester The waste sulfuric acid from which all of the carbons have been removed is extracted, and if necessary, the temperature is raised using a heat exchanger or the like, and then the sulfuric acid is supplied to the esterification reactor 13.

ここに供給される廃硫i!&は、抽出塔9において大半
cエステルが除去されたことによ〕、エステル化が促進
される方向に化学平衡が移ったものとなっており、仁の
ためリアクター13において社、供給された廃1IIF
中の大半のカルボン酸が、−剰に含有されて−るアルコ
ールと反応してエステルが生成する・ こ仁で、リアクター13に供給されるアルコールの含有
率が低−場合には、管22よジアルコールを1IIK供
給してアルコールの量を、カルボン11に対し、モル比
で10以上に調整することが好ましい。
Waste sulfur supplied here! As most of the c-ester was removed in the extraction column 9, the chemical equilibrium shifted in the direction of promoting esterification, and the waste that was supplied to the reactor 13 was 1IIF
Most of the carboxylic acids in the reactor react with the excess alcohol to form esters.If the alcohol content supplied to the reactor 13 is low, the pipe 22 and It is preferable that 1IIK of dialcohol is supplied to adjust the amount of alcohol to 11 carvone in molar ratio of 10 or more.

前記リアクター13の反応液ii@14を経て抜き出さ
れ、必要に応じ熱交換器15で冷却した後、抽出塔16
に供給され、この抽出塔16において管17を経て当該
抽出塔16に供給される疎水性有機溶剤により、大部分
のエステル及びカルボン酸の一部が抽出される・この抽
出塔16よりの疎水性有機溶剤を主成分とする抽出液は
、抽出塔9へ抽剤として管lit経て供給される。そし
て抽出塔16の塔底の管18からは、エステル及びカル
ボン酸を殆ど含有しな一廃itsが得られ、これは通常
、硫酸濃縮工程に送られる。
The reaction liquid ii@14 is extracted from the reactor 13, and after being cooled by a heat exchanger 15 as necessary, it is transferred to an extraction column 16.
Most of the esters and a part of the carboxylic acid are extracted by the hydrophobic organic solvent that is supplied to the extraction column 16 via the pipe 17. The extract containing an organic solvent as a main component is supplied to the extraction column 9 as an extractant through a pipe lit. A tube 18 at the bottom of the extraction column 16 then yields waste containing almost no ester and carboxylic acid, which is usually sent to a sulfuric acid concentration step.

以上にお―て管1及び管17に供給する疎水性有機溶剤
は互K14なる糎類のものであってもよいが、同一のも
のであることが好ましい。また、リアクター5e 6a
 7或−はリアクター13での反応温度が低い重合KF
i、熱交換a8或いは熱交換器15け不要のこともある
〇 なお第1図の例においては、独立のりアクタ−,13を
用いたが、第2図に示すように当該リアクター13が抽
出塔9の塔*に一体に構成された装置t用いてもよいし
、或いは第3v!JK示すように抽出塔9及び16を一
体化し、塔の中央部分の容積を大きくしてリアクター1
3の機能を有せしめた装置を用いてもよい◎また抽出塔
9,16の容積を大きくし滞留時llI!を長くするこ
とにょ夛、抽出を行いながら反応を進める等、装階上滓
々の変更を加えることもでき、本発明の趣旨を逸脱しな
一限力これらの変更は全て本発明に包含される。
In the above, the hydrophobic organic solvents supplied to the tubes 1 and 17 may be of the same type as K14, but they are preferably the same. Also, reactor 5e 6a
7 or polymerized KF with low reaction temperature in reactor 13
i. Heat exchanger A8 or heat exchanger 15 may not be necessary.In the example shown in Fig. 1, an independent glue reactor 13 was used, but as shown in Fig. 2, the reactor 13 is connected to an extraction tower. A device integrated into the tower of 9* may be used, or the 3rd v! As shown in JK, extraction towers 9 and 16 are integrated, and the volume of the central part of the tower is increased to form reactor 1.
A device having the function of 3 may also be used. Also, the volume of the extraction towers 9 and 16 may be increased to increase the capacity of the extraction towers 9 and 16 during retention. It is also possible to make various changes to the structure, such as increasing the length of the reaction time or advancing the reaction while performing extraction, and all such changes are included in the present invention as long as they do not depart from the spirit of the present invention. Ru.

実施例1 第1図に示し良フローシー)K従う構成の装置をJlい
てメタクリル市とメタノールにょジメタクリル酬メチル
の製造を行った。即ちそのエステル製TiL系Pにおい
ては、管IK、tlj、1合防止斉としてへイドpキノ
ン500p、 p、 m、を含有するメタクリル酸とノ
ルマルヘキサンをそれぞれ299 g/h r及び14
6g/krの流量で加えると共に、管2にはメタノール
及び濃度70襲の1豪水溶液をそれぞれ234g/kr
′Bひ235g/hrのmyで供虻し、リアクター5.
6.7において反応温度65℃、滞留時間6時間でエス
テル化反応させ六〇その結果、管3よルけ、ノルマルヘ
キサン28.4重量%、メタクリル酸メチル64.5重
?%Jびメタノール6.1重量%の組成を有し更にター
のメタクリル酸、tS、水等を含む粗エステルが、51
1g/krのIIで得られ、管4よりけ、ノルマルヘキ
サン0.3重量%、メタクリル酸メチル2.5重量%、
メタクリ4111.0重IIN%、メタノール23.3
重量%、硫114(L7重量%、水32,2重量%から
なる廃**が403g/hrの流量で得られた。
Example 1 An apparatus having a configuration according to the flowchart shown in FIG. 1 was used to produce methacrylic and methanol mixed with methacrylic and methyl. That is, in the ester TiL-based P, methacrylic acid and n-hexane containing 500 p, p, m of heid p-quinone as tubes IK, tlj, and 1 reaction were added at 299 g/hr and 14 g/hr, respectively.
At the same time, methanol and an Australian aqueous solution with a concentration of 70% were added at a flow rate of 6 g/kr, and 234 g/kr each was added to pipe 2.
'B was fed at my of 235g/hr, and reactor 5.
In 6.7, an esterification reaction was carried out at a reaction temperature of 65°C and a residence time of 6 hours.As a result, 3 tubes were twisted, normal hexane was 28.4% by weight, and methyl methacrylate was 64.5% by weight. A crude ester having a composition of 6.1% by weight and 6.1% by weight of methanol and further containing ter methacrylic acid, tS, water, etc.
Obtained with 1 g/kr of II, stranded in tube 4, normal hexane 0.3% by weight, methyl methacrylate 2.5% by weight,
Methacrylate 4111.0% IIN%, methanol 23.3
A waste** was obtained with a flow rate of 403 g/hr.

斯くして得られ九廃硫酸を、熱交換器8において冷却水
によ、940″CK冷却した後、内径2.5 am 。
The nine waste sulfuric acid thus obtained was cooled by 940"CK with cooling water in a heat exchanger 8, and then cooled to an inner diameter of 2.5 am.

20段の回転多翼仮型抽出塔9の最上段に403g/h
rC流量で供給すると共に、そC1/j下段にけ抽出塔
16の塔頂よシ得られる97重量%のノルマルヘキサン
、メタクリル酸メチル等を含む抽出液を抽剤として供給
して抽出を行った。
403g/h in the top stage of the 20-stage rotary multi-blade temporary extraction tower 9
Extraction was carried out by supplying at a flow rate of rC and an extract containing 97% by weight of normal hexane, methyl methacrylate, etc. obtained from the top of the extraction column 16 in the lower stage of C1/J as an extractant. .

その結果、抽出塔9の塔頂の管lOより、ノルマルヘキ
サン89.1重量≦、メタクリル廖メチル85重量%及
び少量のメタクリル酸、メタノール等からなる液が13
7 g/ krの流量で得られ、また抽出塔9の塔底の
管12からけ、メタノール、硫酸、水を主成分とし、0
.6重量%のメタクリル酸及び0.05重量%のメタク
リル酸メチルを含む液が、391t/brの流量で得ら
れた0こ0IF12の液を図示していない熱交換器で6
0℃に加温した後 リアクター13に供給し、平均滞留
時間2時間、反応温度60℃でメタクリル酸のエステル
化を行った。その結果、管12よりの液中のメタクリル
酸の63重量弾がエステル化し、リアクター13の管1
4よシ得られた反応液中のメタクリル酸の濃度は023
重を弧、メタクリル酸メチルの濃度は0.5重量%であ
った。この管14よシの反応液を熱交換l115で水に
よシ40℃に?@却した後、抽出塔9と全く同じ構造及
び容量の抽出塔16の最上段に供給すると共に、その最
下19KFi管17よりノルマルヘキサンを121ぎ/
hrの流量で供給して抽出を行った。
As a result, a liquid consisting of 89.1% by weight of n-hexane, 85% by weight of methyl methacrylate, and small amounts of methacrylic acid, methanol, etc. was collected from the pipe 10 at the top of extraction column 9.
It was obtained at a flow rate of 7 g/kr, and from the pipe 12 at the bottom of the extraction column 9, the main components were methanol, sulfuric acid, and water, and 0.
.. A liquid containing 6% by weight of methacrylic acid and 0.05% by weight of methyl methacrylate was obtained at a flow rate of 391 t/br and the 0IF12 liquid was heated to 6% by weight in a heat exchanger (not shown).
After heating to 0°C, it was supplied to reactor 13, and esterification of methacrylic acid was carried out at an average residence time of 2 hours and a reaction temperature of 60°C. As a result, the 63 weight bullet of methacrylic acid in the liquid from pipe 12 is esterified, and
The concentration of methacrylic acid in the reaction solution obtained in step 4 is 023
The concentration of methyl methacrylate was 0.5% by weight. The reaction solution in this tube 14 is heated to 40°C by heat exchanger 115 into water. After cooling, normal hexane is supplied to the uppermost stage of an extraction tower 16 having the same structure and capacity as the extraction tower 9, and normal hexane is supplied from the lowermost 19K Fi pipe 17.
Extraction was performed by supplying at a flow rate of hr.

その結果、この抽出塔16の塔頂の1i−11よジノル
!ルヘキ号ンを主1分とする抽出液が得らt1六が、こ
の液は前述のMシ、抽出塔9へ供給した。
As a result, 1i-11 at the top of this extraction column 16! An extract containing mainly 100 ml of liquid was obtained, and this liquid was supplied to the above-mentioned extraction column 9.

抽出塔16の塔底の管18からけ、011重量%メタク
リル酸と0.06重量%のメタクリル酸メチルを含み、
メタノール、硫酸、水を主成分とする液が387 g/
 hrの流量で排出された0以上のようにして48時間
連絞運転した結果、メタクリル酸の回収率は90弧であ
ル、回収されたメタクリル酸のうち42弧はメタクリル
酸メチルとして回収された。
from the tube 18 at the bottom of the extraction column 16, containing 0.11% by weight methacrylic acid and 0.06% by weight methyl methacrylate,
387 g/liquid mainly composed of methanol, sulfuric acid, and water
As a result of continuous throttling operation for 48 hours at a flow rate of 0 or more, the recovery rate of methacrylic acid was 90 arcs, and 42 arcs of the recovered methacrylic acid were recovered as methyl methacrylate. .

比較例1 1111図に示す7p−シー)にお−て、リアクター1
31び熱交換I!15tll大して抽出$9と抽出塔1
6を直列KIII続した装置を用いたこと以外は、実施
例1と全く同様の操作を行った。
Comparative Example 1 In the 7P-C shown in Figure 1111, reactor 1
31 heat exchange I! 15tll extraction $9 and extraction tower 1
The operation was exactly the same as in Example 1, except that an apparatus in which K.6 was connected in series was used.

その結果、抽出塔9の塔頂の管10よシけ、ノルマルヘ
キサン89.611%、メタクリル−メチル73重量≦
、メタクリルI!1.9重t%、メタノール12重!I
k%からなる液が136t/brの流量で得られ、抽出
塔16の塔底の管18からね、メタノール、gli!I
、水を主成分とし、0.02重t%のメタクリル酸メチ
ル、0.36厭f%のメタクリル酸を含む液が388t
/brの流量で排出され、結局65%の回収率でメタク
リルWiを回収することができたが、抽出塔の段数、抽
剤のノルマルヘキサンの*Fi実施例】と同じであるK
もかかわらず、エステル化反応を行わないため、メタク
リル醗回収率は実施例IKJtべ大11に低下している
ことが明らかである。
As a result, the pipe 10 at the top of the extraction tower 9 was washed, normal hexane 89.611%, methacrylic methyl 73% by weight ≦
, Methacrylic I! 1.9wt%, methanol 12wt%! I
A liquid consisting of methanol and gli! was obtained at a flow rate of 136 t/br from the tube 18 at the bottom of the extraction column 16. I
, 388 tons of liquid containing water as the main component, 0.02% by weight of methyl methacrylate, and 0.36% by weight of methacrylic acid.
/br, and in the end we were able to recover methacrylic Wi with a recovery rate of 65%, but the number of plates in the extraction column and K, which is the same as *Fi Example] of n-hexane as the extractant.
Nevertheless, it is clear that because the esterification reaction was not performed, the methacrylic alcohol recovery rate was lowered to 11 compared to Example IKJt.

比較例2 管17から抽出塔16に供給するノルマルヘキサンの流
量を363t/brに変えたこと以外は比較例1と同様
の操作を行った。
Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the flow rate of normal hexane supplied from the pipe 17 to the extraction column 16 was changed to 363 t/br.

この結果、抽出塔9の塔頂の管10よルは、ノルマルヘ
キサン96,0fij1%、メタクリル庁メチル2.6
重量%、メタクリル酪i、o*iiデ、メタノール0.
4重量%からなる液が379 g/hr C渡tで摂ら
れ、一方抽出塔16の塔底の管18からは、メタノール
、し酸、水を主−分とし、0.02FF%のメタクリル
酸メチル、0.09重I!1%のメタクリル!lを含む
液が387ぎ/hrの流!で得られ、結局91ダの回収
率でメタクリルl!It回収することかできた。
As a result, the tube 10 at the top of the extraction column 9 contained 96.0% normal hexane and 2.6% methyl methacrylate.
Weight %, methacrylic acid, o*ii, methanol 0.
A liquid consisting of 4 wt. Methyl, 0.09 heavy I! 1% methacrylic! The flow rate of liquid containing l is 387 min/hr! In the end, methacrylic l! was obtained with a recovery rate of 91 da! I was able to recover it.

この例によれば、実施例1と略同等の回収率が得られた
が、エステル化反応を行わないため、実1111に比べ
て約3倍ものノルマルヘキサンを使用しておシ、ノルマ
ルヘキサンの回収に大きなエネルギーが必要となること
が明らかである。
According to this example, almost the same recovery rate as in Example 1 was obtained, but since no esterification reaction was performed, about three times as much normal hexane as in Real 1111 was used. It is clear that a large amount of energy is required for recovery.

実施例2 実施例1におりると全く同じ装置を用いてアクリル酸と
メタノールによりアクリル酸メチルta造した。即ち、
そのエステル製t;系pにおいては、管1には、重合防
止剤としてハイドロキノン500p−pm m−を含有
するアクリル酸とノルマルペンタンをそれぞれ251t
/br7ひ302 g/ hrのatで供給すると共K
、管2KFiメタノール2渉度70%の碓廖水溶液をそ
れぞれ234g/hr及び2301/brの流量て供給
し、リアクター5.6.7にお−て反応温度60℃、滞
留時間5時間でエステル化反応させ六〇 その結果、管3よ、6hノルマルペンタン48.11i
p襲、アクリル酸メチル44.5重11%、メタノール
6.1重量%の組成を有し少量のアクリル酸、硫酸、水
等を含む粗エステルが625g/krの流量で得られ、
管4よシけ、ノルマルペンタン0.3 重g %、アク
リル酸メチル2.5重量%、アクリルI!1.011)
弧、メタノール22.6重量%、硫I%40.8重量襲
、水32.8重[口・らなる廃硫酸が392 g/ k
rの流量で得られた。
Example 2 Methyl acrylate (ta) was prepared using acrylic acid and methanol using exactly the same equipment as in Example 1. That is,
In the system P, tube 1 contains 251 t each of acrylic acid and normal pentane containing 500 p-pm m- of hydroquinone as a polymerization inhibitor.
/br7hi 302 g/hr when supplied at K
, Tube 2KFi methanol 2 Aqueous solution with 70% degree of penetration was supplied at a flow rate of 234 g/hr and 2301/br, respectively, and esterification was carried out in reactor 5.6.7 at a reaction temperature of 60°C and a residence time of 5 hours. React 60 As a result, tube 3, 6h normal pentane 48.11i
A crude ester having a composition of 44.5% by weight of methyl acrylate and 6.1% by weight of methanol and containing small amounts of acrylic acid, sulfuric acid, water, etc. was obtained at a flow rate of 625 g/kr.
Pipe 4, 0.3 wt% normal pentane, 2.5 wt% methyl acrylate, acrylic I! 1.011)
Arc, methanol 22.6% by weight, sulfur I% 40.8% by weight, water 32.8% by weight [392 g/k of waste sulfuric acid]
obtained at a flow rate of r.

斯くして得られた廃**を熱交換器8で冷却水によ、!
1140℃に冷却した警、抽出塔9に供給する一方、管
17よ1lIlsjl16にノルマルペンタンを234
g/hrの流量で供給し、廃硫酸中のアクリル酸メチル
、アクリル酸の回収を行った。抽出塔9の塔底の管12
から得られた液は、図示して−ない熱交換器で50′c
K加涙シ、リアクター13に供給した◎リアクター13
においてね、平泊滞留時間2時間、反応温度50’Cで
抽出塔9で[911/てきなかったアクリル酸のエステ
ル化を行い、その塔底の管14よ)の反応液を熱交換器
15において水によシ40℃に冷却した後、抽出@16
に供給しアクリル酸メチル、アクリル酸の回収を行った
The waste ** thus obtained is converted into cooling water through the heat exchanger 8!
While supplying the filter cooled to 1140°C to the extraction column 9, 234 °C of normal pentane was added to the pipe 17 and 1lIlsjl16.
Methyl acrylate and acrylic acid in the waste sulfuric acid were recovered by supplying at a flow rate of g/hr. Pipe 12 at the bottom of extraction column 9
The liquid obtained from
◎Reactor 13 was supplied to Reactor 13.
At the same time, esterification of the acrylic acid that was not obtained was carried out in the extraction column 9 at a residence time of 2 hours and a reaction temperature of 50'C, and the reaction liquid in the tube 14 at the bottom of the column was transferred to the heat exchanger 15. After cooling to 40℃, extract @16
Methyl acrylate and acrylic acid were recovered.

その結果、抽出塔9の塔頂の910より92.61r量
弧のノルマルペンタン、4.3重−%のアクリル酸メチ
ル及び少量のアクリル酸、メタノール等からなる液が2
54g/hrのfi量で得らtた。一方抽出塔16の塔
底の管1825・らけ、0.08重9%のアクリル酸と
0.01重I≦のアクリル酸メチルを含み、メタノール
、硫酸、水を主成分とする液が372g / h rの
流量で得られた。以上のようKして48時間連続運転し
た結果、アクリル酸の回収率は92襲であ)、回収され
たアクリル−のうち27弧はアクリル酸メチルとして回
収され念。なお、リアクター13でのアクリル酸の反応
率t157% であった。
As a result, from 910 at the top of the extraction column 9, a liquid consisting of 92.61 r of normal pentane, 4.3% by weight of methyl acrylate, and small amounts of acrylic acid, methanol, etc. was obtained.
It was obtained with a fi amount of 54 g/hr. On the other hand, in the pipe 1825 at the bottom of the extraction column 16, there was 372 g of a liquid containing 0.08% by weight 9% acrylic acid and 0.01% I≦methyl acrylate, and whose main components were methanol, sulfuric acid, and water. / hr flow rate was obtained. As a result of continuous operation for 48 hours with K as described above, the recovery rate of acrylic acid was 92 times (92 times), and 27 times out of the recovered acrylic acid, 27 times were recovered as methyl acrylate. Note that the reaction rate of acrylic acid in reactor 13 was 157%.

片較例3 第1図に示す70−シー)Kお−て、リアクター13瀝
び熱交換M15を除去して、抽出塔9と抽出塔16を績
列に接続した静置を用いたこと以りtFi実施例2と全
く同様の操作を行った。
Comparison Example 3 Since the 70-C shown in Fig. 1 was used, the reactor 13 and the heat exchanger M15 were removed and the extraction tower 9 and the extraction tower 16 were connected in a static row. The same operation as in tFi Example 2 was performed.

その結果、抽出塔9の塔頂の管10よシけ、ノルマルヘ
ンタン93.2重量%、アクリル酸メチル3.91j%
、アクリル1111重量%その他メタノール等から力る
液が252g/hrの流量で得られ、抽出塔16の塔底
の管1 g 25−らは、メタノール、硫酸、水を主成
分とし、0.03重量%のアクリル酸メチル、0.32
重量%のアクリル酸を含む液が374g/brO流量で
得られ、結局70襲の回収率でアクリル酸を回収するこ
とができたが、抽出塔の段数、抽剤のノルマルペンタン
4りIFi実施F!!42と同じであるにもかかわらず
、エステル化反応を行わな−ため、実施例2に比ベアク
リル酸、の回収率は大幅に低下していることが明らかで
ある。
As a result, the pipe 10 at the top of the extraction tower 9 contained 93.2% by weight of normal hentane and 3.91% by weight of methyl acrylate.
, acrylic 1111% by weight and other liquids such as methanol were obtained at a flow rate of 252 g/hr, and 1 g of the tube at the bottom of the extraction column 16 contained methanol, sulfuric acid, and water as main components, and 0.03 % by weight methyl acrylate, 0.32
A liquid containing acrylic acid of 374 g/brO was obtained at a flow rate of 374 g/brO, and acrylic acid was eventually recovered at a recovery rate of 70 times. ! ! Although it is the same as Example 42, it is clear that the recovery rate of acrylic acid is significantly lower than in Example 2 because the esterification reaction is not performed.

実施例3 5重量%のメタクリル酸、21.5重量%のメタノール
、40.2重量%の1lFl!、33.2重p弧のオt
・らなシロ。1重1%のメタクリル酸メチルを含む廃1
夢中のメタクリル酸をエステル化に先行する抽出管行わ
な−ほかは、ト述の実施例に準する方法で回収した。即
ち、当該廃W#酸を390g/hrの流量で直接リアク
ターに供給し、平均滞留時1’l12時間、反応濃度5
0℃でメタクリル酸のエステル化を行い、こうして得ら
れた液を実施例】の抽出$16と全く同じ構造及び容量
の抽出塔の最上#に供給し、当該抽出塔の最下段Kij
 156 g / brの流量でノルマルヘキサンを供
給し抽出を行った。
Example 3 5% by weight methacrylic acid, 21.5% by weight methanol, 40.2% by weight 11Fl! , 33. Ot of double p arc
・Lana Shiro. Waste 1 containing 1% by weight methyl methacrylate
The methacrylic acid was recovered in the same manner as in the previous example, except that the extraction tube was not used prior to esterification. That is, the waste W# acid was directly supplied to the reactor at a flow rate of 390 g/hr, and the average residence time was 1'l12 hours, and the reaction concentration was 5.
Esterification of methacrylic acid was carried out at 0°C, and the liquid thus obtained was supplied to the uppermost extraction column ## having exactly the same structure and capacity as extraction #16 in Example], and the lowermost stage Kij of the extraction column was
Extraction was performed by supplying normal hexane at a flow rate of 156 g/br.

この結果、抽出塔の塔頂よ〕はs87.7重−嘱のノル
マルヘキサン8.3重量%のメタクリル寧メチル、2.
5重量%のメタクリル酸、その他少量のメタノール等か
らなる粗エステルが178g/hrの流量で得られ、一
方抽出塔の塔底t・らは、O,OS重量−のメタクリル
酸メチル、0.7重量%のメタクリル酸を含み、メタノ
ール、硫酸、水を主鱗分とする液が368g/hrの流
量で得られた。
As a result, the top of the extraction column contained 87.7% by weight of n-hexane, 8.3% by weight of methyl methacrylate, 2.
A crude ester consisting of 5% by weight of methacrylic acid and a small amount of methanol etc. was obtained at a flow rate of 178 g/hr, while at the bottom of the extraction column, O,OS weight - of methyl methacrylate, 0.7 A liquid containing methanol, sulfuric acid, and water as main scales and containing methacrylic acid at a flow rate of 368 g/hr was obtained.

以上のようにして48時間連続運転した結果、メタクリ
ル率の回収率は87%であった。なお、リアクターでの
メタクリル酸の反応率F165%であった。
As a result of continuous operation for 48 hours as described above, the recovery rate of methacrylate was 87%. Note that the reaction rate of methacrylic acid in the reactor was F165%.

このように回収すべきカルボン酸の含有量が微量である
ときけ、廃硫酸を、抽出1稈を経ずにエステル化して抽
出する方法によシ、高い回収率で回収することができた
In this way, when the content of carboxylic acid to be recovered was very small, it was possible to recover waste sulfuric acid at a high recovery rate by esterifying and extracting the waste sulfuric acid without passing through one extraction culm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の実@に好適に用いら
れる工程の70−シート図である。 5、 6. 7.13・・・リアクター9.16・・・
抽出塔 19、20.21−・・分離器
FIGS. 1 to 3 are 70-sheet diagrams of steps preferably used in the implementation of the present invention. 5, 6. 7.13...Reactor 9.16...
Extraction tower 19, 20, 21-... Separator

Claims (1)

【特許請求の範囲】 1)触媒として硫酸を用いて炭素数が3又#′i4の不
飽和カルボン酸と低級アルコールとを反応せしめて行わ
れる不飽和カルボン酸エステル0w造において生ずる廃
砕夢中の不飽和カルボン酸を以下の工程(*)−(b)
 −(c)又は工程(b)−(C)により回収すること
を特徴とする不飽和カルボン浄の回収方法。 (1)廃WIt酸中に含まれる不飽和カルボン酸及び不
飽和カルボン酸エステルを疎水性有機溶剤によシ抽出回
収する工程 (b)#Wl!m中に残存する不飽和カルボンillを
低級アルコールとエステル化反応ζせて不飽和カルボン
醒工、ステルを生成させる工程(e)工程(b)におい
て得られる反応液を疎工程 2)低級アルコールが、炭素数が1〜3Cアルコールで
ある特許請求の範囲tIp1項f’ IF +7゛不に
・和カルボンIIの回収方法。 3ン疎水性有櫟溶劃が沸点0〜250℃(訃訪族炭化水
紫、脂環族炭化オ寥及び芳香族炭化水素から運ばれた少
なくとも1膠である特許請求の範−轄1項又は第2項記
載の不飽和カルボン醗C回収方決。
[Scope of Claims] 1) A method for reducing the amount of waste produced in the production of unsaturated carboxylic acid esters by reacting unsaturated carboxylic acids with 3 or #'i4 carbon atoms with lower alcohols using sulfuric acid as a catalyst. The unsaturated carboxylic acid is subjected to the following steps (*)-(b)
-(c) or step (b)-(C). (1) Step of extracting and recovering unsaturated carboxylic acids and unsaturated carboxylic acid esters contained in waste WIt acid using a hydrophobic organic solvent (b) #Wl! (e) The reaction solution obtained in step (b) is subjected to an esterification reaction with a lower alcohol to produce an unsaturated carbon ester. , is an alcohol having 1 to 3 carbon atoms, Claim tIp1 Item f' IF +7゛ A method for recovering carbon II. Claims: Claim 1: The three-layer hydrophobic aqueous melt is at least one glue with a boiling point of 0 to 250°C (an aliphatic hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon). Or the unsaturated carboxylic acid C recovery method described in Section 2.
JP3182A 1982-01-05 1982-01-05 Recovery of unsaturated carboxylic acid Granted JPS58118540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182A JPS58118540A (en) 1982-01-05 1982-01-05 Recovery of unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182A JPS58118540A (en) 1982-01-05 1982-01-05 Recovery of unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPS58118540A true JPS58118540A (en) 1983-07-14
JPH0343259B2 JPH0343259B2 (en) 1991-07-01

Family

ID=11462981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182A Granted JPS58118540A (en) 1982-01-05 1982-01-05 Recovery of unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPS58118540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006348A1 (en) * 1997-07-30 1999-02-11 Mitsubishi Rayon Co., Ltd. Process for the purification of (meth)acrylic acid
CN104627967A (en) * 2013-11-13 2015-05-20 雷永诚 System and method of normal temperature recovery of waste sulfuric acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006348A1 (en) * 1997-07-30 1999-02-11 Mitsubishi Rayon Co., Ltd. Process for the purification of (meth)acrylic acid
US6380427B1 (en) 1997-07-30 2002-04-30 Mitsubishi Rayon Co., Ltd. Process for purification of (meth)acrylic acid
CN104627967A (en) * 2013-11-13 2015-05-20 雷永诚 System and method of normal temperature recovery of waste sulfuric acid

Also Published As

Publication number Publication date
JPH0343259B2 (en) 1991-07-01

Similar Documents

Publication Publication Date Title
US2161974A (en) Method of controlling exothermic reactions
US2080111A (en) Purification of alcohols obtained from olefines
JP2684602B2 (en) Method for producing alkyl acrylate by direct esterification
KR970061851A (en) Continuous preparation of alkyl esters of (meth) acrylic acid
JP2014506235A (en) Method for producing acrylate
JPH0859551A (en) Preparation of butyl acrylate by direct esterification
US4329492A (en) Process for production of methacrylic acid esters
US2556438A (en) Mercaptan extraction system
DE1768796A1 (en) Process for the production of amines
US1400849A (en) Continuous process for the manufacture of esters
JPS58118540A (en) Recovery of unsaturated carboxylic acid
JP2006213647A (en) Method for recovering unreacted acrylic acid
JP2001322968A (en) Method for purifying methacrylic acid ester
US2787636A (en) Process for the manufacture of lower aliphatic esters
US20190232193A1 (en) Process for purifying an aqueous solution comprising diethylacetal
EP0465853A2 (en) Method for producing 4-hydroxybutyl (meth)acrylate
JPH08268938A (en) Separation of methyl acrylate or methyl methacrylate and methanol
JP2602696B2 (en) Method for recovering acrylic acid and / or ethyl acrylate from black acid
AU631936B2 (en) Recovery of acrylic acid and/or ethyl acrylate from black acid
US2516126A (en) Separation of organic compounds
US1939384A (en) Process for the production of valuable derivatives from olefins
US2413245A (en) Azeotropic distillation of toluene
US2605211A (en) Recovering antimony trichloride from hydrocarbon extract phase
US1988479A (en) Process for treating olefines
CN109180413A (en) The method and apparatus of 1- hexene is separated from Fischer-Tropsch synthesis oil using coupling reaction and separation technique