JPS58118340A - Leaf spring made of fiber reinforced resin - Google Patents

Leaf spring made of fiber reinforced resin

Info

Publication number
JPS58118340A
JPS58118340A JP21580681A JP21580681A JPS58118340A JP S58118340 A JPS58118340 A JP S58118340A JP 21580681 A JP21580681 A JP 21580681A JP 21580681 A JP21580681 A JP 21580681A JP S58118340 A JPS58118340 A JP S58118340A
Authority
JP
Japan
Prior art keywords
leaf spring
fiber
reinforced
reinforced resin
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21580681A
Other languages
Japanese (ja)
Inventor
Junichi Hori
堀 準一
Tomohito Morikawa
森川 倫仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Hino Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Hino Jidosha Kogyo KK filed Critical Hino Motors Ltd
Priority to JP21580681A priority Critical patent/JPS58118340A/en
Publication of JPS58118340A publication Critical patent/JPS58118340A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Abstract

PURPOSE:To improve the compressive strength and to equalize the fatigue strength at each part of a leaf spring by giving an initial tensile stress to a surface layer of a reinforced fiber at which a maximum compressive stress is produced, before shaping. CONSTITUTION:A leaf spring 1 which is made of fiber reinforced resin is made up by reinforcing matrix resin P with reinforced fiber F such as carbon fiber C. Before shaping, an initial tensile stress is given to reinforced fiber F, that is, carbon fiber C which is mixed into a surface layer 1a at which a maximum compressive stress in the spring 1 is produced. This may reduce the compressive stress which is produced when a bending load is exerted on the leaf spring 1.

Description

【発明の詳細な説明】 本発明は、繊維強化樹脂製板ばねに係シ、特に強化繊維
に初期引張応力を与えて成形することによって圧縮応力
を減少させ、強度の向上を図った線維強化樹脂製板ばね
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leaf spring made of fiber-reinforced resin, and in particular to a fiber-reinforced resin that is molded with initial tensile stress applied to reinforcing fibers to reduce compressive stress and improve strength. Regarding leaf springs.

従来、繊維強化樹脂製板ばねには檀々のものが提案され
ているが、l*板ばねはマ)IJフックス脂を炭aC繊
維やガラス繊維等の強化繊維で強化したものであシ、炭
素繊維は特に引張に強く、ガラス繊維は硬さが大きくま
た劇単粍性が大目〜、大々の特性によシ使い分けられて
いるが、いずれの強化繊維も圧縮には物く、圧縮強度は
もっばらマトリックス樹脂に依存せざるを得なめ−うた
0しかしマトリックス樹脂の圧縮強度は銅顛比べて格段
に小さい@このため、従来の繊維強化樹脂製板ばねにお
いて杜、引張応力によって破壊することはほとんどなく
、曲は荷1時に最大圧縮応力が生〕“る表面層から電装
が入って破紐し、銅製の板はねに比べて耐久性が劣ると
い9欠照がわった。
Conventionally, various types of leaf springs made of fiber-reinforced resin have been proposed, but l* leaf springs are made by reinforcing IJ Fuchs resin with reinforcing fibers such as charcoal aC fibers and glass fibers. Carbon fiber is particularly strong in tension, and glass fiber has high hardness and high resistance to damage.Although they are used depending on their characteristics, both types of reinforcing fibers are difficult to compress. The strength must depend entirely on the matrix resin - Uta 0 However, the compressive strength of the matrix resin is much lower than that of copper.For this reason, conventional fiber-reinforced resin leaf springs break due to stress and tensile stress. The electrical equipment entered the surface layer and broke when the cable was loaded, which caused maximum compressive stress, and the cables were found to be less durable than copper plates.

本発明は、上記した従来技術の火照を除くためになされ
たものでろって、その目的とするところは、マトリック
ス樹脂を訣累稙維勢の強化繊維で強化した線維強化樹脂
製板ばねにおいて、最大圧縮応力が生ずる表面層に配設
される強化繊維に初期引張応力を与えて成形することに
より、曲は荷重時の圧縮応力を引張応力に比べて減少式
せることでらシ、またこれによって、M維強化樹脂製板
ばねの圧縮強度を同上させ、被労破淑が常に圧縮側から
生するという欠点を除き、板ばねの各部におい1疲9)
’AEを均4化させることである。
The present invention has been made in order to eliminate the drawbacks of the above-mentioned prior art, and its purpose is to provide a fiber-reinforced resin leaf spring in which a matrix resin is reinforced with reinforced fibers. By applying an initial tensile stress to the reinforcing fibers disposed in the surface layer where the maximum compressive stress occurs and forming the curve, the compressive stress during loading can be reduced compared to the tensile stress. , the compressive strength of the M-fiber-reinforced resin leaf spring is increased to the same level, and the fatigue of each part of the leaf spring is increased (9), except for the drawback that the strain caused by stress always occurs from the compression side.9)
'It is to equalize AE to 4.

★するに本発明は、マトリックス@脂を炭素轍@L等の
強化繊維で強化した繊維強化樹脂製板ばねにおいて、夕
なくとも最大圧縮応力が生ずる表面ノーに配合される前
記強化繊維に初期引張応力を与えて成形し、―I配板ば
ねの曲げ荷重時に生ずる圧縮応力の独歩を図ったことを
特徴とするものでめる0 以下率発明を図面に尽す実1M91Jに基いて1明する
0鋲1しj及び第2図において、縁:絡強化樹脂製似ば
ね1tri、マ) IJックス樹脂Pを炭素繊維C尋の
541化稙峠Fで強化したものであって、その最大圧組
ニジ、力が生ずる表面Jmlaに配合されろ強化繊維F
、即ち炭素繊維Cに初期引張応力を与えて成形しており
、線維強化杓脂鮫板げね1の曲げ荷重時に午する圧縮応
力の減少を図ったものでめる0初期引張応力の与え方は
、k素##cbcos合、イ→・び皐で9%に達すると
切れるので、伸び率では1楚相り望ましくは04チ程度
とする。これによって初期引張応力σ、0は約40 k
g/m−となシ、これが第2図に示す繊維強化樹脂製板
ばね1の表面層1mにおける最も細く画かれた炭素繊維
C1である。そして中心層1bに近づくにつれて初期引
張応力が漸減するように炭1g繊維C,、C,の伸び率
を減少させるように構成してもよい。
★The present invention, in a fiber-reinforced resin plate spring in which a matrix @ fat is reinforced with reinforcing fibers such as carbon tracks @ L, has an initial tensile strength in the reinforcing fibers blended on the surface where the maximum compressive stress occurs. The invention is characterized by being molded by applying stress to suppress the compressive stress generated during the bending load of the plate spring. In rivet 1 and Figure 2, edge: similar spring made of reinforced resin 1tri, ma) IJx resin P reinforced with carbon fiber C thick 541 katentoge F, and its maximum pressure is , reinforcing fibers F blended into the surface Jmla where force is generated
In other words, the carbon fiber C is molded by giving an initial tensile stress, and the method of giving an initial tensile stress of 0 is achieved by reducing the compressive stress that occurs during bending load of the fiber-reinforced lamina plate gene 1. The elongation rate is set to 1 so, preferably about 04 chi, since it will break when it reaches 9% in the k element ##cbcos combination. As a result, the initial tensile stress σ, 0 is approximately 40 k
g/m-, this is the thinnest carbon fiber C1 in the surface layer 1 m of the fiber-reinforced resin leaf spring 1 shown in FIG. The elongation rate of the charcoal 1g fibers C, , C, may be reduced so that the initial tensile stress gradually decreases as the center layer 1b approaches.

一方最大引張応力が荷重作用時に生ずる表面層ICの炭
素繊維Cには図示の実施例では初期引張応力は与えてな
いので図中太く画かれているが、引張側の表面層1cの
炭素繊維Cに本初期引張応力を与えておく方法もある。
On the other hand, in the illustrated embodiment, no initial tensile stress is applied to the carbon fibers C of the surface layer IC where the maximum tensile stress occurs when a load is applied, so the carbon fibers C of the surface layer 1c on the tensile side are drawn thickly in the figure. Another method is to apply this initial tensile stress to

本発明は、上記のように構成されており、以下その作用
について説明する。第1図に示すように、本発明繊維強
化樹脂製板ばね1にその中央下部から曲げ荷重Wが作用
すると、両端部にはRなる反力が作用し、繊維強化樹脂
製板ばね1は上に凹の初期状態から平旦又は上に凸の状
態まで撓むことになるが、表面層1aの炭素繊維Cには
初期引張応力−が生じているので、第3図に示すように
、繊維強化樹脂製板ばね1のひずみ1が0のときの引張
応力′tは0ではなく−となっておシ、応力−ひずみ線
図は、引張応力σ、=σ1.において縦軸と交わってお
シ、曲げ荷重が増加して圧縮ひずみ櫂が一定値、即ちΔ
εに達するまでは表面層1aには圧縮応力 ・は全く生
じない◎そして圧縮ひずみeがΔεに達したときに初期
引張応力′1・は消失し、それ以上荷重が増してひずみ
暮が増大して初めて表面層1aに圧縮応力0・が生ずる
が、初期引張応力0I・を与えていない従来例に比べて
厳大曲げ荷重作用時の最大圧縮応力0・は初期引張応力
へ・だけ減少し、好ましい結果が得られる。
The present invention is configured as described above, and its operation will be explained below. As shown in FIG. 1, when a bending load W is applied to the fiber-reinforced resin leaf spring 1 of the present invention from the lower center, a reaction force R acts on both ends, and the fiber-reinforced resin leaf spring 1 is The carbon fibers C of the surface layer 1a are bent from an initial concave state to a flat or upwardly convex state, but since an initial tensile stress is generated in the carbon fibers C of the surface layer 1a, as shown in FIG. When the strain 1 of the resin plate spring 1 is 0, the tensile stress 't is not 0 but -, and the stress-strain diagram shows the tensile stress σ, = σ1. As the bending load increases, the compressive strain increases to a constant value, i.e. Δ
No compressive stress ・ is generated in the surface layer 1a until it reaches ε ◎ Then, when the compressive strain e reaches Δε, the initial tensile stress ′1 ・ disappears, and as the load increases further, the strain stress increases. A compressive stress of 0 is generated in the surface layer 1a for the first time, but compared to the conventional example in which an initial tensile stress of 0 is not applied, the maximum compressive stress of 0 when a severe bending load is applied is reduced by an amount of the initial tensile stress, Favorable results are obtained.

そして疲労強度の均等化が達成できる・なお表面層1a
における初期引張応力′釉の与え方を、中心層1bに行
くに従い両派するようにしておくこともできる。また表
面層1a及び1cの炭素繊維Cに初期引張応力’Imを
与えておけば繊維強化樹脂製板ばね1の自由状態におけ
る形状を適正な、例えば5g1図に示すような上に凹の
形状に保つことができる。
And uniformity of fatigue strength can be achieved. Furthermore, the surface layer 1a
The initial tensile stress in the glaze can be applied in different ways as one approaches the center layer 1b. Furthermore, by applying an initial tensile stress 'Im to the carbon fibers C of the surface layers 1a and 1c, the shape of the fiber-reinforced resin plate spring 1 in its free state can be changed to an appropriate shape, for example, an upwardly concave shape as shown in Fig. 5g1. can be kept.

本発明は、上記のように構成され、作用するものでめる
から、マトリックス樹脂を炭素繊維等の強化繊維で強化
した#!強化樹Bb製板ばねにおいて、最大圧縮応力が
生ずる表面層に配設される強化繊維に初期引張応力を与
えて成形したので、曲げ荷重時の圧縮応力を引張応力に
比べて減少させることができ、この結米繊維強化街脂製
板ばねの圧縮強度を向上させることができ、破骨破壊が
常に圧輻匈から生ずるという欠点を除くことができる効
果が得られる。また繊維強化樹脂表板ばねの各部におい
て疲労強度を均等化させることができる効果が得られる
Since the present invention is constructed and operates as described above, the matrix resin is reinforced with reinforcing fibers such as carbon fibers! In the leaf spring made of reinforced wood Bb, the reinforcing fibers placed in the surface layer where the maximum compressive stress occurs are given initial tensile stress and molded, so the compressive stress during bending load can be reduced compared to the tensile stress. It is possible to improve the compressive strength of this leaf spring made of rice fiber reinforced street oil, and it is possible to obtain the effect of being able to eliminate the drawback that osteoclast fracture always occurs due to compression force. Moreover, the effect of equalizing the fatigue strength in each part of the fiber-reinforced resin front plate spring can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係シ、第1図は曲げ荷重が作用
した状態を示す繊維強化樹脂製板ばねの11i1面図、
第2図は繊維強化樹脂製板ばねの賛部拡大部分餉面図、
第3図は応力−ひずみ線図である。 1は繊維強化樹脂製板ばね、1aVi最大圧縮応力が生
ずる表面層、Cは炭素繊維、Fは強化繊維、P/I′i
マトリックス樹脂、Wは曲げ荷to= は圧縮応力、σ
[株]は引張応力、(1区・は初勘引張紀、カでめる。
The drawings relate to embodiments of the present invention, and FIG. 1 is a 11i plane view of a fiber-reinforced resin leaf spring showing a state where a bending load is applied.
Figure 2 is an enlarged partial cross-sectional view of the fiber-reinforced resin leaf spring.
FIG. 3 is a stress-strain diagram. 1 is a leaf spring made of fiber-reinforced resin, 1aVi is the surface layer where the maximum compressive stress occurs, C is carbon fiber, F is reinforcing fiber, P/I'i
Matrix resin, W is bending load to = compressive stress, σ
[Stock] is tensile stress, (1st ward is the initial tension period, Kademeru.

Claims (1)

【特許請求の範囲】[Claims] マトリックス樹脂を炭素繊維等の強化繊維で強化した繊
維強化樹脂製板ばねにおいて、少なくとも最大圧縮応力
が生ずる表面ノーに配合される前記強化繊維に初期引張
応力を与えて成形し、前記板ばねの曲げ荷重時に生ずる
圧縮応力の減少を図りたことを特徴とする線維強化樹脂
製板ばね。
In a fiber-reinforced resin leaf spring in which a matrix resin is reinforced with reinforcing fibers such as carbon fibers, the reinforcing fibers blended at least on the surface where the maximum compressive stress occurs are given an initial tensile stress to form the leaf spring, and the leaf spring is bent. A fiber-reinforced resin leaf spring characterized by reducing compressive stress generated during loading.
JP21580681A 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin Pending JPS58118340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21580681A JPS58118340A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21580681A JPS58118340A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Publications (1)

Publication Number Publication Date
JPS58118340A true JPS58118340A (en) 1983-07-14

Family

ID=16678560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21580681A Pending JPS58118340A (en) 1981-12-28 1981-12-28 Leaf spring made of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JPS58118340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851142A1 (en) * 1996-12-24 1998-07-01 Dsm N.V. Structural spring of fibre-reinforced plastic
KR19990022462A (en) * 1995-06-07 1999-03-25 데이비드 제이. 맥일큄 Bed foundation system with low profile composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422048A (en) * 1977-07-20 1979-02-19 Toray Ind Inc Leaf spring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422048A (en) * 1977-07-20 1979-02-19 Toray Ind Inc Leaf spring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990022462A (en) * 1995-06-07 1999-03-25 데이비드 제이. 맥일큄 Bed foundation system with low profile composite
EP0955847A1 (en) * 1995-06-07 1999-11-17 The Ohio Mattress Company Licensing And Components Group Low-profile composite material bedding foundation system
EP0955847A4 (en) * 1995-06-07 2000-08-23 Ohio Mattress Co Low-profile composite material bedding foundation system
EP0851142A1 (en) * 1996-12-24 1998-07-01 Dsm N.V. Structural spring of fibre-reinforced plastic
BE1010823A3 (en) * 1996-12-24 1999-02-02 Dsm Nv CONSTRUCTION FEATHER prepreg.

Similar Documents

Publication Publication Date Title
US10260198B2 (en) Method for producing a wire cable
WO2019242366A1 (en) Method for calculating flexural capacity of pc component under influence of bond deterioration
CN109255202B (en) Method for estimating fatigue crack initiation life of mechanical component
KR20160061433A (en) High elongation fibre with good anchorage
JP2001512191A (en) Steel cord for pneumatic tire protection ply
JPS58118340A (en) Leaf spring made of fiber reinforced resin
US4025367A (en) Process for treating copper alloys to improve thermal stability
Ochiai et al. Tensile strength of fibre-reinforced metal matrix composites with non-uniform fibre spacing
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JPWO2010101154A1 (en) Steel wire manufacturing method
Glushko et al. Evaluation of fibre strength characteristics on the basis of the fibre fragmentation test
Shehata et al. Minimum steel ratios in reinforced concrete beams made of concrete with different strengths—Theoretical approach
JPH08156514A (en) High strength steel wire excellent in twisting crack resistance
US3537913A (en) Cyclic stressing for suppression of strain aging
JPH08209388A (en) Brass plated steel wire having good adhesiveness to rubber
EP0611669A1 (en) High-strength bead wire
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
US2355156A (en) Metallic element for reinforcing concrete
JP2862206B2 (en) High-strength PC steel strand and method for producing the same
Wood et al. Paper 14: Accentuation of Tensile Creep by Superposed Cyclic Strain
CA2787694C (en) Methods of manufacturing a resilient rail clip
JPS59190529A (en) Metal torsion bar and producing method thereof
JP3182984B2 (en) Manufacturing method of high strength extra fine steel wire
US3125469A (en) Specimen
JP2000119052A (en) Steel fiber for reinforcing concrete