JPS58118292A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPS58118292A JPS58118292A JP57000587A JP58782A JPS58118292A JP S58118292 A JPS58118292 A JP S58118292A JP 57000587 A JP57000587 A JP 57000587A JP 58782 A JP58782 A JP 58782A JP S58118292 A JPS58118292 A JP S58118292A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- thin film
- melting point
- metalloid
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24304—Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/2431—Metals or metalloids group 13 elements (B, Al, Ga, In)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24312—Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24316—Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Read Only Memory (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発−はレーザー光に対して反射率が高い記録部分をレ
ーず一部の照射で形成させるべき低融点の金属又は半金
属の薄膜を有する新しい要式の光記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new type of optical recording having a thin film of a low melting point metal or metalloid, in which a recording portion with a high reflectance to laser light is formed by irradiation of a portion of the laser beam. Regarding the medium.
光記録媒体は、「光デスク」とも言われる。これKは、
大別すると、第1に、低融点の金属又は半金属の薄膜に
レーザー光で多数の微小な孔Cビット)を空けて記録し
且つレーず一部で孔の存在を検出することによって記録
を再生する方式のもOと、第2に適轟な材質の記録層の
11両に多数の微小な凹凸を印刷することによって記録
をし且つレーず一部の反射で凹凸の存在を検出すること
によって記録を再生する方式のものとの2つが知られ、
夫々に一長一短がある(テレビシ曹ン学★誌第33巻鯖
9号(+979) 10〜16頁)。Optical recording media are also called "optical desks." This K is
Broadly speaking, first, recording is performed by making a large number of minute holes (Cbit) in a thin film of a metal or semimetal with a low melting point using a laser beam, and then detecting the presence of holes in a part of the film using a laser beam. The second method is to record by printing a large number of minute irregularities on the recording layer made of a suitable material, and detect the presence of irregularities by the reflection of a part of the laser beam. There are two known methods:
Each has its advantages and disadvantages (Television Science Society★ Magazine, Vol. 33, No. 9 (+979), pp. 10-16).
孔形fi、による記録をする形の光記録媒体においては
、PMMム(lリメテル・メメクリレート)勢のプラス
チック又社ガラスの1&板上に、T・t isi。In the case of an optical recording medium in which recording is performed using a hole-shaped fi, T-t isi is placed on a PMM-based plastic or glass plate.
In、8n、8e、Zn、Pb、 119丁・ −ム
―、 T@ −fle 等の低融点の金属又は半金
属の薄膜を記録層として形成させて(N着、等によ〉)
なる方力O%Oが知られている。この方式では、記録は
レーザー党O照射によシ鋏薄膜の一部を融解又は曹発(
又紘昇#k)させて孔を彫威させることによシ行い且り
記録の再生線孔が形成した部分ではレーザー光を反射せ
ず且つ孔がない部分てはレーず一部を反射するので、光
の反射強度の差を検出するととKよシ行う(いわゆるフ
ィリップス方式)。こO方式の主な問題点社、記一層の
構成物質の熔解又社曹発によシ孔を形成する関係上、記
録層がレーず一部に対して大きい吸収車をもち且つ低い
熱伝導車をもつこと、これによりレーザー光て昇温し1
〈孔の形成が容1である性璽をtつこと(記録感直か嵐
いこと)を必要とし、その反面、記録の読み出しく再生
)のためには、孔がない部分のレーザー光反射率が大き
い性質をもつこと(再生コントラストが大きいこと)を
必要とするが、これらの要求される性質性互いに基本的
に矛盾していることに在る。従って、一般的には、半導
体レーザー光の波長である5100 am附近の光に対
して、吸収車が60暢1度、反射率が40憾程度である
特性をもつ記録層を用いることで妥Sか計られている。A thin film of a metal or semimetal with a low melting point such as In, 8n, 8e, Zn, Pb, 119-mu, T@-fle, etc. is formed as a recording layer (by N deposition, etc.)
It is known that the force O%O becomes. In this method, the recording is done by melting a part of the thin film with laser beams or by irradiating it with a laser beam.
This is done by engraving a hole in the recording medium, and the part where the recording playback hole is formed does not reflect the laser beam, and the part without a hole reflects a portion of the laser beam. Therefore, a method is used to detect the difference in the reflected light intensity (the so-called Phillips method). The main problem with this method is that the recording layer does not lie and has a large absorption wheel for some parts, and low heat conduction due to the formation of pores due to the melting and oxidation of the constituent materials of the recording layer. Having a car causes the laser light to emit heat and increase the temperature.
(Formation of holes requires the formation of a special seal (recording sensitivity), but on the other hand, in order to read and reproduce records), it is necessary to use a laser beam reflection in the part where there are no holes. However, these required properties are fundamentally contradictory to each other. Therefore, in general, it is reasonable to use a recording layer with characteristics such as an absorption wheel of 60 degrees and a reflectance of about 40 degrees for light around 5100 am, which is the wavelength of semiconductor laser light. It is being measured.
%に半導体レーザーを用いる揚台KFi、未だ高出力の
ものが開発されていない0て、記一時においては、記録
層の徴収車がよシ大きいことか軽重しく、ま九、その反
面、再生時KFi記鍮記号部分射率が大きいことが好ま
しい。再生時の信号/1/s音比(SA比)は反射率に
依存するからである。% KFi, which uses a semiconductor laser for high output, has not yet been developed, and at the time of writing, the collection vehicle for the recording layer was relatively large and light and heavy; however, on the other hand, during playback. It is preferable that the KFi brass symbol partial emissivity is large. This is because the signal/1/s sound ratio (SA ratio) during reproduction depends on the reflectance.
前記の低融点の金属又は半金属の薄膜よシなる記録層を
、記録層に比べて、レーザー光に対して大きい反射率を
示す金属例えばU等の金属の反射性薄膜と積層させ、こ
のような積層膜を基体上に支持させてなる第2の方式O
ものも知られている。The recording layer, which is a thin film of a metal or metalloid having a low melting point, is laminated with a reflective thin film of a metal such as U, which exhibits a higher reflectance to laser light than the recording layer, and A second method O in which a laminated film is supported on a substrate
Things are also known.
この方式では、記録は、前述0J11+の方式とri4
Ilに、レーザー光の照射Kiシ記―層に孔を形成畜ゼ
ることKよシ記録を行い、オ友記SO再生は記録層に孔
が形成した部分で社、反射性薄膜が露出して反射率が大
きくなってS?り且つ孔が&−薄部分は、反射率が相対
的に小さいので、このことを利用し、光の反射強度O差
を検出して行う、この第2の方式で4、記録層はレーず
観光に対して徴収車が出来るだ社高く且つ熱伝導本が低
−ことが記録感度の向上の点で軽重しい。In this method, recording is performed using the above-mentioned 0J11+ method and ri4
Recording is performed by irradiating the laser beam with the laser to form holes in the recording layer, and during SO playback, the reflective thin film is exposed at the portion where the holes are formed in the recording layer. The reflectance increases and S? Since the reflectance is relatively small in areas with large holes and thin areas, this second method uses this fact to detect the difference in light reflection intensity. The fact that collection vehicles are expensive for sightseeing and their thermal conductivity is low is important in terms of improving recording sensitivity.
本発明者祉、孔形成による記録方式O党Ie鍮媒体にお
ける前記の欠点を解消する九めに、記録感度、再生感度
、記録保奔性が従来OもOよ)向上され良記録層を縛発
ナベ<m意研究しえ。この大めに扛、未記録状■て紘、
レーず観光に対してC歌収車が90憾以上となし得る(
し九がって反射率が1096以下となし得る)もので、
しかも低出力のレーず観光で記録部O形威を遺戒て1且
っ記録部が少なくとも3G参程度の反射率て光を反射で
きて記録部をレーザー光で読み出し得る記録層をlI現
させることか少なくとも必要であると知見し九。The present inventor aims to solve the above-mentioned drawbacks of recording media using hole formation by improving the recording sensitivity, reproduction sensitivity, and recording durability (compared to the conventional method), which limits the quality of the recording layer. Hatsunabe<m will research. This large attack, unrecorded state ■tehiro,
It is possible that there will be more than 90 C song trucks for racing sightseeing (
Therefore, the reflectance can be set to 1096 or less),
Moreover, in order to avoid the O-type recording part due to low-output laser sightseeing, the recording part has a recording layer that can reflect light with a reflectance of at least 3G and can be read out with a laser beam. I have found that this is at least necessary.
先に1本発明者は、超微粒子OI集体(aggr−・g
at@g ) が一般には、光に対して非常に良い黒
体である事実にヒントを得て、レーザー光の照射て熔解
又は蒸発できる程度の低融点の金属又は半金属の超微粒
子の凝集体よシなる薄膜、すなわち前記の低融点金属又
轄半金属の超微粒子が電子順徽鏡て鯛察できる程度の小
さい、多数の空隙を伴って凝集し九構造をもつ薄膜を作
成し、これを光記録媒体O記録層として利用することを
着想した。Firstly, the present inventor has developed an ultrafine particle OI aggregate (aggr-・g
Inspired by the fact that at@g ) is generally a black body that is very good against light, it is an aggregate of ultrafine particles of a metal or metalloid that has a low melting point that can be melted or evaporated by irradiation with laser light. A good thin film, that is, a thin film with a structure in which the ultrafine particles of the above-mentioned low melting point metal or metalloid are aggregated with a large number of voids so small that they can be seen with an electron microscope, is created. The idea was to use it as the recording layer of an optical recording medium.
そして種々の実験を行つ九結果、そのような薄膜が所期
の目的に極めて良く適することを認めた。After carrying out various experiments, it was found that such a thin film was extremely suitable for the intended purpose.
そして、そのような低融点金属又は半金属の超微粒子の
集合体よシなる薄膜であって、600〜1001000
n波長のレーダー光について6o−以上のll収皐を示
す超微粒子薄膜が光記録層として良く実用できることを
Ji1ML九。and a thin film consisting of an aggregate of such ultrafine particles of a low melting point metal or metalloid, with a particle size of 600 to 1001000.
Ji1ML9 has shown that an ultrafine particle thin film exhibiting a ll convergence of 6o or more for n-wavelength radar light can be put to practical use as an optical recording layer.
従って、本発明者は、本出願人の出願に係る轡願昭56
−172021、発明の名称[光記録媒匍、昭和56年
10月29日出11a)において、ル−ザー光を用いて
記録、記録O再生を行う光記録媒体において、レーず観
光の照射て熔融又は蒸発できる金馬又轄半金属OS黴粒
子が電子朧微鏡で観察てきる程度の小さ−、多数の空隙
を伴って凝集した構造をもつ薄膜であって600〜10
00 amの波長のレーザー光にりいて60−以上の徴
収車を示す金属又は雫金属O薄膜な記録層として有する
ことを特徴とする光記録媒体」
を提案した。この光記録媒体は、基板上に、又は基板に
支持された反射性金属膜上に金属又は半金属の超微粒子
が凝集しえ構造をもつ薄膜よ〉をゐ上記O記録層が設置
されである形の光記録媒体とすることができ、記録用し
−ず観光O黒射て記録層の断面金体にわえりて、基板又
は金属反射111に到するまで膜を貫通し丸穴、すなわ
ち孔C&#ット)を記録部として形成する方式のもので
ある。Therefore, the present inventor has submitted the application filed by the present applicant in 1986.
-172021, the title of the invention [Optical Recording Medium, October 29, 1981, 11a), describes an optical recording medium that performs recording, recording and reproducing using loser light, which melts when exposed to laser sightseeing irradiation. Or, it is a thin film with a structure in which evaporable semimetallic OS mold particles are so small that they can be observed with an electronic hazy microscope, and have a structure in which they aggregate with a large number of voids.
The present invention has proposed an optical recording medium characterized by having a recording layer made of a thin film of metal or drop metal O, which exhibits a particle size of 60 or more when exposed to a laser beam with a wavelength of 0.00 am. In this optical recording medium, the above-mentioned O recording layer is provided on a substrate or on a reflective metal film supported by a substrate, and is a thin film having a structure in which ultrafine metal or semimetal particles are aggregated. In addition to the cross-section of the recording layer, the recording layer has a circular hole, that is, a hole, which penetrates the film until it reaches the substrate or metal reflection 111. This is a system in which a recording section (C&#t) is formed as a recording section.
本発明者は更に研究を進めた。その結果、前記のような
低融点の金属又社半金属の超微粒子凝集体よシなる薄膜
を記録層として利用するのではなく、レーず観光の照射
では熔解しない程度の鳥い融点をもつ金属又社牛金属の
超微粒子の凝集体よになる落馬をレーザー光の吸収層と
して用い、しかもこれを成る大きさの膜厚の層として、
低融点金属又Fi苧金属製$alO上に積層させてなる
光記録媒体を作った場合に、記録用レーザー光の照射を
受けた低融点金属又扛半金属薄膜の部分のみか熔解し、
仁の際に生じた熔解金属がその部分に隣接した高融点金
属又は半金属超微粒子凝集体薄膜の部分に浸透の過大し
、そ仁で超微粒子を包み込み、あるいは含金化して、金
属光沢を帯ひた密実な組織をもつようになり且つその部
分の表面か高い光反射率を呈する状態にな夛得ることを
知見した。このような反射率が向上された部分が形成さ
れ友前記の薄gtz、その(記録)S分と、レーザー照
射を受けて無い未記録部分とで蝶、レーザー光に対する
反射率の差か着るしいので、記録再生の感度か秀れてい
る。The inventor further conducted research. As a result, instead of using a thin film made of ultrafine particle aggregates of metals or metalloids with low melting points as described above as the recording layer, metals with high melting points that do not melt under laser sightseeing irradiation are used. In addition, we used the fallen horse, which is an aggregate of ultra-fine particles of company metal, as a laser light absorption layer, and made it into a layer of the same size and thickness.
When an optical recording medium is produced by laminating a layer on a low melting point metal or filament metal, only the portion of the low melting point metal or semimetal thin film that is irradiated with the recording laser beam melts,
The molten metal generated during graining penetrates into the adjacent high-melting-point metal or metalloid ultrafine particle aggregate thin film, and the grains enclose or metalize the ultrafine particles, resulting in metallic luster. It has been found that the banding becomes dense and has a dense structure, and the surface of the band can become highly reflective. This kind of area with improved reflectance is formed, and the difference in reflectance to the laser beam can be seen between the (recorded) S part and the unrecorded part that has not been irradiated with the laser. Therefore, the sensitivity of recording and playback is excellent.
従って、本発明の要旨とするところは、レーザ−光を用
いて記録、6生を行う光記録媒体において、この記録媒
体は、レーザー光の照射で熔融できる低融点の金属又は
半金属の薄膜の上に、レーザー光の照射で熔融しない程
度の高い融点をもつ金属又は半金属の超微粒子か電子顕
微鏡で観察できる程度の小さい多数の空隙を伴って凝集
した構造をもつ薄膜であって600〜1000 mmの
波長のレーザー光について604以上の吸収率を示す金
属又は半金属の超微粒子の凝集体の薄膜を積層して成り
、しかもこの超微粒子凝集体の薄膜は、記録用レーザー
光の照射で隣接する低融点金属又は半金属の薄膜が熔解
した際に生ずる熔解金属の浸透を受けて光反射性の向上
した記録部を形成できる大きさの膜厚を有することを特
徴とする、光記―媒体にある。Therefore, the gist of the present invention is to provide an optical recording medium that performs recording and recording using a laser beam, which is made of a thin film of a metal or semimetal with a low melting point that can be melted by irradiation with the laser beam. It is a thin film having a structure in which ultrafine particles of a metal or metalloid having a melting point high enough to not melt when irradiated with a laser beam or aggregated with a large number of voids small enough to be observed with an electron microscope are formed. It is made by laminating thin films of aggregates of ultrafine particles of metals or metalloid metals that exhibit an absorption rate of 604 or more for laser light with a wavelength of mm, and this thin film of aggregates of ultrafine particles can be adjacent to each other by irradiation with recording laser light. An optical recording medium characterized by having a film thickness large enough to form a recording portion with improved light reflectivity through penetration of molten metal that is generated when a thin film of a low melting point metal or semimetal is melted. It is in.
本発明にシ・いて超微粒子凝集体薄膜の材料としてtゴ
、レーザー光照射で熔解すべき隣w!O低融点金−又は
半金属薄膜で用いられた低融点の金属又は半金属よりも
高い融点をもつIIl類の金属又は半金属が用いられる
。例えに、超微粒子凝集体O材料にはIn、 Au、
Sn、 Zn、 To、 Se、 Bi、 Zn、 t
’b。In the present invention, as a material for a thin film of ultrafine particle aggregates, it should be melted by laser light irradiation! A metal or metalloid of Class III is used which has a higher melting point than the low melting point metal or metalloid used in the low melting point gold or metalloid film. For example, the ultrafine particle aggregate O material contains In, Au,
Sn, Zn, To, Se, Bi, Zn, t
'b.
Bi、 Ag、 Ni、 k’e、 Co、 %i
n、 At、 Sit ML Tit cr。Bi, Ag, Ni, k'e, Co, %i
n, At, Sit ML Tit cr.
Cu、 Pd 等が用い得る。ここで用いられる金属
又は半金属超微粒子凝集体薄膜は、記録時のレーザー光
を吸収して加熱され、裏面にある低融点金属層を融解す
るためのものであるから、自分自身が低融点である必要
はなく、レーザー光の吸収率が大きいこと、基板との密
着性か良いこと、酸化等の経時変化か少なく安定である
こと等が型費である。′11n厚は、余シ厚いと低融点
層への熱伝導が小さくなシ、しかも表面への低融点金属
浸透も困難になってくるので、この点では薄い程良い。Cu, Pd, etc. can be used. The metal or metalloid ultrafine particle aggregate thin film used here absorbs laser light during recording and is heated to melt the low melting point metal layer on the back surface, so it itself has a low melting point. There is no need for it, and mold costs include having a high absorption rate of laser light, good adhesion to the substrate, and being stable with little change over time such as oxidation. If the thickness is too thick, the heat conduction to the low melting point layer will be small, and it will also be difficult for the low melting point metal to penetrate into the surface, so the thinner the layer is, the better.
しかし余シ薄いと充分な黒度が得られず、裏面の低融点
金属層の反射の効果が出てくるので、好ましいa厚は1
00〜5001程度である。超微粒子は直径100〜3
00A%に100〜200 Aの範囲のものであるのが
良く、本発明における金属超微粒子凝集体の層を電子顕
微鏡で見ると、このような大きさの超微粒子がはV同じ
大きさの空隙(voids )を多数、介在させながら
互に連結して凝集している状恕ρ・観察ちれる。この薄
膜の羊位体積轟シに、超微粒子か占める合計体積の割合
、すなわち充填車は、記録層断面を電子顕微鏡で観察し
て算出でき、その充填aCは90憾以下、好ましくはI
Q〜90優、叫に30〜80憾であるのが好ましい。However, if the thickness is too thin, sufficient blackness cannot be obtained, and the reflection effect of the low melting point metal layer on the back side will appear, so the preferred thickness is 1.
It is about 00 to 5001. Ultrafine particles have a diameter of 100 to 3
00 A% is preferably in the range of 100 to 200 A, and when the layer of the ultrafine metal particle aggregate in the present invention is viewed under an electron microscope, the ultrafine particles of such a size have V voids of the same size. It is observed that a large number of (voids) are interconnected and aggregated while intervening. The proportion of the total volume occupied by ultrafine particles in the thin film's volumetric capacity, that is, the filling wheel, can be calculated by observing the cross section of the recording layer with an electron microscope, and the filling aC is 90 or less, preferably I
It is preferable that the score is Q to 90 excellent, and the shout is 30 to 80 poor.
膿がsm性金属の超微粒子よ)威る場合には、膜の飽和
磁化の値を測定し、これを当該金属の完全tc fB実
(5olid )な(すなわち内部空Hが実質的に無い
)l!II−膜厚の膜の飽和磁化の値と比較することに
よっても膜の充填車を測定できる。超微粒子の充填a[
Fi、余シ高いと、低融点金属の浸透を受けることが阻
害され、余シ低いと膜の強度が小さくな多、また密着性
′も悪くなる。まえ?(1以上eCなると、黒度が低下
してきて金属光沢をおびてくるようになる。し九かつて
、充填車は好ましくは40〜go憾の範囲である。If the pus is present (such as ultrafine particles of SM metal), measure the saturation magnetization value of the film, and calculate this value from the metal's complete tc fB solid state (i.e., there is virtually no internal space H). l! The filling wheel of a film can also be determined by comparing it with the value of the saturation magnetization of a film of II-thickness. Filling of ultrafine particles a [
If the thickness is too high, penetration of low melting point metals will be inhibited, and if the thickness is low, the strength of the film will be low and the adhesion will also be poor. front? (If the eC is 1 or more, the blackness will decrease and a metallic luster will appear.) However, the filling car is preferably in the range of 40 to 50%.
本発明における金属超微粒子凝集体薄111には、0■
視光の吸収率が非常に高<、qo*以上の値を示すもの
がある。これらの薄膜は、直径数百裏OMi微粒子が、
充填車30〜90−程度で凝集して層状になっているも
ので、光の散乱+ノラズモンの吸収等によシ吸収本か高
くなっていると考λられる。このような金−超償粒子I
RjIIk体薄躾は、元吸収本か高いうえに、普通の金
kl&薄膜にくらべて熱伝導車か小さいという利点もあ
る。The ultrafine metal particle aggregate thin layer 111 of the present invention contains 0.
There are some materials whose visual light absorption rate is extremely high, exceeding qo*. These thin films are composed of OMi particles with a diameter of several hundred
It is thought that the filling cars are aggregated and layered at about 30 to 90 mm, and the absorption rate is high due to light scattering + absorption of norasmon. Such a gold-supercompensatory particle I
RjIIk body thinning is not only expensive but also has the advantage of having a smaller heat conduction vehicle than ordinary gold kl and thin film.
本発明の光記録媒体における低融点金属又は手金lI4
薄膜に必要な特性としてはレーザー光照射で熔解できる
程度に融点が低いこと、反射本が高いこと、超微粒子凝
集体薄膜との濡れ性がよく該薄膜の表面に浸透しやすい
こと、経時変化が少く安定であること郷である。好まし
い金属として祉In、 8n、 Pb、 Zn、 Bi
、 8b、 T@、 8@ 勢であシ、超微粒子凝集体
薄膜の構成材料とJ!楡の低融点金属又は半金属が選択
される。そのIIIJIiは、500〜2000 Aが
好ましく、膜厚が厚すぎると熱容量が大きくなるので、
記録に必要なレーザー/譬ワーが大きくなってしまう。Low melting point metal or metal lI4 in the optical recording medium of the present invention
The properties required for a thin film include a low melting point that can be melted by laser beam irradiation, high reflective properties, good wettability with the thin film of ultrafine particle aggregates, and easy penetration into the surface of the thin film, and resistance to changes over time. It is a town that is less stable. Preferred metals include In, 8n, Pb, Zn, Bi
, 8b, T@, 8@ Seedashi, constituent materials of ultrafine particle aggregate thin film and J! Elm low melting point metals or metalloids are selected. The IIIJIi is preferably 500 to 2000 A, and if the film is too thick, the heat capacity will increase.
The laser/measuring power required for recording becomes large.
また、余り薄い場合にL、隣接層の表面に充分浸透でき
ないので、反射本の向上が得られない。膜の形成には、
一般的なPVD技術を用いれば艮(、jl!蒸着、ス/
ヤツタリング、イオンル−ディング等を用いることがで
きる。Furthermore, if it is too thin, it will not be able to penetrate sufficiently into the surface of the adjacent layer, making it impossible to improve the reflection. For film formation,
If general PVD technology is used,
Yattering, ion rolling, etc. can be used.
たたし、嗅形成中に、基板温度が上昇することを場()
る必賛かある。However, during olfactory formation, the substrate temperature increases ().
It's a must-have.
不発ψjの光記録媒体においては、比較的融点の高い金
−又は半金属の超微粒子の凝集体よシなる薄膜層を基体
上に直接に設け、さらKその上に、レーザー照射で熔解
すべき低融点金属の薄膜を積層することができる。この
場合の本発明の光記録媒体は、基板mからレーザー光照
射で反射率を向上きれた記録部を形成することが出来、
まえ記録の再生は読み取シレーザー光を基板側から照射
し、記録部匍で反射したレーザー光束を検出することに
よつ゛〔行い得る。In a non-exploding optical recording medium, a thin film layer made of aggregates of ultrafine particles of gold or semimetal having a relatively high melting point is provided directly on the substrate, and then a layer of K is melted by laser irradiation. Thin films of low melting point metals can be laminated. In this case, the optical recording medium of the present invention can form a recording portion with improved reflectance by laser beam irradiation from the substrate m,
The reproduction of the recorded information can be performed by emitting a reading laser beam from the substrate side and detecting the laser beam reflected by the recording section.
更に、本発明の光記録媒体においては、基板に支持され
た低融点金属又は半金属の薄膜の上に、比較的融点の高
い金属又は半金属の超微粒子凝集体よシなる薄層を積層
することができる。この場合をよ、基板と反対側からレ
ーザーを照射して、記録、再生を行う。そして、記録媒
体が基板で覆われてない方の細面KF’!、a羽で低い
熱伝導率の物智、例えはシリカ又はシリコーンコムより
なり且つ膜厚が100μm程度である表向保腫膜を設け
ることも出来る。Furthermore, in the optical recording medium of the present invention, a thin layer of ultrafine particle aggregates of a metal or metalloid having a relatively high melting point is laminated on a thin film of a low melting point metal or metalloid supported by a substrate. be able to. In this case, recording and playback are performed by irradiating the laser from the side opposite to the substrate. And the narrow side KF' where the recording medium is not covered with the substrate! It is also possible to provide a surface-facing membrane made of a material having low thermal conductivity, such as silica or silicone comb, and having a thickness of about 100 μm.
本発明における金属又は半金属の超微粒子の凝集体の薄
膜層は、従来公知の蒸着技術、イオンデレーティング技
術、スノ譬ツメリング技術、プラズマ・デ?ゾション法
、等を利用して基体上に形成させることができる。例え
ば、金−の蒸着速度、蒸着装置の真空度、蒸着時間、轡
の種々な操作条件の/帯うメーターを加減することによ
って、形成される超微粒子の直径、充填率、膜厚、膜の
光徴収車、等を調整できる。In the present invention, the thin film layer of aggregates of ultrafine metal or metalloid particles can be formed using conventionally known vapor deposition techniques, ion derating techniques, snow-melting techniques, plasma deposition techniques, etc. It can be formed on a substrate using a zonation method or the like. For example, by adjusting the gold evaporation rate, the degree of vacuum of the evaporation equipment, the evaporation time, and the various operating conditions such as Light collection vehicles, etc. can be adjusted.
特に、10トール以下の範囲の真空中に保持されたガラ
ス又はPMMA轡のfニアステック基板の上に、この基
板表面に対して斜めの方向から超微粒子凝集体薄膜を形
成するに用いられる金属又は半金属の蒸気の流れを当て
て蒸着させる方法(以下、斜め蒸着法ともいう)によっ
て造膜するか、着しくはアルゴン、ヘリウム、窒素ガス
勢の不反応性ガスを10 〜10トールの低圧で充満さ
せた嵐号:&ム内ft、保持きれた基板の上に、慣用の
蒸着法、イオンデレーティング法、スパッタリング法、
あるいLプラズマデIジション法で金属又は半金属を造
膜させる場合には、可視光について9011以上の畠い
吸収率と10〜80−の充填車とを示す金属又は半金属
超微粒子凝集体よ〉なる薄膜を形成できる。In particular, the metal or The film is formed by a method of vapor deposition by directing a flow of metalloid vapor (hereinafter also referred to as oblique vapor deposition method), or alternatively, by applying a non-reactive gas such as argon, helium, or nitrogen gas at a low pressure of 10 to 10 torr. Filled Arashi: ft inside the room, on top of the held substrate, conventional evaporation method, ion derating method, sputtering method,
Alternatively, when forming a film of a metal or metalloid using the L plasma deposition method, an aggregate of ultrafine metal or metalloid particles exhibiting a visible light absorption rate of 9011 or higher and a filling wheel of 10 to 80. 〉 thin film can be formed.
従って、給2の本発明においては、レーず観光に透明な
基板上に、該基板の表面に斜めの方向から、レーザー光
の照射では熔融しない1炭の高い融点をもつ金属又は半
金属の蒸気を当てて、真空蒸着操作を行い、これによシ
、前記の金属叉は半金輛の超微粒子か電子顕微鏡で観察
できる程度の小さい、多数の空腹を伴って凝集した構造
をもつ#膜であって600〜1000 umの波長のレ
ーザー光について604以上の吸収率を示す金属又は半
金属の超微粒子の凝集体の薄膜を100〜5001の範
囲の膜厚の層として形成させ、次いでその上にレーザー
光の照射で熔解できる低融点の金属又扛牛舎纏の蒸着膜
を常法で形成させることを特徴とする、光記録媒体の製
造法全提供する。Therefore, in the second aspect of the present invention, vapor of a metal or metalloid having a high melting point of charcoal, which does not melt when irradiated with laser light, is applied to the surface of the substrate from an oblique direction on a substrate that is transparent to laser viewing. A vacuum evaporation operation is carried out by applying a vacuum evaporation operation to the above-mentioned ultrafine metal or semi-metallic particles, which are small enough to be observed with an electron microscope, and have a structure of agglomeration with a large number of empty particles. A thin film of an aggregate of ultrafine metal or metalloid particles exhibiting an absorption rate of 604 or more for laser light with a wavelength of 600 to 1000 um is formed as a layer with a thickness in the range of 100 to 500 μm, and then To provide a complete method for manufacturing an optical recording medium, which is characterized in that a vapor-deposited film of a low-melting point metal or a metal coat that can be melted by laser light irradiation is formed by a conventional method.
また、#30本発明においては、10 〜101−ルの
低圧の不活性ガスの喜囲気内に保持された基板上に、レ
ーザー光の照射で#i熔解しない一度の高い融点をもつ
金属又は半金属のlI膜を蒸flr法、イオンデレーテ
ィング法、スパッタリング法、あるいはデ2ズマデポジ
ション法によ多形成させる。#30 In the present invention, metals or semi-metals with a high melting point that do not melt when irradiated with laser light are placed on a substrate held in a low-pressure inert gas atmosphere of 10 to 101-bar. A large number of metal lI films are formed by a vaporization FLR method, an ion derating method, a sputtering method, or a desputter deposition method.
造膜操作を行い、これによシ、前記(i)金属又扛牛金
属の超微粒子が電子顕微鏡で観察できる程度の小さい、
多数の空隙を伴って凝集した構造をもつ薄膜であって、
600〜1000 nmの波長のレーザー光について6
0憾以上の吸収率を示す金属又は半金属の超微粒子の凝
集体の薄−躾を100〜500xの範囲O膜厚の層とし
て形成させ、次いで、その上に、レーザー光の照射で熔
解できる低融点の金属又は半41XSO薄膜を常法の蒸
着で形成さゼることを特徴とする光記録媒体O製造法も
提供する。A film-forming operation is carried out, whereby (i) the ultrafine particles of the metal or powdered metal are so small that they can be observed with an electron microscope;
A thin film with a cohesive structure with many voids,
Regarding laser light with a wavelength of 600 to 1000 nm6
A thin layer of ultrafine aggregates of metal or metalloid particles exhibiting an absorption rate of 0 or more is formed as a layer with a thickness in the range of 100 to 500x, and then melted by irradiation with laser light. A method for producing an optical recording medium O is also provided, characterized in that a low melting point metal or semi-41XSO thin film is formed by conventional vapor deposition.
次に図面について、本発明の光記録媒体の柚々な形式を
説明する。Next, various forms of the optical recording medium of the present invention will be explained with reference to the drawings.
第1図は、ガラス又はPMMA尋の耐熱グ2スチツクの
基板1の上に、蒸着、等の適当な手段で十分な114
L’SにlhM&きれ九比較的融点の高い金属又は牛舎
輌超微粒子2の凝集体よシなる薄膜墨が記録層として設
置され、さらにこの上に、低融点金属又は半金属の密実
な薄1!4か積層されである形式の本発明の光記録媒体
にレーザー照射で記録した研の状態を図解的に示す。低
融点金属薄膜層の表向には保護膜7が設けである。この
図示の光記録媒体については記録時にレーザー光を基板
10側かC)低融点金属薄膜4にレーザー光の焦点を集
めで照射することによって、薄l114内の部分SKお
ける金輌は熔解し、熔解金属の少くとも一部は薄膜3内
の粒子間隙に浸透し、その部分で表面反射gが高くなっ
た記録部6を形成した状態を示す。FIG. 1 shows that a sufficient amount of 114.
A thin film ink made of a metal with a relatively high melting point or an agglomerate of ultrafine particles 2 is placed on the L'S as a recording layer, and on top of this, a dense thin film of a metal with a low melting point or a semimetal is placed. 1 and 2 schematically show the state of recording by laser irradiation on the optical recording medium of the present invention, which has a 1!4 layered structure. A protective film 7 is provided on the surface of the low melting point metal thin film layer. Regarding the illustrated optical recording medium, during recording, the laser beam is focused on the substrate 10 side or C) the low melting point metal thin film 4, and the gold in the portion SK in the thin layer 114 is melted. This shows a state in which at least a portion of the molten metal penetrates into the interparticle gaps in the thin film 3, forming a recording portion 6 in which the surface reflection g becomes high.
記録の再生(読み*カ)は、読み攻如し−ず−が基&1
の細から照射され、記録部6の金属光沢のめる反射性の
高くなった表no 6’で反射され友レーザー光束を検
出することにより行われる。The playback of the recording (reading *ka) is based on the reading comprehension and 1
This is done by detecting a laser beam that is irradiated from a narrow part of the recording section 6 and reflected by the highly reflective surface 6' of the recording section 6.
次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.
実施例1
本発明による光記録媒体を第2図に図解的にがす蒸着装
置を用いて製造した。Example 1 An optical recording medium according to the present invention was manufactured using a vapor deposition apparatus shown schematically in FIG.
この蒸着装置は真空容器9の底面9′に蒸着すべき金属
の熔融金属プール10が設けられ、また排気口11に接
続した排気4ンデの作動により@器9の内部を10 〜
10トールの高真空にすることができる。蒸着すべき金
属の超微粒子凝集体の薄膜を設ける基板1i基板ホルダ
ー8に固定され、蒸着を受ける面は、熔融金属プールか
ら上昇する金属蒸気の流れの方向に対して斜めの方向に
配置される。この基板は基板ホルダーの軸8′を中心に
1分間当シPc2〜3回回転させられ、蒸着膜の厚さが
基板!1重合体にわたって均一になシ且つ1術表面に蒸
着した金属が密実な薄膜にならずに超微粒子の凝集体O
ll膜になるようにされる。In this vapor deposition apparatus, a molten metal pool 10 of the metal to be vaporized is provided on the bottom surface 9' of a vacuum vessel 9, and the inside of the vessel 9 is heated by the operation of an exhaust gas connected to an exhaust port 11.
A high vacuum of 10 torr can be achieved. A substrate 1i on which a thin film of ultrafine particle aggregates of the metal to be deposited is fixed to a substrate holder 8, and the surface receiving the deposition is arranged in a direction oblique to the flow direction of the metal vapor rising from the molten metal pool. . This substrate is rotated about the shaft 8' of the substrate holder 2 to 3 times per minute for 1 minute, so that the thickness of the deposited film is equal to that of the substrate! The metal is uniformly deposited over one polymer, and the metal deposited on the surface does not form a dense thin film, forming an aggregate of ultrafine particles.
ll film.
本例では、基板表1iIK対して金属蒸気が当る入射角
は80°とした。容器9内の真空度t−2810−’ト
ール以下にして、ニッケル金甑を熔融したゾール10か
らニッケル0・2t/分の速度でニッケルムシ(をP
M &I A基板(厚さ121)に蒸着させて膜厚30
0Aのニッケル斜めin膜を形成させ、次に基板駅間を
金属蒸気流の方向と直角になるようにホルダーの位置を
直してから、さらKこの膜の上に通常の蒸着法でインジ
ウムを密集な層として500Aの膜厚に造膜し、さらに
−9塩化1’=ル保睡膜を塗着して光記録デスクを作成
した。上記のニッケル斜め蒸着膜の断面を電子顕黴鋺(
10万倍拡大)で観察すると%i1.1i200〜30
0ムのニッケル金属の超微粒子が多数の微細な空隙を伴
って#果している構造をもつことが認められた。このニ
ッケル斜め蒸着膜の表W+は黒く見えその吸収率は、6
00〜1000 nmの波長のレーザー光については9
1%であ#)(反射率9g6)、これK 1130腺の
波長のレーザーを出す出力15−の半導体レーザーを照
射すると、金属光沢のある平均直径1紐の配録部がニッ
ケル斜め蒸着層に形成されえ。In this example, the incident angle at which the metal vapor hits the substrate surface 1iIK was 80°. The degree of vacuum in the container 9 is set to below t-2810-' Torr, and nickel powder (nickel powder) is removed from the sol 10 in which the nickel gold powder is melted at a rate of 0.2 t/min.
Deposited on M & I A substrate (thickness 121) to a film thickness of 30
Form a nickel diagonal in-line film of 0A, then adjust the position of the holder so that the space between the substrate stations is perpendicular to the direction of metal vapor flow, and then deposit indium densely on top of this film using a normal evaporation method. An optical recording disk was prepared by forming a film with a thickness of 500 Å and further applying a -9 1'=L chloride retentive film. The cross section of the above obliquely evaporated nickel film was examined using an electron microscope (
%i1.1i200-30 when observed under 100,000 times magnification)
It was found that the structure consisted of ultrafine nickel metal particles with a large number of fine voids. The surface W+ of this obliquely evaporated nickel film appears black and its absorption rate is 6.
9 for laser light with a wavelength of 00 to 1000 nm
When irradiated with a semiconductor laser with an output of 15 - that emits a laser with a wavelength of K 1130 (reflectance of 9g6), the distribution part with a metallic luster and an average diameter of 1 string becomes a diagonal nickel vapor deposited layer. May be formed.
この記録部で反射される読み堆シレーザー党(Wl!!
に830 nm ) の反射率は約40−てあシ、反
射率の差圧より記録部が明確に検出できた。The reading section Shiraser party reflected in this recording section (Wl!!
The reflectance at 830 nm) was about 40 mm, and the recording portion could be clearly detected from the difference in reflectance.
実施例2
本発明による光記録媒体を第3図に図解的に示す蒸着装
置を用いて製造し友。Example 2 An optical recording medium according to the present invention was manufactured using a vapor deposition apparatus schematically shown in FIG.
この蒸着装置は真空容器9の底拘9′に蒸着すべき金属
の熔融金属プール10が設けられ、箇た排気口11に接
続した排気ポンプの作動によ#)容器9の内部を10〜
10トールの真空にすることができゐ。この装置には、
アルゴン、等の不活性ガスを出入させ得る導管12が設
置られ、真空8器9内に10 〜10トールの低圧の不
活性ガスW囲気を作ることか出来るようになっている。In this vapor deposition apparatus, a molten metal pool 10 of the metal to be vaporized is provided in the bottom 9' of a vacuum container 9, and the inside of the container 9 is heated from 10 to
It can create a vacuum of 10 torr. This device has
A conduit 12 through which an inert gas such as argon can enter and exit is installed, making it possible to create an inert gas W atmosphere at a low pressure of 10 to 10 Torr within the vacuum chamber 9.
さらに、基板ホル/−8′と、蒸着すべき金属の溶融金
ll4f−ル10との間には、網板状又は格子状、勢の
適当な形態のイオン化電111Mが設けられ、これは外
方の直流電源14に接続される。この亀執に直流電圧を
加えると、ゾール1Gから上昇する金属蒸気が電圧効果
によシイオン化されて、イオンlレーティング技術にょ
シ金属が基板上に蒸着される。Furthermore, an ionizing electric current 111M in an appropriate form, such as a net plate shape or a grid shape, is provided between the substrate hole 8' and the molten metal 114f-hole 10 of the metal to be vapor-deposited. It is connected to the DC power supply 14 on the other side. When a DC voltage is applied to this layer, the metal vapor rising from Sol 1G is ionized by the voltage effect, and the metal is deposited on the substrate using the ion rating technique.
上記の装置において、容器9を完全に排気したftrc
専官12を通してアルゴンガスヲo・1トールの圧力に
まで導入しながら、0・1トールのアルがン雰囲気中で
、PMMム基板上に金(Au) を400ムの厚さに
蒸着する。この時、基板の前mK設置したメツ7ユ状の
電極に一2KVの直流電圧を印加しチクロー放電を発生
させてあシ、イオンデレーティングが行われるようにし
である。基板ホルダーを回転させて均一に蒸着が行われ
るようにし約400Aの金の超微粒子の凝集体の薄膜が
形成され九錘に、通常の蒸着法で5001の厚さにスズ
(Sm)金域を密実な層として重ねて蒸着するととKよ
シ積層構造を形成させた。蒸着後、表面に塩化ビニルの
保@膜を塗布する。この試料の金の超微粒子の凝集体層
表面の分光曲線を測定したところ、600〜1000
nmの波長で杜、吸収率94畳、反射本6僑である。8
30 nm の半導体レーザーで記―し、金属光沢を得
九記1!1部分の反射率を測定し35憾t(上昇した。In the above apparatus, the ftrc with the container 9 completely evacuated
While introducing argon gas to a pressure of 0.1 Torr through a specialist 12, gold (Au) is evaporated to a thickness of 400 μm on the PMM substrate in an argon atmosphere of 0.1 Torr. At this time, a DC voltage of 12 KV was applied to a mesh-shaped electrode placed in front of the substrate to generate a cyclaw discharge, thereby performing ion derating. The substrate holder was rotated to ensure uniform deposition, and a thin film of about 400A of ultrafine gold particle aggregates was formed.A tin (Sm) gold area was deposited on each of the nine spindles to a thickness of 500mm using a normal vapor deposition method. When deposited in dense layers, a laminated structure was formed. After vapor deposition, a protective layer of vinyl chloride is applied to the surface. When the spectral curve of the surface of the aggregate layer of ultrafine gold particles of this sample was measured, it was found that the spectral curve was 600 to 1000.
It has a wavelength of nm, an absorption rate of 94 tatami, and a reflection rate of 6 yen. 8
It was recorded with a 30 nm semiconductor laser, and a metallic luster was obtained.The reflectance of the part 1!
第1図は本発明による光記録媒体の図解断爾閣である。
第2図、第3図は本発明による光記録媒体を製造するに
適する装飯の図解図である。
1・・・・−光記録媒体基板、 2・・・・・金属超
微粒子、5−−−・金属超微粒子凝集体層、 4・・・
−低融点金属層、 5・・・・・低融点金属層の熔解部
、 8・・・・・・基板ホルダー、 9・・・・・・
真空容器、 1゜・−・・IHfすべき熔融金属プー
ル。FIG. 1 is a schematic diagram of an optical recording medium according to the present invention. FIGS. 2 and 3 are illustrative views of equipment suitable for manufacturing the optical recording medium according to the present invention. 1... Optical recording medium substrate, 2... Ultrafine metal particles, 5... Ultrafine metal particle aggregate layer, 4...
- low melting point metal layer, 5... melting part of the low melting point metal layer, 8... substrate holder, 9......
Vacuum container, 1°...IHf molten metal pool.
Claims (1)
おいて、この記録媒体Lル−ザー光の照射で熔融できる
低融点の金属又は半金属の薄膜+ZJ上に、レーザー光
の照射で熔融しない程度の高い融点をもつ金属又は半金
属の超微粒子が電子順像説で観察できる程度の小さい多
数の空隙を伴って凝集した構造をもつ薄膜であって60
0〜+ 000nm の波長のレーザー光について60
qII以上の吸収車を示す金属又は半金属の超微粒子の
凝集体の薄膜を積層して成り、シ〃・もこの超微粒子凝
集体0′)m 展is、記録用レーザー光の照射で隣接
する低融点合一又は半金属の薄膜か熔解した際に生ずる
熔m金属の′M透を受けて光反射性の向上した記録部を
形成できる大きさの膜厚を有することを特徴とする、光
記録媒体。 2、レーザー光に透明な基板上に、金属又は半金属の超
微粒子のに集体の薄膜を設置゛J1 この薄膜の上に更
に低融点の金属又は半金属の薄膜か積場されである特許
請求の範囲第1項に記載の光E鎌媒体。 8、基板に支持された低融点の金属又は牛4を極薄ta
O上に、金属X線半金属の超微粒子の凝集体の薄膜が積
層されである特許請求の範囲第1項に記載の光記録媒体
。 4、上記の低融点の金属又は半金属のm楓の施出弐面に
#i、保賎膜が設けられである特許請求の範囲第2項に
記載の光記録媒体。 6、上記の金属又は牛舎緘の超微粒子の凝集体の薄膜の
単位体積当りに、金属又は牛舎−の超微粒子が占める合
計体積の割合、すなわち充てん率が90qIb以下、好
1しくは10〜90優、特に30〜80憾である製許請
求の範囲第1項に記載の光記録媒体。 66 レーザー光に透明な基板上に、該基板の表地に
斜めの方向から、レーザー光の照射でFi熔融しない程
度の高い融点をもつ金属又は牛金−〇詠気を当てて、真
空蒸着操作を行い、これによ如・前記の金属又は半金属
の超微粒子が電子顕微鏡で観察できる程度の小さい、多
数の空隙を伜って凝集し良榊造を4つ薄膜であって60
G −#000 mの波長のレーザー光にりいて60憾
以上の数版率を示す金属又は半金属の超微粒子O#!築
体O薄膜を100〜500ムの範囲の膜厚の層として形
成させ、次いでその上にレーず一部の照射で熔欝できる
低融点の金属又は半金属011着膜を常法で廖成畜せる
ことを特徴とする、光記録媒体の製造法。 7.10 〜10 )−ルの低圧の不活性ガスO雰囲気
内に保持され九基板上に、レーず一光O肩射では熔解し
ない1度O高い融点をもつ金属X線半金属の薄膜を蒸着
法、イオン!レーテイン!法、スフ中ツタリング法、あ
るいFifツズマデーゾシ画ン法によシ形成させる。造
膜操作を行い、これによシ、前記の金属又紘中金属の超
微粒子が電子顕微鏡でJ1!察できる程度の小さい、多
数O空隙を伜って凝集した構造をもつ薄膜であって、6
00〜11000ILの波長のレーザー光にりiで60
11以上の吸収軍を示す金属又は牛舎塊の超微粒子の凝
集体の薄膜を100〜500Aの範囲の膜厚の層として
形成させ、次いで、その上に、レーザー光の照射で熔解
できる低融点の金属又扛半金属の薄膜を常法の蒸着で形
成させることを特徴とする光記録媒体りm造法。[Scope of Claims] [In an optical recording medium that performs recording and reproduction using a laser beam, a laser beam is formed on a thin film of a low melting point metal or metalloid + ZJ that can be melted by irradiation with laser light. A thin film having a structure in which ultrafine metal or metalloid particles having a high melting point that does not melt when irradiated with light are aggregated with a large number of voids that are small enough to be observed according to the electron image theory.60
60 for laser light with a wavelength of 0 to + 000 nm
It is made by laminating thin films of aggregates of ultrafine particles of metals or metalloid metals exhibiting an absorption wheel of qII or more, and the ultrafine particle aggregates are exposed adjacently by irradiation with recording laser light. An optical film characterized by having a film thickness large enough to form a recording area with improved light reflectivity by receiving the molten metal that is generated when a thin film of a low melting point coalesce or metalloid metal is melted. recoding media. 2. A thin film of an aggregate of ultrafine metal or metalloid particles is placed on a substrate transparent to laser light.J1 A patent claim in which a thin film of a metal or metalloid with a low melting point is deposited on top of this thin film. The optical E-sickle medium according to item 1. 8. A low melting point metal supported by a substrate or an ultra-thin ta
2. The optical recording medium according to claim 1, wherein a thin film of aggregates of ultrafine particles of a metal X-ray semimetal is laminated on the O. 4. The optical recording medium according to claim 2, wherein a protective film #i is provided on the second side of the low melting point metal or metalloid maple. 6. The proportion of the total volume occupied by the ultrafine particles of metal or cowshed per unit volume of the thin film of the aggregate of the ultrafine particles of metal or cowshed, that is, the filling rate is 90 qIb or less, preferably 10 to 90. The optical recording medium according to claim 1, which has a molecular weight of 30 to 80. 66 On a substrate that is transparent to laser light, a vacuum evaporation operation is performed by applying a metal or metal having a high melting point that does not melt Fi when irradiated with laser light from an oblique direction to the surface of the substrate. As a result, the ultrafine particles of the metal or metalloid are aggregated across a large number of voids that are small enough to be observed with an electron microscope, forming four thin films of 60
G - Ultrafine metal or metalloid particles O# that exhibit a plate ratio of 60 or more when exposed to laser light with a wavelength of #000 m! A thin film of 100 to 500 μm is formed as a layer, and then a low melting point metal or semimetal 011 film that can be melted by partial irradiation is deposited on top of it by a conventional method. A method for producing an optical recording medium, which is characterized in that it can be stored. 7.10 ~ 10) - A thin film of a metallic X-ray semimetal with a melting point 1 degree O higher than that which will not melt in a single beam of laser radiation is deposited on a substrate held in a low-pressure inert gas O atmosphere of 10 to 10). Vapor deposition method, ion! Lethein! It is formed by the method, the suffix tsuttering method, or the Fifteen drawing method. A film-forming operation was performed, and as a result of this, the ultrafine particles of the above-mentioned metal or Hironaka metal were observed under an electron microscope as J1! It is a thin film with a structure that is aggregated over a large number of O voids that are small enough to be detected, and has a structure of 6
Laser light with a wavelength of 00 to 11,000 IL is 60
A thin film of agglomerates of ultrafine particles of metal or cattle block having an absorption force of 11 or more is formed as a layer with a film thickness in the range of 100 to 500 A, and then a low melting point film that can be melted by irradiation with laser light is applied thereon. A method for manufacturing an optical recording medium, characterized in that a thin film of metal or semimetal is formed by conventional vapor deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000587A JPS58118292A (en) | 1982-01-07 | 1982-01-07 | Optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57000587A JPS58118292A (en) | 1982-01-07 | 1982-01-07 | Optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58118292A true JPS58118292A (en) | 1983-07-14 |
JPH0126355B2 JPH0126355B2 (en) | 1989-05-23 |
Family
ID=11477853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57000587A Granted JPS58118292A (en) | 1982-01-07 | 1982-01-07 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58118292A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62154243A (en) * | 1985-12-27 | 1987-07-09 | Pioneer Electronic Corp | Optical recording medium |
JPS63202259A (en) * | 1987-02-13 | 1988-08-22 | Sony Corp | Brushless motor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5159626A (en) * | 1974-09-18 | 1976-05-24 | Energy Conversion Devices Inc | |
JPS5247733A (en) * | 1975-10-14 | 1977-04-15 | Canon Inc | Recording medium |
JPS5739989A (en) * | 1980-08-21 | 1982-03-05 | Tdk Corp | Heat mode photorecording medium |
-
1982
- 1982-01-07 JP JP57000587A patent/JPS58118292A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5159626A (en) * | 1974-09-18 | 1976-05-24 | Energy Conversion Devices Inc | |
JPS5247733A (en) * | 1975-10-14 | 1977-04-15 | Canon Inc | Recording medium |
JPS5739989A (en) * | 1980-08-21 | 1982-03-05 | Tdk Corp | Heat mode photorecording medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62154243A (en) * | 1985-12-27 | 1987-07-09 | Pioneer Electronic Corp | Optical recording medium |
JPS63202259A (en) * | 1987-02-13 | 1988-08-22 | Sony Corp | Brushless motor |
Also Published As
Publication number | Publication date |
---|---|
JPH0126355B2 (en) | 1989-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1154533A (en) | Replicable optical recording medium | |
US4285056A (en) | Replicable optical recording medium | |
NL8101298A (en) | MATERIAL FOR RECORDING AND PLAYBACK. | |
JP4007702B2 (en) | Sputtering target material for forming a thin film, a thin film formed using the same, and an optical recording medium | |
JPH0896411A (en) | Information recording medium and its production | |
US4857373A (en) | Optical recording element | |
JPS5877042A (en) | Optical recording medium | |
JPS58118292A (en) | Optical recording medium | |
US5188923A (en) | Optical storage media with discontinuous thin metallic films | |
JPS5874392A (en) | Optical recording medium | |
TW472251B (en) | An optical recording medium and method for using same | |
JPS6131288A (en) | Optical information-recording medium | |
JP4638015B2 (en) | Sputtering target material for forming a thin film, thin film formed using the same, and optical recording medium | |
JP2581036B2 (en) | Optical recording medium | |
JPS62127286A (en) | Optical recording material | |
JPS6034896A (en) | Thermo-optical information recording method | |
JPS61134294A (en) | Information recording medium | |
JPH0991653A (en) | Recording medium | |
JPS60125943A (en) | Optical recording medium film and its production | |
JPS58166547A (en) | Information recording medium | |
JPS6362793A (en) | Optical recording medium | |
JPH02217289A (en) | Optical recording medium | |
JPH042437B2 (en) | ||
JPS61272190A (en) | Optical recording medium | |
JPS61104438A (en) | Information recording medium and its production |