JPS58118114A - Drawing apparatus by charged particle ray - Google Patents

Drawing apparatus by charged particle ray

Info

Publication number
JPS58118114A
JPS58118114A JP33482A JP33482A JPS58118114A JP S58118114 A JPS58118114 A JP S58118114A JP 33482 A JP33482 A JP 33482A JP 33482 A JP33482 A JP 33482A JP S58118114 A JPS58118114 A JP S58118114A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
mark
specimen
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33482A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33482A priority Critical patent/JPS58118114A/en
Publication of JPS58118114A publication Critical patent/JPS58118114A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To make unnecessary the use of a transfer mechanism of a specimen stand by a method wherein a mark having a straight line with a known angle to a scanning direction is formed on the surface of the specimen and position correcting quantity is obtained from the coordinates obtained by scanning the mark and that angle. CONSTITUTION:Charged particle rays 4 focused on the surface of a specimen 1 is scanned over the whole surface of the specimen 1 by a deflector 2. On the surface of the specimen 1, there are arranged a plurality of marks having straight lines with a known angle theta to a scanning direction. A detector 5 is used to dtect a charged particle reflected from the surface of the specimen 1 when the mark passes the charged particle rays and the detected signal is supplied to a signal processor 13. The output of the processor 13 is given to a counter 15 and the number of counts given by the counter 15 is stored in a memory 17 of a computer 18. By so doing, the coordinates x of the mark is obtained by the computer 18. The shifted positional quantity DELTAx, DELTAy is obtained from the obtained coordinates and the angle theta. The shifted quantity obtained is computed by the computer 18 from the starting point txo and added to the signal given by a signal generator 16, before being supplied to the deflector 2 for correcting the deflected signal.

Description

【発明の詳細な説明】 荷−粒子IIMを感荷電粒子材料に照射して所望のパタ
ーン描画を行なう際に、荷電粒子線を全面往復走査させ
て所望のパターン位置のみ荷電粒子線を照射させる描画
装置の高位置精度化に好適な補正方法に関するものであ
る。
Detailed Description of the Invention: When a desired pattern is drawn by irradiating charged particle IIM onto a charged particle material, a drawing in which the charged particle beam is scanned back and forth over the entire surface and the charged particle beam is irradiated only at the desired pattern position. The present invention relates to a correction method suitable for increasing the positional accuracy of an apparatus.

従来の荷電粒子線の照射位置補正は、一つのマークを二
次元的に移動させ、この移動座標値をレーザーで正確に
測定し、一方荷電粒子線でも測定してその差を荷電粒子
線の位置すれとして描画時に補正を行なっていた。この
ような方式ではマークを動かす移動機構とその座標値を
正確に測定する測定器を備えておく必要があった。
Conventional charged particle beam irradiation position correction involves moving one mark two-dimensionally and accurately measuring this moving coordinate value with a laser, while also measuring the charged particle beam and calculating the difference between the positions of the charged particle beam. As a result, I had to make corrections when drawing. Such a method requires a moving mechanism to move the mark and a measuring device to accurately measure its coordinate values.

本発明の目的は、荷電粒子線の照射位置が所望の位置よ
シずれている時の補正値を試料台の移動機構を用いずに
藺!#度で測定する簡便な方法を提供することにおシ、
特に一方向(例えばX方向)の走査で上記方向とは直交
する方向の位置補正量も求められる方法を提供すること
にある。
An object of the present invention is to calculate correction values when the irradiation position of a charged particle beam deviates from the desired position without using a sample stage movement mechanism. We are committed to providing a simple method to measure # degrees.
In particular, it is an object of the present invention to provide a method in which the amount of position correction in a direction perpendicular to the above-mentioned direction can also be determined by scanning in one direction (for example, the X direction).

試料台の移動機構を用いないために、位置座標値が明確
な基準マークを多数試料面に配置させる。
In order to avoid using a moving mechanism for the sample stage, a large number of reference marks with clear position coordinate values are placed on the sample surface.

また、X方向の走査でX方向の位置ずれをも測定するた
めに、走査方向に直交する線と、傾きを有する線を基準
マークとする。また走査方向(十x。
Furthermore, in order to measure the positional deviation in the X direction by scanning in the X direction, a line perpendicular to the scanning direction and a line having an inclination are used as reference marks. Also, the scanning direction (10x.

−x)による位置ずれ量に差があったり、走査速度に依
存する位置ずれがあるため、描画時と同一か屯しくけご
く類似する走査方式により位置ずれ量を測定して補正を
行なう。
Since there is a difference in the amount of positional deviation due to -x) or a positional deviation that depends on the scanning speed, the amount of positional deviation is measured and corrected using the same or very similar scanning method to that used during drawing.

本発明の一実施例を第1図に示す、荷電粒子発生源より
発生した荷電粒子@4は、レンズにより細く絞られて試
料面1に結像されているものとする。上記荷電粒子線4
は偏向器2により試料面1上を図のように全面走査され
る。すなわち、試料面の一端6の付近よp十X方向に走
査して別の1熾7の近辺に達するとδyだけシフトさせ
て−X方向に走査する。これをくり返すことによシ他端
8近傍をとシシ最終端9の近傍に達する全面往復走査で
ある。一方、ブランキング器3は、荷電粒子線4を試料
面1上に照射させたシ、カットする制御を行うものであ
る。したがって、パターン描画は、そのパターンが存在
する位置に荷電粒子線が達している間、ブランキング器
3の制御で荷電粒子lll1!を照射させればよい。
An embodiment of the present invention is shown in FIG. 1. Charged particles @4 generated from a charged particle generation source are narrowly focused by a lens and imaged on a sample surface 1. The above charged particle beam 4
is scanned over the entire surface of the sample surface 1 by the deflector 2 as shown in the figure. That is, it scans in the px direction from the vicinity of one end 6 of the sample surface, and when it reaches the vicinity of another end 6, it shifts by δy and scans in the -X direction. By repeating this, the entire surface is reciprocated scanning to reach the vicinity of the other end 8 and the final end 9. On the other hand, the blanking device 3 performs control to cut the charged particle beam 4 irradiated onto the sample surface 1 . Therefore, during pattern drawing, while the charged particle beam reaches the position where the pattern exists, the charged particle lll1! is controlled by the blanking device 3. All you have to do is irradiate it.

このように試料面1上全面に走査し、荷電粒子線の偏向
が大きい描画方式を高速で行なう際は、偏向器2の静的
な歪みによる照射位置ずれのみならず、走査方向(十x
方向、−x方向)に依存するヒステリシス的な位置ずれ
、x、y偏向のe&場カップリングのように走査速度に
依存する位置ずれ等を総括的に補正できるようにする必
要かめる、本発明はかかる問題点を解決せしめるもので
、符に試料台の移動機構を用いずに行なうものである。
When performing a high-speed drawing method in which the entire surface of the sample surface 1 is scanned and the charged particle beam is largely deflected, not only the irradiation position will shift due to static distortion of the deflector 2, but also the scanning direction (
The present invention recognizes the need to be able to comprehensively correct hysteretic positional deviations that depend on the scanning direction, -x direction), and positional deviations that depend on the scanning speed, such as e&field coupling of This method solves this problem and does not require any mechanism for moving the sample stage.

照射位置ずれを正確に測定すゐために、まず第1因の試
料面1に第2図に示すような基準マーク21付き試料2
0をセットする。この基準マークを拡大して示したのが
第3図である。同図に荷電粒子線30がこのマーク21
上を通過した時に試料面から反射してくる荷電粒子を第
1図に示した検出器5で検出し、増暢器12で増幅され
fc僅号35等も示しである。
In order to accurately measure the irradiation position deviation, first place a sample 2 with a reference mark 21 as shown in Fig. 2 on the sample surface 1, which is the first cause.
Set to 0. FIG. 3 shows an enlarged view of this reference mark. In the same figure, the charged particle beam 30 is located at this mark 21.
Charged particles reflected from the sample surface when passing above are detected by the detector 5 shown in FIG.

上述のごとき試料20上を描画時の走査方式と走査長、
速度等が同一の走査方式で荷電粒子線30を走査させた
とき荷電粒子線の試料上の走査が軌跡31となったとす
る。本来位置ずれがなければ、軌跡31′であるべきも
のである。すなわち、マークの中心座標点33′ (こ
の座標値はあらかじめ高精度で測定され計算機18によ
り認識されている。)を照射すべき荷電粒子が座標点3
3であったとする。すなわち、図のΔzl。
The scanning method and scanning length when drawing on the sample 20 as described above,
It is assumed that when the charged particle beam 30 is scanned using a scanning method with the same speed, etc., the scanning of the charged particle beam on the sample becomes a locus 31. If there is no positional deviation, the trajectory should be 31'. In other words, the charged particles that should irradiate the center coordinate point 33' of the mark (this coordinate value has been measured with high precision and recognized by the computer 18 in advance) are located at the coordinate point 3'.
Suppose it was 3. That is, Δzl in the figure.

Δy′が33′の位置のずれである。マークのなる いとへから信号は得られないのでこの点33の座標値を
測定することは困難であるがマーク21のX方向の中心
点34を測定することは可能である。
Δy' is the positional shift of 33'. It is difficult to measure the coordinate values of this point 33 because no signal is obtained from anywhere around the mark, but it is possible to measure the center point 34 of the mark 21 in the X direction.

この点は本来34′の点であるべきものであるが、この
位置ずれΔX、Δyt−測定してマークの中心点33′
の座標値の位置すれとしてもその位置ずれの1差は極め
て小さい。そこで、ΔX、Δyを測定してΔx/、Δy
′の値とするものとする。
This point should originally be the point 34', but by measuring the positional deviation ΔX, Δyt, the center point of the mark is 33'.
Even if there is a positional deviation in the coordinate values of Therefore, by measuring ΔX and Δy, Δx/, Δy
′ shall be the value of

試料ii]20上を荷電粒子線が31のように通過した
とき試料面20よシ出る反射電子を検出器5で検出し、
増暢器12で増幅すると信号35となったとする。この
信号35を信号処理器13によりあらかじめ決めである
スライスレベル36で整形し、その整形波の立上シ立下
9をトリガ信号として取出しパルス信号37にする、こ
こで、発振器14により発生させられているクロックパ
ルス38をカウンタ15で数えているときに信号37に
相当するn、〜n−の数をメモリ17に入れる。
Sample ii] When the charged particle beam passes over 20 as shown in 31, the detector 5 detects the reflected electrons emitted from the sample surface 20,
Suppose that the signal 35 is obtained by amplification by the amplifier 12. This signal 35 is shaped by the signal processor 13 at a predetermined slice level 36, and the rising edge and falling edge 9 of the shaped wave are taken out as trigger signals and made into a pulse signal 37. While the counter 15 is counting the clock pulses 38, the number n, to n- corresponding to the signal 37 is stored in the memory 17.

カラ/り15は試料面20の一端より走査を始める時t
x0に走査信号発生器16の信号の始点でクリア信号に
よりクリアさせておく。このようにしておけば点32の
X座標値X□はn、とnl、クロックパルスの周期t1
走査速Hvよりx0点のX座標値であシ、Vは荷電粒子
線の走査速度である。)となる。点34.40の各X座
標値も同僚に求められxs4.X4゜と表わす。もちろ
んこの値は、荷電粒子線で測定したX座標値であり、既
知の座標値は、点33′の値(X□’+y31’)であ
る。以上の値よシ位置ずれ量ΔX、Δyを求める。ΔX
はΔX=x84−xml’で求まることは容易に分る。
Color/removal 15 starts scanning from one end of sample surface 20 t
x0 is cleared by a clear signal at the starting point of the signal from the scanning signal generator 16. If this is done, the X coordinate value X□ of point 32 will be n, nl, and the clock pulse period t1
It is the X coordinate value of the x0 point from the scanning speed Hv, and V is the scanning speed of the charged particle beam. ). The respective X coordinate values of points 34.40 were also determined by a colleague and xs4. It is expressed as X4°. Of course, this value is the X coordinate value measured with a charged particle beam, and the known coordinate value is the value of point 33'(X□'+y31'). Based on the above values, the positional deviation amounts ΔX and Δy are determined. ΔX
It can be easily seen that ΔX=x84−xml'.

一方Δyは、マークが放射状にしであることを利用して
求まる。即ち図のように傾きをθ(これも既知)とし、
x、=x□−”U* x*る。これらはマークの中心位
置についての補正量で計算機18で計算を行なう。これ
らを試料上に二次元的に配置しである多数のマークにつ
いて夫夫計算を行なえば、走査面全面での夫々のマーク
についての位置ずれが分かる。本実施では、この位置ず
れを多項式表現し、その係数を最小二乗法で求め、この
関数によりマークの有無にか\わらず試料全面の任意点
についての位置補正を行なった。また本実施では、走査
方向(−1−x、−X方向)により位置ずれ量が異なる
ため、各方向によシ異なる補正を行なった。
On the other hand, Δy is found using the fact that the marks are radial. That is, as shown in the figure, let the slope be θ (this is also known),
x, =x□−”U* By performing calculations, the positional deviation of each mark on the entire scanning surface can be found.In this implementation, this positional deviation is expressed as a polynomial, its coefficients are determined by the method of least squares, and this function is used to determine whether there is a mark or not. In addition, in this implementation, since the amount of positional deviation differs depending on the scanning direction (-1-x, -X direction), different corrections were performed for each direction. .

このようにして求めた補正すべき位置ずれの量ΔX、Δ
yを計算機18で始点txoよシそのタイミングに応じ
て刻々計算する。その計算値を計算機からの信号によシ
駆動された、走査信号発生器16よりの信号に増巾器1
1において加算し偏向器2に供給される圓向信号を補正
すれば位置ずれのない荷電粒子線の偏向走査が可能とな
る。
The amount of positional deviation to be corrected determined in this way ΔX, Δ
The calculator 18 calculates y from the starting point txo every moment according to the timing. An amplifier 1 converts the calculated value into a signal from a scanning signal generator 16 driven by a signal from a computer.
By correcting the circular direction signal added in step 1 and supplied to the deflector 2, deflection scanning of the charged particle beam without positional deviation becomes possible.

本発明において、試料面上のマークは第3図のものに限
るものではないことは言うまでもない。
In the present invention, it goes without saying that the marks on the sample surface are not limited to those shown in FIG.

ただ X方向の走査のみでX方向の位置ずれを求める必
要性があるため、傾きを有するパターンを用いればよい
。一方、マークの配置も第2図のものに限るものではな
く、補正精度との関係で数と配置を決めればよい。パタ
ーンの句質は、試料面と異なるものであればよく、例え
はクロム上に金パターンのようにすればよい。また、得
られた位置ずれに対する補正は本実施例に限るものでは
なく、単にマーク間を補間してもよいことはbうまでも
ない。また走査方式は描画時と全く同一である必要はな
く、例えば−列に並んだマーク上を幾度か走査し、次の
マークの列まで走査せずに移動して同様のことを行なっ
てもよい。但し、描画時と走査方式が異なることによ多
位置ずれ量が異ならないような走査方式であればよい。
However, since it is necessary to find the positional deviation in the X direction only by scanning in the X direction, a pattern with an inclination may be used. On the other hand, the arrangement of the marks is not limited to that shown in FIG. 2, and the number and arrangement may be determined depending on the correction accuracy. The texture of the pattern may be different from that of the sample surface, for example, a gold pattern on chrome. Further, the correction for the obtained positional deviation is not limited to this embodiment, and it goes without saying that it is also possible to simply interpolate between marks. Also, the scanning method does not have to be exactly the same as when drawing; for example, the same thing can be done by scanning the marks lined up in a row several times and then moving to the next mark row without scanning. . However, any scanning method may be used as long as the amount of positional deviation does not differ due to the difference in scanning method from the time of drawing.

以上のごとき動作を計算機18の制御によシ行いその計
算機の処理は第4図のごとくなる。第4図において、各
符号は次のとうりでアシ、又(xmttYtt)〜(x
sve)’sy)は予め計算機により認識されている既
知の値である。
The above operations are carried out under the control of the computer 18, and the processing of the computer is as shown in FIG. In FIG. 4, each symbol is recessed as follows, and (xmttYtt) ~ (x
sve)'sy) is a known value recognized by the computer in advance.

X0= −t、 x、=x、、−x、、、 x雪=x4
゜−x14又、第4図のフローチャートにおいて、式■
X0=-t, x,=x,,-x,,,xsnow=x4
゜−x14Also, in the flowchart of Figure 4, the formula ■
.

■の(ΔX、Δy)はヒステリシスの影響により走査方
向で異る場合があり、走査方向毎に(ΔX。
(ΔX, Δy) in (2) may differ depending on the scanning direction due to the influence of hysteresis, and (ΔX.

Δy)の計算式を設定しても良い。A calculation formula for Δy) may be set.

本発明によれは、試料台の移動機構を用いずに、一方向
(例えばX方向)の走査のみでその方向とは直交する方
向(X方向)の位置ずれも測定でき、パターン描画の高
位置精度化に効果がある。従って、システム全体の簡素
化がはかられ、低価格な装置実現に効果がある。
According to the present invention, positional deviation in a direction (X direction) perpendicular to that direction can also be measured by scanning in one direction (for example, the It is effective in improving accuracy. Therefore, the entire system can be simplified, which is effective in realizing a low-cost device.

【図面の簡単な説明】[Brief explanation of the drawing]

m1図は本発明の実施例を示したブロック図を示した図
面でおる。第2図は位置ずれを測定するための基準マー
ク付き試料の一例を示した平面図である。°第3図は基
準マークの拡大図と荷1粒子線の走査時に得られた信号
、並びにその処理信号に関する図面である。第4図は第
1図における計算機1Bの動作を示すフローチャートで
ある。 1・・・試料面、2・・・偏向器、3・・・ブランキン
グ器、13・・・信号処理器、14・・・発振器、15
・・・カウンター、16・・・走査信号発生器、17・
・・メモ1ハ18・・・計算機、21・・・基準マーク
。        40.。 第  1  (2) ¥iZ[2] 1        6         LY13  
閏 吟圓 χ  4 図 r  o−、。 [シー 7− 〜( 1L
Figure m1 is a drawing showing a block diagram showing an embodiment of the present invention. FIG. 2 is a plan view showing an example of a sample with reference marks for measuring positional deviation. 3 is an enlarged view of a reference mark, a signal obtained during scanning of a single particle beam, and a diagram relating to the processed signal. FIG. 4 is a flowchart showing the operation of the computer 1B in FIG. DESCRIPTION OF SYMBOLS 1... Sample surface, 2... Deflector, 3... Blanking device, 13... Signal processor, 14... Oscillator, 15
...Counter, 16...Scanning signal generator, 17.
...Memo 1c18...Calculator, 21...Reference mark. 40. . 1st (2) ¥iZ[2] 1 6 LY13
薏吟圓χ 4 图 ro-,. [C7-~(1L

Claims (1)

【特許請求の範囲】 1、荷電粒子線発生源より発生した荷電粒子線を細く絞
る手段と、上記荷電粒子線を所望の位置に偏向する偏向
手段とを有する荷電粒子線描画装置において、走査方向
に対し傾斜する角度θが既知の直線をもつマークを試料
面上に複数個配置した試料と、前記マーク上を走査し画
定したマークの座標とそのマークに対応して昭識されて
いる既知の座標と上61角度θより荷電粒子線の位置補
正量を計算する手段を有し、上記位置補正量により荷電
粒子細の位置を補正し走査することを%像とする荷電粒
子線描画装置。 2、前記位沸正量のIt′i鼻式は走査方向毎に求める
ことを特徴とする特許請求の範囲第1項記載の荷電粒子
線描画装置。 3、前記マークは2次元状に多数配置し奏ことを2二 %徴とする特許請求の乾d第1項記載の荷電粒子線描画
装置。
[Scope of Claims] 1. In a charged particle beam lithography apparatus having means for narrowing a charged particle beam generated from a charged particle beam generation source and deflection means for deflecting the charged particle beam to a desired position, A sample has a plurality of marks arranged on the sample surface, each having a straight line with a known angle of inclination θ to A charged particle beam lithography apparatus having means for calculating a position correction amount of a charged particle beam from coordinates and an upper angle θ, and correcting and scanning a position of a charged particle beam using the position correction amount as a percent image. 2. The charged particle beam lithography apparatus according to claim 1, wherein the It'i nasal formula for the positive potential quantity is determined for each scanning direction. 3. The charged particle beam lithography apparatus according to claim 1, wherein a large number of the marks are arranged in a two-dimensional manner, and the mark is a 22% mark.
JP33482A 1982-01-06 1982-01-06 Drawing apparatus by charged particle ray Pending JPS58118114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33482A JPS58118114A (en) 1982-01-06 1982-01-06 Drawing apparatus by charged particle ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33482A JPS58118114A (en) 1982-01-06 1982-01-06 Drawing apparatus by charged particle ray

Publications (1)

Publication Number Publication Date
JPS58118114A true JPS58118114A (en) 1983-07-14

Family

ID=11470988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33482A Pending JPS58118114A (en) 1982-01-06 1982-01-06 Drawing apparatus by charged particle ray

Country Status (1)

Country Link
JP (1) JPS58118114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029867A1 (en) * 2000-10-03 2002-04-11 Advantest Corporation Method for correcting electron beam and electron beam exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029867A1 (en) * 2000-10-03 2002-04-11 Advantest Corporation Method for correcting electron beam and electron beam exposure system

Similar Documents

Publication Publication Date Title
JP2725020B2 (en) Electron beam exposure system
JP3288794B2 (en) Charge beam correction method and mark detection method
JPS6335094B2 (en)
JPH0513037A (en) Charged particle beam device and control thereof
US5468969A (en) Method and apparatus for electron beam lithography
JPS58118114A (en) Drawing apparatus by charged particle ray
JPS59114818A (en) Electron beam pattern drawing method
JPH04269613A (en) Method for focusing charged beam
JP3175112B2 (en) Charged particle beam exposure method
JPS5498577A (en) Correction method for electron beam scanning position
JP2786662B2 (en) Charged beam drawing method
JP3002246B2 (en) Charged beam correction method
JPH02262326A (en) Charged beam pattern drawing method
JPH0722349A (en) Charged beam lithography device
JPS58200536A (en) Detecting system for mark in charge-beam exposure device
JPH0282515A (en) Electron beam lithography
JP3195332B2 (en) Electron beam drawing method and electron beam drawing apparatus
JP2786661B2 (en) Charged beam drawing method
JP2003297724A (en) Method for measuring state of pattern-drawing in variable area type charged particle beam lithographic apparatus
JP2605111B2 (en) Electron beam correction method for electron beam exposure apparatus
US6989536B2 (en) Electron-beam writing device and electron-beam writing method
JP2758979B2 (en) Mark position detection method
JPS6229136A (en) Mark detection in charged particle beam exposure and device thereof
JP2000048753A (en) Electron beam exposure device, and its deflection efficiency adjusting method
JP2739162B2 (en) Pattern inspection / measurement method