JPS58118091A - Semiconductor storing circuit - Google Patents

Semiconductor storing circuit

Info

Publication number
JPS58118091A
JPS58118091A JP56137572A JP13757281A JPS58118091A JP S58118091 A JPS58118091 A JP S58118091A JP 56137572 A JP56137572 A JP 56137572A JP 13757281 A JP13757281 A JP 13757281A JP S58118091 A JPS58118091 A JP S58118091A
Authority
JP
Japan
Prior art keywords
terminal
power supply
load
time
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56137572A
Other languages
Japanese (ja)
Inventor
Mikio Mizutani
水谷 幹雄
Yukio Ichikawa
幸雄 市川
Fumio Hayashi
林 文雄
Kaname Sawada
沢田 要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56137572A priority Critical patent/JPS58118091A/en
Publication of JPS58118091A publication Critical patent/JPS58118091A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To establish data held until writing is performed to a preset value, after the power supply is turned on by delaying the power supply to the load of one driving transistor from that to the load of another driving transistor. CONSTITUTION:In the diagram, a power source VDD1 is raised to the VDD level at time t1. At this time, a gate input terminal 2 is at O level, because the VDD2 has the same electric potential as that the VSS has by the work of a delay circuit 6. Then, the power source VDD2 is raised to the VDD level at time t2. At this time, the electric potential of a terminal 2 is raised up only to the VL level, because a terminal 1 is held at the VDD level and a driving transistor T4 is conductive, and, therefore, an electric current flows to the driving transistor T4 through a load transistor T3. Therefore, a driving transistor T2 is left non-conductive, and the terminal 1 maintains the VDD level. In this way, it is sure that the terminal 1 maintains the VDD level at time T3 elapsed a prescribed time after the power supply is turned on, and thus, the uncertainly of data is eliminated.

Description

【発明の詳細な説明】 本発明は、トランジスタによ−り構成される半導体記憶
回路(メモリ)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory circuit (memory) composed of transistors.

第1図は、従来のMOSスタティック−ランダムアクセ
スメモリ(以下、MMol−3−RAと記す)のメモリ
セルの構成例を示す。
FIG. 1 shows a configuration example of a memory cell of a conventional MOS static random access memory (hereinafter referred to as MMol-3-RA).

本図において、T1.T3は、デプレッション型(以下
、DMO3と記−j))ランジスタからなる一対の負荷
トランジスタ、T2.T4は、前記トランジスタTI、
T3とともにフリップフロツプを構成するエンハンスメ
ント型MO3(以下、1MO8と記す)トランジスタか
らなる一対の駆動トランジスタである。
In this figure, T1. T3 is a pair of load transistors consisting of depletion type (hereinafter referred to as DMO3) transistors; T2. T4 is the transistor TI,
This is a pair of drive transistors consisting of an enhancement type MO3 (hereinafter referred to as 1MO8) transistor which together with T3 constitutes a flip-flop.

1はゲート入力端子であり、負荷トランジスタT1のゲ
ートおよびソース、駆動トランジスタT2のドレイン、
並びに駆動トランジスタT4のゲートに接続さnている
。2もゲート入力端子であり、負荷トランジスタT3の
ゲートおよびソース、駆動トランジスタT4のドレイン
、並びに駆動トランジスタT2のゲートに接続さnてい
る。
1 is a gate input terminal, which includes the gate and source of the load transistor T1, the drain of the drive transistor T2,
It is also connected to the gate of the drive transistor T4. 2 is also a gate input terminal and is connected to the gate and source of the load transistor T3, the drain of the drive transistor T4, and the gate of the drive transistor T2.

′f、り、前記負荷トランジスタTI、T3のドレイン
はともに電源VDDに接続され、駆動トランジスタT2
.T4のソースはともに接地電位VS5に接続さねてい
る。そして、前記各端子1,2はそ扛ぞnさらに、1M
O8トランジスタからなるゲート回路の機能全果たす伝
達ゲートトランジスタT5.T6を介して1、データ線
3,4に接続さtているっ寸り、前記伝達ゲートトラン
ジスタT5゜T6のゲートは、共にワード線5に接続さ
nている。
'f, the drains of the load transistors TI and T3 are both connected to the power supply VDD, and the drains of the load transistors T2 and T3 are connected to the power supply VDD.
.. Both sources of T4 are connected to ground potential VS5. Then, each of the terminals 1 and 2 is removed, and furthermore, 1M
A transmission gate transistor T5. fulfills all the functions of a gate circuit consisting of an O8 transistor. The gates of the transmission gate transistors T5 and T6 are both connected to the word line 5 through T6.

説明すると、端子1の電位がVDDに等しい場合には、
駆動トランジスタT4が導通状態となり、ゲート入力端
子2の電位は駆動トランジスタT2の閾値電位以下に下
がる。
To explain, when the potential of terminal 1 is equal to VDD,
The drive transistor T4 becomes conductive, and the potential of the gate input terminal 2 falls below the threshold potential of the drive transistor T2.

逆に、前記端子2の電位がvnnに等しい場合には、駆
動トランジスタT2が導通状態となり、端子1の電位が
駆動トランジスタT4の閾値電位以下に下がる。このよ
うに、端子1と端子2とが相補的な電位を維持すること
によって、1ビツトのデータが記憶さnる。
Conversely, when the potential of the terminal 2 is equal to vnn, the drive transistor T2 becomes conductive, and the potential of the terminal 1 falls below the threshold potential of the drive transistor T4. In this way, by maintaining complementary potentials between terminals 1 and 2, one bit of data is stored.

しかしながら、このような従来のMOS−8−RAMで
は、負荷トランジスタT1とTsのドレインが共通の電
源vnnに接続さnているため、この電源VDI)の投
入時には、対になすトランジスタTI、T2およびTs
、T4の対称的構造に由来して、端子1,2のレベル全
確定することができない。したがって、電源投入後の読
み出しデータを一定の値に確定することができないとい
う欠点があった。
However, in such a conventional MOS-8-RAM, the drains of the load transistors T1 and Ts are connected to a common power supply vnn, so when this power supply VDI) is turned on, the paired transistors TI, T2 and Ts
, T4, the levels of terminals 1 and 2 cannot be completely determined. Therefore, there is a drawback that the read data cannot be determined to a constant value after the power is turned on.

また、前記の欠点全救済する方法として、前記T1〜T
4のトランジスタの寸法を変えて非対称にすることによ
り、電源投入時における端子1゜2のレベルを確定する
ことも考えらfる。しかしながら、この場合には、端子
1,2のレベル等が非対称となり、データ線3,4に接
続さnるセンスアンプに影響を与え、読み出し応答速度
會遅らせたり、あるいはデータを決めるための半導体製
造用マスクの種類が増えたりする等の欠点があった。
In addition, as a method for alleviating the above-mentioned defects, the above-mentioned T1 to T
It is also conceivable to determine the level of terminal 1.degree. 2 when the power is turned on by changing the dimensions of transistor 4 to make it asymmetrical. However, in this case, the levels of terminals 1 and 2 become asymmetrical, which affects the sense amplifiers connected to data lines 3 and 4, slowing down the read response speed, or causing problems in semiconductor manufacturing for determining data. There were drawbacks such as an increase in the number of types of masks available.

また、従来、以上のような欠点は、上記第1図のような
NチャンネルE/D M OS回路により構成さg;b
MO3−8−RAMのみならず、Pチャンネル、あるい
はE/E M OS回路により構成さnるMOS−3−
RAMにおいても同様に存在した。
In addition, conventionally, the above-mentioned drawbacks have been solved by using an N-channel E/D MOS circuit as shown in FIG.
Not only MO3-8-RAM but also MOS-3- constituted by P channel or E/E MOS circuit.
A similar problem existed in RAM as well.

本発明は、前記従来の欠点全解消するべくなさf′した
もので、電源投入後、書き込みが行わnる1での保持デ
ータケ、予め設定しておいた値に確定することができ、
こnにより電源投入後、書き込と同じ機能を果たさせる
ことができ、しかも各トランジスタの対称性全維持でき
るMOS−8−RAM等の半導体記憶回路全提供するこ
と全目的とする。
The present invention has been made in order to eliminate all the drawbacks of the conventional art, and after the power is turned on, the data stored at n+1 can be fixed to a preset value.
The object of the present invention is to provide a semiconductor memory circuit such as a MOS-8-RAM that can perform the same function as writing after power is turned on, and can maintain the symmetry of each transistor.

本発明による半導体記憶回路は、一対の駆動トランジス
タと、そnぞn一端が電源に他端が前記駆動トランジス
タに接続さnL一対の負荷と全有してなり、前記各負荷
の前記駆動トランジスタ側端を相補的な電位に保つこと
によってデータ全記憶する記憶回路において、電源投入
時に、一方の前記負荷に対する電源供給全、他方の前記
負荷に対する電源供給よりも遅らせることによって、電
源投入後のデータ金子め設定しておいた値に確定するも
のである。
A semiconductor memory circuit according to the present invention includes a pair of drive transistors and a pair of loads each having one end connected to a power supply and the other end connected to the drive transistor, and the drive transistor side of each load. In a memory circuit that stores all data by keeping terminals at complementary potentials, when the power is turned on, the entire power supply to one of the loads is delayed, and the data terminal after the power is turned on is delayed from the power supply to the other load. This will fix the previously set value.

以下、本発明を図面に示す実施例に基づいてさらに詳し
く説明する。
Hereinafter, the present invention will be explained in more detail based on embodiments shown in the drawings.

第2図は、本発明をMOS−5−RAMに適用した実施
例で、負荷トランジスタT1.Ts、駆動トランジスタ
T2.  T4.ゲート入力端子1゜2、伝達ゲートト
ランジスタT5.T6.接地電6ど−′ 位VSS、データ線3,4およびワード線6はそnぞ扛
第1図の従来例と全く同じ構成になっている。
FIG. 2 shows an embodiment in which the present invention is applied to a MOS-5-RAM, in which load transistors T1. Ts, drive transistor T2. T4. Gate input terminal 1.2, transmission gate transistor T5. T6. The ground voltage 6, VSS, data lines 3 and 4, and word line 6 have exactly the same structure as in the conventional example shown in FIG.

そして、負荷トランジスタT1のドレインは電源vDD
1に接続さnる−1、負荷トランジスタT3のドレイン
は、電源VDD 2に接続さnている。
The drain of the load transistor T1 is connected to the power supply vDD.
The drain of the load transistor T3 is connected to the power supply VDD 2.

ここで、電源VDD 2は、遅延回路6を用いて、電源
投入時の立ち上9時間?、電源V、)D 1よりも遅延
させた電源である。また、VDD 2がオーバーシュー
トするときは、必要に応じて、容量性負荷7が電源Vn
n 2と接地電位VSSO間に挿入さnる。
Here, the power supply VDD 2 is set using a delay circuit 6 for a period of 9 hours after the power is turned on. , power supply V, )D is a power supply delayed from 1. Also, when VDD 2 overshoots, the capacitive load 7
Inserted between n2 and ground potential VSSO.

なお、負荷トランジスタTI、T3の閾値電圧全VTD
 (VTD < O) + WE動) ラ7ジスタT 
2.  T 4の閾値電圧f Vt+i (VTK >
O) 、駆動トランジスタ2i7y[T4のゲートの入
力電圧がvnnであるときの前記駆動トランジスタのド
レイン出力電圧1vL(vTI :>Vl、)OL 電
源VDn 1 、  Vnn 2ノ立ち上りの後、充分
安定した時の電位f Vnn (VDn〉0)、接地電
位Vss==Oとする。
Note that the total threshold voltage VTD of the load transistors TI and T3
(VTD < O) + WE movement) LA7 register T
2. Threshold voltage f Vt+i (VTK >
O), when the drain output voltage of the drive transistor 2i7y[T4 when the input voltage at the gate of T4 is vnn, the drain output voltage 1vL (vTI:>Vl,) OL after the rise of the power supplies VDn 1 and Vnn 2 becomes sufficiently stable. It is assumed that the potential f Vnn (VDn>0) and the ground potential Vss==O.

次に、本実施例の動作全果3図に示す信号波形図を用い
て説明する。
Next, the entire operation of this embodiment will be explained using a signal waveform diagram shown in Figure 3.

7”−’ 1ず、第3図におけるtoの時点では、電源VDD11
B OF F状態、ツ’E 9 VDD I = Vs
s fある。このとき、負荷トランジスタTI、T3の
ソースは、基板とPN接合しているため、その電位はV
Bs以下には下がらないので、負荷トランジスタTI。
7"-' 1. At the time of "to" in FIG. 3, the power supply VDD11
B OF F state, T'E 9 VDD I = Vs
There is sf. At this time, the sources of the load transistors TI and T3 are in PN junction with the substrate, so their potential is V
Since it does not fall below Bs, the load transistor TI.

T3は導通状態になっている。したがって、端子1.2
は第3図ハ、二にそnぞn示すようにVSgと同電位に
ある。
T3 is in a conductive state. Therefore, terminal 1.2
is at the same potential as VSg, as shown in FIGS.

また、第3図(ホ)に示すようにtO〜t5の区間では
、ワード線5も0レベルi *n VL  レベルを維
持するようにしておく。
Further, as shown in FIG. 3(E), in the period from tO to t5, the word line 5 is also maintained at the 0 level i*nVL level.

次に、t1時に電源’Vnn 1 f Vnnレベルに
上げる。
Next, at time t1, the power supply is raised to the level 'Vnn 1 f Vnn.

このとき、遅延回路6の働きによって、VDD 2はV
Sgと同電位であるから、ゲート入力端子2は0レベル
にある。よって駆動トランジスタT2が非導通状態の1
ま、負荷トランジスタT1に電流が流n1駆動トランジ
スタT4のゲートに電荷が蓄積さnるため、端子1の電
位がVDDレベルまで上−がる。この結果、駆動トラン
ジスタT4は導通状態となるが、電源Vnn 2がまだ
Oレベルであるため、端子2に依然Oレベルケ維持し、
駆動トランジスタT2に非導通状態を保つ。
At this time, due to the function of the delay circuit 6, VDD2 becomes V
Since it is at the same potential as Sg, gate input terminal 2 is at 0 level. Therefore, the drive transistor T2 is in a non-conducting state.
Since current flows through the load transistor T1 and charges are accumulated at the gate of the driving transistor T4, the potential at the terminal 1 rises to the VDD level. As a result, the drive transistor T4 becomes conductive, but since the power supply Vnn2 is still at the O level, the O level is still maintained at the terminal 2.
The drive transistor T2 is kept non-conductive.

次に、t2時に、電源VDD 2がVDDレベルまで上
がる。このとき、端子1ばVDDレベルに保たnており
、駆動トランジスタT4が導通状態にあるため、負荷ト
ランジスタT3’j5通して、駆動トランジスタT4に
電流が流nるので、端子2の電位にvb  レベルまで
しか土がらない。したがって、駆動トランジスタT2[
非導通状態の11であり、端子1はVnnレベル全維持
する。このようにして、電源投入後、所定の時間を経た
時刻T3には、端子1が必らずVDDレベル會維持する
ことになり、データの不確定が解消さnる。
Next, at time t2, the power supply VDD 2 rises to the VDD level. At this time, since terminal 1 is kept at the VDD level and drive transistor T4 is in a conductive state, current flows to drive transistor T4 through load transistor T3'j5, so that the potential of terminal 2 changes to VB. The soil only reaches the level. Therefore, drive transistor T2[
11 is in a non-conductive state, and terminal 1 maintains the full Vnn level. In this way, at time T3, which is a predetermined time after the power is turned on, the terminal 1 is always maintained at the VDD level, and data uncertainty is resolved.

なお、電源投入後、書き込みが行わnるまでは、端子2
の万全VDnレベルに維持したい場合には、負荷トラン
ジスタTI、T3のドレインと電源VDD 1 、 V
nn 2との接続関係?第2図と逆にすnばよい。
Note that after the power is turned on, until writing is performed, terminal 2 is
If you want to maintain the perfect VDn level, the drains of the load transistors TI and T3 and the power supplies VDD 1 and V
Connection relationship with nn 2? Just reverse the procedure shown in Figure 2.

−f、た、上記説明から明らかなように、このようなセ
ル全集積したMOS、5−RAMにおいては、T3(7
)ドレイ7k、そnぞn電源VOID I 、  VD
D 2のいず扛に接続するかにより、電源投入直後に各
番地のデータf ” O”または1”のいずnにするか
?決定できる。そして、前記負荷トランジスタT I 
、  T 3 、!: VDD I 、  VDD 2
との接続関係の選択は、実際の回路では電源アルミ配線
の選択だけで行うことができる。
-f, and, as is clear from the above explanation, in such a MOS and 5-RAM with all cells integrated, T3 (7
) Dray 7k, so nzo n power supply VOID I, VD
Depending on which of the load transistors T2 is connected to, it can be determined whether the data at each address is set to "O" or "1" immediately after power is turned on.Then, the load transistor T
, T 3 ,! : VDD I, VDD 2
In an actual circuit, the selection of the connection relationship with the power supply can be made simply by selecting the power supply aluminum wiring.

なお、本発明は、上記実施例のようなNチャンネルE/
D M OS回路により構成さnる半導体記憶回路のみ
ならず、Pチャンネル、あるいHE/EMO8回路等に
より構成さnる半導体記憶回路にも適用できるっ 以上の説明から明らかなように本発明による半導体記憶
回路は、−万の駆動トランジスタの負荷に対する電源供
給ケ、他力の駆動トランジスタの負荷に対する電源供給
よりも遅らせることにより次のような効果が得らnる。
Note that the present invention is applicable to N-channel E/
As is clear from the above description, the present invention can be applied not only to semiconductor memory circuits composed of DMOS circuits, but also to semiconductor memory circuits composed of P-channel or HE/EMO8 circuits. In the semiconductor memory circuit, the following effects can be obtained by delaying the power supply to the load of the second drive transistor and the power supply to the load of the second drive transistor.

(イ)電源投入後、書き込みが行わnるまでの保持デー
タケ、予め設定しておいた値に確定するこ10′− とができるので、電源投入後、書き込みが行わnる1で
は、ROMと同じ機能ケ果す。したがって、コンピュー
タ、特にマイクロコンピュータ?応用した装置において
記憶素子として使用すnば、RAMとROMとの区別が
必要なくなり、単一種類の記憶素子で記憶部を構成する
ことが可能となり、筐た、初期設定プログラムを省略す
ることも可能となる。
(b) After the power is turned on, the data stored until writing is performed can be fixed at a preset value. Performs the same function. Therefore, computers, especially microcomputers? If used as a memory element in an applied device, there is no need to distinguish between RAM and ROM, and the memory unit can be configured with a single type of memory element, and the initial setting program can be omitted. It becomes possible.

(ロ)記憶回路全構成する各トランジスタの対称構造を
維持できるので、読み出し/書き込み速度に悪影響會与
えたり、データ全快めるための半導体製造用マスタの種
類が増加したジすることがない。
(b) Since the symmetrical structure of each transistor constituting the entire memory circuit can be maintained, the read/write speed is not adversely affected and the variety of semiconductor manufacturing masters for data processing is not increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOS+−5−RAMセルを示す回路構
成図、第2図は本発明の一実施例による半導体記憶回路
の回路構成図、第3図は前記実施例における信号波形図
である。 TI、T3・・・・・・DMO3負荷トランジスタ、T
2.’r4・・・・・・EMO3駆動トランジスタ、T
5゜111”−2 T6・・・・・・EMO3伝達ゲートトランジスタ、V
III11+VDD2・・・・・・電源、VSS・・・
・・・接地電位、1,2・・・・・・ゲート入力端子、
3,4・・・・・・データ線、6・・・・・ワード線、
6・・・・・・遅延回路、7・・・・・・容量性負荷。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 to  tt  tz  tJ
FIG. 1 is a circuit configuration diagram showing a conventional MOS+-5-RAM cell, FIG. 2 is a circuit configuration diagram of a semiconductor memory circuit according to an embodiment of the present invention, and FIG. 3 is a signal waveform diagram in the embodiment. . TI, T3...DMO3 load transistor, T
2. 'r4...EMO3 drive transistor, T
5゜111"-2 T6... EMO3 transmission gate transistor, V
III11+VDD2...Power supply, VSS...
...Ground potential, 1,2...Gate input terminal,
3, 4...Data line, 6...Word line,
6... Delay circuit, 7... Capacitive load. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 to tt tz tJ

Claims (1)

【特許請求の範囲】[Claims] 一対の駆動トランジスタと、それぞn一端金電源に、他
端を前記駆動トランジスタに接続された一対の負荷と、
電源投入時に、一方の前記負荷に対する電源供給ケ、他
方の前記負荷に対する電源供給よりも遅らせる遅延手段
と全設けたこと全特徴とする半導体記憶回路。
a pair of drive transistors; a pair of loads each having one end connected to a gold power source and the other end connected to the drive transistor;
A semiconductor memory circuit characterized in that, when power is turned on, power is supplied to one of the loads, and a delay means is provided for delaying power supply to the other load.
JP56137572A 1981-09-01 1981-09-01 Semiconductor storing circuit Pending JPS58118091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137572A JPS58118091A (en) 1981-09-01 1981-09-01 Semiconductor storing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137572A JPS58118091A (en) 1981-09-01 1981-09-01 Semiconductor storing circuit

Publications (1)

Publication Number Publication Date
JPS58118091A true JPS58118091A (en) 1983-07-13

Family

ID=15201850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137572A Pending JPS58118091A (en) 1981-09-01 1981-09-01 Semiconductor storing circuit

Country Status (1)

Country Link
JP (1) JPS58118091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111187A (en) * 1981-12-24 1983-07-02 Nec Corp Semiconductor device
EP0182595A2 (en) * 1984-11-13 1986-05-28 Fujitsu Limited Semiconductor nonvolatile memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238843A (en) * 1975-09-05 1977-03-25 Ncr Co Electrically alternative nonnvolatile memory cell
JPS5438843A (en) * 1977-08-29 1979-03-24 Happy Sewing Machine Mfg Device of stopping motor corresponding to detection of residual quantity of lower cotton
JPS54136236A (en) * 1978-04-14 1979-10-23 Nec Corp Readout and write-in enable memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238843A (en) * 1975-09-05 1977-03-25 Ncr Co Electrically alternative nonnvolatile memory cell
JPS5438843A (en) * 1977-08-29 1979-03-24 Happy Sewing Machine Mfg Device of stopping motor corresponding to detection of residual quantity of lower cotton
JPS54136236A (en) * 1978-04-14 1979-10-23 Nec Corp Readout and write-in enable memory

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111187A (en) * 1981-12-24 1983-07-02 Nec Corp Semiconductor device
JPS6228514B2 (en) * 1981-12-24 1987-06-20 Nippon Electric Co
EP0182595A2 (en) * 1984-11-13 1986-05-28 Fujitsu Limited Semiconductor nonvolatile memory device
JPS61117794A (en) * 1984-11-13 1986-06-05 Fujitsu Ltd Nonvolatile semiconductor memory
US5051958A (en) * 1984-11-13 1991-09-24 Fujitsu Limited Nonvolatile static memory device utilizing separate power supplies
JPH0411953B2 (en) * 1984-11-13 1992-03-03 Fujitsu Ltd

Similar Documents

Publication Publication Date Title
US4876669A (en) MOS static type RAM having a variable load
JPH048878B2 (en)
JPH0241113B2 (en)
JPH02201797A (en) Semiconductor memory device
JPH0247039B2 (en)
EP0220721B1 (en) Sense or differential amplifier circuit
JPH0777079B2 (en) Nonvolatile semiconductor memory device
JPS61117915A (en) Delay circuit
EP0317939B1 (en) Input circuit incorporated in a semiconductor device
JP2762826B2 (en) Semiconductor memory
JPS58118091A (en) Semiconductor storing circuit
JP4017250B2 (en) SRAM for stable data latch operation and driving method thereof
JPH0660665A (en) Bit line load circuit of semiconductor static ram
JPS638555B2 (en)
JPH056675A (en) Static type semiconductor memory
JP3224712B2 (en) Logic &amp; level conversion circuit and semiconductor device
US6590812B2 (en) Memory cells incorporating a buffer circuit and memory comprising such a memory cell
JP2780621B2 (en) Semiconductor storage device
JPH0770224B2 (en) Synchronous static random access memory
JPS6318275B2 (en)
JPH11176153A (en) Semiconductor integrated circuit
JP2005251315A (en) Memory device
JPS6233393A (en) Semiconductor non-volatile memory device
JPH0241110B2 (en)
JPH03116490A (en) Static ram