JPS58117992A - Device for recovering heat from hot temperature gas containing dust - Google Patents

Device for recovering heat from hot temperature gas containing dust

Info

Publication number
JPS58117992A
JPS58117992A JP57000811A JP81182A JPS58117992A JP S58117992 A JPS58117992 A JP S58117992A JP 57000811 A JP57000811 A JP 57000811A JP 81182 A JP81182 A JP 81182A JP S58117992 A JPS58117992 A JP S58117992A
Authority
JP
Japan
Prior art keywords
angle
heating medium
variable
blade
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57000811A
Other languages
Japanese (ja)
Inventor
Masami Fujiura
藤浦 正巳
Taro Matsumoto
太郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57000811A priority Critical patent/JPS58117992A/en
Publication of JPS58117992A publication Critical patent/JPS58117992A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To enable dust load on the downstream side to be reduced in the heat recovery of a converter by an arrangement wherein an inclined blade layer with variable blade angle is installed in a high temperature gas passage and particulate heating medium is supplied onto an inclined surface whose angle is an angle of repose or smaller than it. CONSTITUTION:A heat recovery device 1 comprises variable angle blades 5 located in a converter gas passage 3 and which are supported by a blade shaft 6 and which from a chamber through which water passes. An inclined surface 7 is formed on the inlet side, whilst gas passages 8 are formed between the variable angle blades 5. The blade angle 11 can be varied by means of a driving means 10. In operation, particulate heating medium accommodated in a hopper 12 is supplied to the variable angle blades 5 with a sufficient angle 11 which does not allow the medium to clog the clearances between the blades 5 whereby forming a continuous particulate heating medium layer extending to a feed hopper 17. Control of movement of the continuous layer is made by means of a feed valve 18, and control of unloading speed and the thickness of the layer is made by a group of drive shafts 9. Thus, the inclined surface 7 for the particulate heating medium corresponding to the angle of repose most of the dust is removed to reduce the dust load on the donwstream side, for example, in boiler water tubes 20. Further, a stable heat-resisting surface can be obtained due to a temperature drop obtained thereby.

Description

【発明の詳細な説明】 この発明は酸素転炉の吹錬等により発生する高温高含塵
の副生ガス(以下転炉ガスを例にして説明する。)の顕
熱を効率的に回収する含塵高温ガスから熱を回収する装
置に関するものである。周知の通り転炉においては酸素
吹錬の際の脱炭反応熱による1600℃前後の高温の転
炉ガスが発生するので、通常排ガスボイラーで熱回収が
行われている。しかし、この方法ではボイラー管の配置
、伝熱面積が充分得られず、1000℃迄の熱回収に止
まっている。またこれ以下の多量の排熱を回収利用する
方法として固体粒子、粉体を使用する充填層式、移動層
式、流動層式が考案されているが、前二者は高温、高含
塵のガス雰囲気中で長時間の安定操業は出来ず、また後
者は転炉操業におけるガスを変動で成立しにくいことが
指摘されている。
[Detailed Description of the Invention] This invention efficiently recovers the sensible heat of high-temperature, high-dust-containing byproduct gas (hereinafter explained using converter gas as an example) generated by blowing in an oxygen converter. The present invention relates to a device for recovering heat from dust-containing high-temperature gas. As is well known, in a converter, high-temperature converter gas of around 1600° C. is generated due to the heat of decarburization reaction during oxygen blowing, so the heat is usually recovered using an exhaust gas boiler. However, with this method, the arrangement of boiler tubes and heat transfer area are not sufficient, and heat recovery is limited to up to 1000°C. In addition, packed bed, moving bed, and fluidized bed methods that use solid particles or powder have been devised as methods for recovering and utilizing a large amount of waste heat, but the former two have high temperatures and high dust content. It has been pointed out that long-term stable operation is not possible in a gas atmosphere, and the latter is difficult to achieve due to fluctuations in gas during converter operation.

本発明は前記実情に鑑み、転炉ガスの熱回収に当り、回
収装置入口側に構造体を持たないため、高温度、高含塵
の転炉ガスに対して設備面操業面に安定した性能を得る
ことを可能とする安息角を利用した粒状熱媒体による連
続式の傾斜移動層式熱回収装置とし、その要旨は、高温
ガス流路内に、翼角可変の傾斜X層を設けるとともに、
粒状熱媒体を前記傾I!+X層によって形成される安息
角或はそれよりも小さな角度の傾斜面に供給する粒状熱
媒体供給手段を有してなる含塵高温ガスから熱を回収す
る装置である。
In view of the above-mentioned circumstances, the present invention recovers heat from converter gas without having a structure on the inlet side of the recovery equipment, thereby achieving stable performance in terms of equipment and operation against converter gas with high temperature and high dust content. This is a continuous inclined moving bed type heat recovery device using a granular heat medium that makes use of the angle of repose that makes it possible to obtain
The granular heating medium is tilted I! This is an apparatus for recovering heat from dust-containing high-temperature gas, which has a granular heat medium supply means for supplying to an inclined surface having an angle of repose equal to or smaller than that formed by the +X layer.

この方式の回収ittにより、回収装置の上流側の含塵
ガスのター′ストは粒状熱媒体に捕捉されるため下流側
のダスト負荷が軽減されて回収装置後方での蒸気回収の
ためのボイラー管設置が可能となる。また粒状熱媒体を
通過して熱交換を行った転炉ガスは温度が降下するため
、粒状熱媒体を支持する傾斜異層への熱影響が緩和され
耐用延長がはかられる。
With this type of recovery, the dust-containing gas tart on the upstream side of the recovery device is captured by the granular heat medium, reducing the dust load on the downstream side, and the boiler tube for steam recovery at the rear of the recovery device is Installation is now possible. Furthermore, since the temperature of the converter gas that has passed through the granular heating medium and exchanged heat is lowered, the thermal influence on the inclined heterogeneous layer that supports the granular heating medium is alleviated, and its service life can be extended.

このように、この発明においては、九とえは転炉排ガス
のような含塵高温ガスに先ず接する粒状熱交換媒体は、
傾斜異層の如き支持案内手段によって、支持、案内され
ていない点に大きな特徴がある。
In this way, in this invention, the granular heat exchange medium that first comes into contact with dust-containing high-temperature gas such as converter exhaust gas is
A major feature is that it is not supported or guided by support and guide means such as inclined different layers.

このように構成することによって、支持、案内用構造物
が、直接的に含塵高温ガスに曝されることがないから設
備保全上極めて有利である0構造物に支持案内されるこ
となく降下し慶から含塵高温ガスから受熱するととも罠
除塵する粒状熱交換媒体を、システムの中で円滑に機能
せしめるためには粒状熱交換媒体は恰も支持案内されて
いるのと変らないようにガス流に垂直な方向に降下しな
ければならない。
With this configuration, the support and guide structures are not directly exposed to dust-containing high-temperature gas, so they can be lowered without being supported and guided by the zero structure, which is extremely advantageous in terms of equipment maintenance. In order for the granular heat exchange medium to receive heat from the dust-containing high-temperature gas and to trap and remove dust, in order to function smoothly in the system, the granular heat exchange medium must be supported and guided by the gas flow. Must descend in a vertical direction.

そのためには、粒状熱交換媒体は、ガス流^温側で安息
角以下の角度でカスケード的に降下して行かなければな
らない。
To do this, the granular heat exchange medium must descend in a cascade manner at an angle below the angle of repose on the hot side of the gas stream.

以下図示の実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the illustrated embodiments.

第1図はこの発明の一実施例を示す転炉ガス排熱回収装
置である。回収装置lは転炉ガス捕集ダクト2のガス流
路3の中に設けられ、内部を通水室4とした可変翼5と
該可変翼5に対してダクト外で支持して同軸に設置した
翼軸6から構成され、減@6の両端は連通して外部より
冷水を供給したり供出したりさせることが出来る。可変
翼5はガス流に対向し、粒状熱媒体の降下方向と直角に
配置される。
FIG. 1 shows a converter gas exhaust heat recovery device showing an embodiment of the present invention. The recovery device 1 is installed in the gas flow path 3 of the converter gas collection duct 2, and is installed coaxially with a variable blade 5 having a water passage chamber 4 inside and supported outside the duct with respect to the variable blade 5. It is composed of a blade shaft 6, and both ends of the blade 6 are connected to each other so that cold water can be supplied or delivered from the outside. The variable blades 5 are arranged to face the gas flow and perpendicular to the descending direction of the granular heat medium.

回収装置1のガス入口側には可変翼5によって傾斜面7
を形成し、上下の可変X5.5′の間FJKはガス眞路
81に形成する。可変翼5の後増には該可変翼5を翼軸
6を支点として駆動させるためタ′クト外側面に設けら
れた駆動軸9と接続し、駆動装置110により無角11
を変化させることか出来る。駆動軸9を分割することに
よって、#IfM面7の勾配は同一であるが、各駆動軸
と接続する翼角11をそれぞれ変化させることが出来る
ので実際の勾配は傾斜面7′とすることが可能となる。
An inclined surface 7 is formed on the gas inlet side of the recovery device 1 by a variable blade 5.
, and FJK is formed in the gas path 81 between the upper and lower variable X5.5'. The rear extension of the variable blade 5 is connected to a drive shaft 9 provided on the outer surface of the tact in order to drive the variable blade 5 using the blade shaft 6 as a fulcrum.
It is possible to change the By dividing the drive shaft 9, the slope of the #IfM surface 7 is the same, but since the blade angles 11 connected to each drive shaft can be changed, the actual slope can be set to the slope surface 7'. It becomes possible.

回収装置1の上部ダクト上には鉄鉱石や固体物質の粒状
熱媒体を貯留供給するホッパー12から延設した供給口
13が開口し、この開口にはフィーター−14が設けら
れフィーダー14の開閉によってホッパー12内の粒状
熱媒体が回収装!11の可変翼5上へ定量宛供給される
。開口位置は例えば、供給される粒状熱媒体の粒径や形
状を考慮してフィーダー14から最上段可変#!5迄の
距離の制御、傾斜面7上の粒状熱媒体層厚の制御のため
供給装置全体として鉄軌道上の車輪15を利用してホッ
パー12を移動することKよって変、更される。25は
ベローズなどによるガスシール、26はシール用不活性
ガス導入管である。
A supply port 13 is opened on the upper duct of the recovery device 1 and extends from a hopper 12 that stores and supplies granular heat transfer medium such as iron ore or solid materials. The granular heat medium in the hopper 12 is recovered! A fixed amount is supplied onto the 11 variable blades 5. For example, the opening position can be varied from the feeder 14 to the uppermost stage, taking into account the particle size and shape of the granular heat medium to be supplied. 5 and the thickness of the granular heating medium layer on the inclined surface 7, the entire feeding device is modified by moving the hopper 12 using wheels 15 on the iron track. 25 is a gas seal using a bellows or the like, and 26 is an inert gas introduction pipe for sealing.

回収装#、、1の底部にはガス上流側にセキ止め16を
敷設した切出しホッパー17が開口し、熱交換後の高I
jA粒状熱媒体を受粒し、ロータリーバルブ18により
排出する。・ ガスiw&8の下流側にはガス流量計19を配し線流を
酎19の検出値を以ってガス流路8の通ガスのバランス
を検知することによって前述可f翼角11、ホッパー1
2の開口位置を制御してガス偏流のない均一熱交換を行
う。
A cutting hopper 17 with a stopper 16 installed on the upstream side of the gas is opened at the bottom of the recovery device #, 1, and the high I
jA The granular heat medium is received and discharged by the rotary valve 18.・ A gas flow meter 19 is arranged downstream of the gas iw & 8, and the balance of the gas flow in the gas flow path 8 is detected using the detection value of the gas flow meter 19.
By controlling the opening position of No. 2, uniform heat exchange without gas drift is performed.

20は例えば給水予熱管、蒸発管などからなるボイラー
水管であり、該ボイラー水管20は熱回収装置1のガス
下流側に位置し、タ゛クト断面に配列する対流伝熱管で
構成される。
A boiler water pipe 20 is composed of, for example, a water supply preheating pipe, an evaporation pipe, etc. The boiler water pipe 20 is located on the gas downstream side of the heat recovery device 1 and is composed of convection heat transfer tubes arranged in the cross section of the tact.

第2図は酸素吹錬製鋼の際の転炉ガスダクト2に適用し
た一例を示す。転炉21から発生する転炉ガスは誘引フ
ァン22により吸引捕集されホルダー23へ貯留される
。転炉ガス顕熱は排ガスボイラー24で回収され、さら
に排熱回収装置1で粒状熱媒体および対流ダイラー20
により効率的な熱回収が行われる0 この発明は以上により構成されるものであるが、操業に
際してはホッパー12内の粒状熱媒体が可変翼5の間隙
に滞留することのない充分な翼角11を持つ可変X5に
供給され、ホッパー12の開口から切出しホッパー17
まで粒状熱媒体の連続層を形成する0連続操業中の移動
量制御は切出しホッパー17の切り出しバルブ18で行
い、供給バルブ14を開放し、荷下り速度、層厚の制御
を各分割されている駆動軸群9を変化させるととKより
自由な傾斜面7の勾配をつくり行うことが出来る。
FIG. 2 shows an example of application to a converter gas duct 2 during oxygen blowing steel manufacturing. Converter gas generated from the converter 21 is sucked and collected by the induction fan 22 and stored in the holder 23 . Converter gas sensible heat is recovered in the exhaust gas boiler 24, and further in the exhaust heat recovery device 1, it is collected as a granular heat medium and a convection diler 20.
Although the present invention is configured as described above, during operation, the blade angle 11 is sufficient to prevent the granular heat medium in the hopper 12 from staying in the gap between the variable blades 5. It is supplied to the variable X5 having a
The amount of movement during continuous operation to form a continuous layer of granular heat transfer medium is controlled by the cutting valve 18 of the cutting hopper 17, and the supply valve 14 is opened to control the unloading speed and layer thickness. By changing the drive shaft group 9, it is possible to create a more free gradient of the inclined surface 7.

以上のようにこの発明は粒状熱媒体の安息角に相当した
傾斜面7を持つ転炉ガス排熱回収装置であるため、移動
粒状熱媒体層でガス中のダストの大部分管除去出来すた
め、可変翼のダスト付着閉塞が少なく、また可変x5は
高温転炉ガスが粒状熱媒体と熱交換し、温度低下後に可
変翼5と接触することにより耐熱間の安定が得られる。
As described above, since this invention is a converter gas exhaust heat recovery device having an inclined surface 7 corresponding to the angle of repose of the granular heat medium, most of the dust in the gas can be removed by the moving granular heat medium layer. , there is less dust adhesion and clogging of the variable blades, and in the variable x5, the high temperature converter gas exchanges heat with the granular heat medium and comes into contact with the variable blades 5 after the temperature decreases, thereby achieving stability in heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す横断面図、第2図は実
施フロー図、83図(a)、(b)は可変真作動原理図
を示す図である。 5・・・可変x     6・・・翼軸9・・・駆動軸
     7・・・荷下り#jfP+面、。 0 @ 3 図 (a)(か)
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is an implementation flow diagram, and FIGS. 83(a) and 83(b) are diagrams showing the principle of variable true operation. 5... Variable x 6... Wing shaft 9... Drive shaft 7... Unloading #jfP+ surface. 0 @ 3 Figure (a) (or)

Claims (1)

【特許請求の範囲】[Claims] 高温ガム流路内圧、翼角可変の傾斜異層を設けるととも
に、粒状熱媒体を前記傾斜異層によって形成される安息
角或はそれよりも小さな角度の傾斜面に供給する粒状熱
媒体供給手段を有してなる金属高温ガスから熱を回収す
る装置。
A granular heating medium supplying means is provided, in which the internal pressure of the high-temperature gum flow path is provided with an inclined different layer whose blade angle is variable, and the granular heating medium is supplied to an inclined surface having an angle of repose formed by the inclined different layer or an angle smaller than that. A device that recovers heat from metal high-temperature gas.
JP57000811A 1982-01-06 1982-01-06 Device for recovering heat from hot temperature gas containing dust Pending JPS58117992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57000811A JPS58117992A (en) 1982-01-06 1982-01-06 Device for recovering heat from hot temperature gas containing dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57000811A JPS58117992A (en) 1982-01-06 1982-01-06 Device for recovering heat from hot temperature gas containing dust

Publications (1)

Publication Number Publication Date
JPS58117992A true JPS58117992A (en) 1983-07-13

Family

ID=11484057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57000811A Pending JPS58117992A (en) 1982-01-06 1982-01-06 Device for recovering heat from hot temperature gas containing dust

Country Status (1)

Country Link
JP (1) JPS58117992A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288044A (en) * 2011-07-22 2011-12-21 湖南天水蓝能源科技有限公司 Pipeless heat exchanger and residual-heat recovery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288044A (en) * 2011-07-22 2011-12-21 湖南天水蓝能源科技有限公司 Pipeless heat exchanger and residual-heat recovery system

Similar Documents

Publication Publication Date Title
CN101124434B (en) Cyclone bypass for a circulating fluidized bed reactor
GB2064742A (en) Process and system for cooling sintered material
JPS58143129A (en) Combined gas and steam turbine process
JPS58117992A (en) Device for recovering heat from hot temperature gas containing dust
JPS6084131A (en) Waste gas treating method and apparatus thereof
CN2278191Y (en) Slope cooling machine
US3061194A (en) Two-stage system for preheating combustion air
US2863644A (en) Regenerative heat exchange apparatus
JPS5898135A (en) Operation of connected fluidized bed
JPS6156177B2 (en)
JP2920880B2 (en) Apparatus and method for operating powdery and granular raw materials
JPH0744364U (en) Electric arc furnace scrap carrier
WO2024204354A1 (en) Heat exchanger and heat exchange system
JPS63156044A (en) Method and apparatus for cooling clinker
EP3894770B1 (en) Induration machine
JPS6345674Y2 (en)
CN101968307B (en) Thermal energy utilization system of reverberatory furnace
SU1121571A1 (en) Multizone fluidized bed furnace for roasting loose material
JP2968603B2 (en) Reduced ore discharge device of fluidized bed reduction furnace
JPS61122141A (en) Cement waste heat collecting apparatus
US2782924A (en) Pebble heating apparatus and method of removing fines from pebble feed
JPS61236639A (en) Cement waste heat collection apparatus
JPS6324378Y2 (en)
JPS6040574Y2 (en) Dry dust collection and heat recovery equipment for converter exhaust gas
JPS6248736B2 (en)