JPS58117913A - Combustor - Google Patents

Combustor

Info

Publication number
JPS58117913A
JPS58117913A JP57001460A JP146082A JPS58117913A JP S58117913 A JPS58117913 A JP S58117913A JP 57001460 A JP57001460 A JP 57001460A JP 146082 A JP146082 A JP 146082A JP S58117913 A JPS58117913 A JP S58117913A
Authority
JP
Japan
Prior art keywords
pressure
air
combustion
passage
primary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57001460A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kanehara
金原 信行
Fumitaka Kikutani
文孝 菊谷
Masahiro Indo
引頭 正博
Hiroaki Watanabe
博明 渡辺
Yoshio Yamamoto
山本 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57001460A priority Critical patent/JPS58117913A/en
Publication of JPS58117913A publication Critical patent/JPS58117913A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/027Regulating fuel supply conjointly with air supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/04Air or combustion gas valves or dampers in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To obtain a combustor capable of preventing the increase of pressure loss in air passage even when primary air and gas are synchronously supplied in terms of amount and TDR is greatly taken. CONSTITUTION:Since a primary air passage 11, a secondary air passage 12, and a gas pathway 14 are controlled so that they are kept at a fixed area ratio, both the primary air and secondary air are controlled with respect to air-fuel ratios. Also, since the pressure of a high-pressure portion 18 is fedback to the pressure chamber 19 of a pressure-equalizing valve 13 in such a way that the pressure difference between the high-pressure portion 18 and low-pressure portion 21 of the primary air passage 11 is equalized with the pressure difference between the gas outlet of the valve 13 and the connection between the gas pathway 14 and the low-pressure portion 21, the air-fuel ratio on the primary air side can be kept almost constantly with good accuracy by the pressure- equalizing valve. Thus, a wide range of stable combustion can be obtained and also high-load combustion can be attained.

Description

【発明の詳細な説明】 本発明は、予混合火炎に2次空気を供給して高負荷安定
燃焼を行う燃焼装置に関し、特に空燃比制御、燃焼量制
御を必要とする燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device that performs high-load stable combustion by supplying secondary air to a premixed flame, and particularly relates to a combustion device that requires air-fuel ratio control and combustion amount control. .

従来、高負荷燃焼を行う燃焼方式として全−火燃焼、予
混合火炎に2次空気を供給する強制ブンゼン燃焼等があ
る。前者は燃焼に要する空唄(を全て予混合する燃焼で
、その空燃比例(財)手段は供給空気路中に設けた混合
管部の差1!:に応じたガスh1゜を供給するいわゆる
ゼロガバナ一方式等が考えられている。この方式によれ
ば、燃焼I11: ’nJ変を要する時には混合管の差
圧は燃焼h1呵変幅の2乗に比例し、例えば最小燃焼鼠
時の必要差圧を8酊ムqとすれば燃焼量・を6倍にする
と200M1kqの差圧となり、かつその圧力損失は差
圧と比例するものであるので、T、 D、 R,を大き
く設定することは送風機の送風圧を非常に大きく設定す
る必“堤があり送風機が大型化する、送風音が高いとい
っだ点で家庭用機器に用いるには実用十問題があった。
Conventionally, combustion methods for performing high-load combustion include all-fire combustion, forced Bunsen combustion that supplies secondary air to a premixed flame, and the like. The former is a combustion that premixes all the air required for combustion, and the air-fuel proportional means is a so-called air-fuel proportional means that supplies a gas h1° according to the difference 1!: of the mixing pipe section installed in the supply air path. A one-way zero governor system has been considered. According to this system, when combustion I11: 'nJ change is required, the differential pressure in the mixing tube is proportional to the square of the combustion h111 change width, and for example, when the minimum combustion If the differential pressure is 8mmq, multiplying the combustion amount by 6 will result in a differential pressure of 200M1kq, and the pressure loss is proportional to the differential pressure, so T, D, and R should be set large. However, there were practical problems in using it for household equipment, as it required setting the blower's air pressure to a very high level, making the blower large, and producing high air noise.

さらに全−火燃焼では理論空気量以」−に予混合されて
いるためにバツクファイヤーを起こしゃすい、燃焼範囲
が狭いといった欠点も有していた。
Further, in all-flame combustion, since more than the stoichiometric amount of air is premixed, backfires are likely to occur and the combustion range is narrow.

−・力、強制ブンゼン燃焼ではt混合−(はたとえば理
論空気の30%〜60%程度に設定され、2次空気を供
給して燃焼を完結する方式であるので、前記全−次燃焼
に比較してパンクファイヤーを起こさない、’J:D、
R,が大きくとれるといった特徴を有するが、そのため
には1次空気側、2次空気側ノJミに燃焼111に応じ
た制御をする必聾があり、そのよい手段がない為家庭用
燃焼装置では燃焼址を−1び、制御するものが普通であ
った。
In forced Bunsen combustion, the t-mixture is set at, for example, 30% to 60% of the theoretical air, and the system completes combustion by supplying secondary air, so compared to the full-primary combustion mentioned above. And don't start a punk fire, 'J:D.
It has the characteristic of being able to obtain a large R, but in order to do so, it is necessary to control the primary air side and secondary air side J in accordance with the combustion 111, and since there is no good means for doing so, it is not possible to use household combustion equipment. In this case, it was common to control the combustion area by -1.

本発明の燃焼装置は強制プンゼ/燃焼方式で1次空気、
2次空気共に空燃比を制御せんとするもので、特に1次
空気量とガス供給量を同期させ、かつT、D、R6を大
きくとる場合にも空気通路の圧力損失の増大を防止出来
る燃焼装置を提供することを目的とするものである。
The combustion device of the present invention employs a forced Punze/combustion method that uses primary air,
It aims to control the air-fuel ratio of both the secondary air and, in particular, synchronizes the primary air amount and gas supply amount, and is a combustion method that can prevent an increase in pressure loss in the air passage even when T, D, and R6 are large. The purpose is to provide a device.

本発明は、予混合気を噴出する炎口部と予混合気の噴出
方向に対し直交又はある角度を保って2次空気を供給し
燃焼を行なわしめ、かつ2次空気供給位置は予混合火炎
に効果的に供給するので高負荷燃焼が達成される。
The present invention provides combustion by supplying secondary air perpendicularly or at a certain angle to the flame port for spouting the premixture and the jetting direction of the premixture, and the secondary air supply position is located at the premixture flame. high-load combustion is achieved.

尚、前記高負荷燃焼を達成する為には、予混合気、2次
空気共にほぼ一定の空燃比に保つ必要が空気路、2次空
気路に分割するブロックにガス路を設け、かつそのガヌ
路入r1は均圧フ1゛から導かれており、前記ブロック
のそれぞれの通路には差圧発生部が設けられており、そ
の差圧発生部の通路面積を各通路共はぼ同じ比に絞る制
相1「段を有しているので、燃料ガス量、1次空Mht
、2次空気111はほぼ同じ比で制御される。さらに1
次空気通路の差圧発生部の高圧部の圧力を均圧フ1゛圧
力室にフィードバックすると共に、前記1次空気路の差
圧発生部の低圧側にガス路の差圧発生部を連通したので
、1次空気の差圧発生部の差圧とガス供給圧が同じにな
り、1次空気と燃料は一定の設定された比で供給される
In order to achieve the above-mentioned high-load combustion, it is necessary to maintain a substantially constant air-fuel ratio for both the premixture and the secondary air. The passageway R1 is led from the equalizing pressure plate 1, and each passage of the block is provided with a differential pressure generation part, and the passage area of the differential pressure generation part is made to have approximately the same ratio for each passage. Since it has phase control stage 1, which narrows down the fuel gas amount and primary air Mht.
, secondary air 111 are controlled at approximately the same ratio. 1 more
The pressure in the high pressure part of the differential pressure generating part of the secondary air passage is fed back to the pressure chamber of pressure equalizing valve 1, and the differential pressure generating part of the gas passage is communicated with the low pressure side of the differential pressure generating part of the primary air passage. Therefore, the differential pressure of the primary air differential pressure generating section and the gas supply pressure become the same, and the primary air and fuel are supplied at a constant set ratio.

今、燃焼111をuJ変する手段として、前記制(財)
手段により各通路面積を可変することによりuJ能であ
り、かつ1次空−(側、2次空気側共にほぼ一定の空燃
比になり、特に1次空気側は均圧弁でガスと空気の圧を
同期させているのでその空燃比は粘度よく一定の設定値
になる。
Now, as a means to change combustion 111 to uJ,
By varying the area of each passage using means, the air-fuel ratio is maintained at a constant level on both the primary air side and the secondary air side.In particular, on the primary air side, an equalizing valve is used to adjust the pressure of gas and air. Since the air-fuel ratio is synchronized, the air-fuel ratio becomes a constant set value with good viscosity.

以下、本発明の一実施例について図面に基づきl戸開す
る7 図は本発明を給湯機に用いた場合の一実施例を示す構成
原理図を示す。図中1はバーナであシ、混合気室2.ス
リット状炎口3.左右に設けられた2次空気室4.混合
気噴出方向に直交する如く2次空気を供給する2次空気
供給口6からなシ、6は燃焼室、7は吸熱フィン、8は
吸熱パイプである。9はブロックで送風機1oと連結さ
れた1次空気路11,2次空路12に分割されており、
均圧弁13を経て前記ブロック9のガス路14に連通さ
れている。ブロック9のそれぞれの通路11.12.1
4にはベンチ−り状の差圧発生部が設けられており、各
ペンチーリー人口面積比を一定比で絞るニードル16を
連結してスライドさせ各通路面積を制御する制御機構1
6が設けられており、17は制御41!構16をスライ
ドさせる駆動部である。
Hereinafter, one embodiment of the present invention will be explained based on the drawings. Figure 7 shows a configuration principle diagram showing an embodiment of the present invention in a water heater. In the figure, 1 is the burner and air mixture chamber 2. Slit-shaped flame mouth 3. Secondary air chambers provided on the left and right4. There is a secondary air supply port 6 for supplying secondary air perpendicular to the air-fuel mixture jetting direction, 6 is a combustion chamber, 7 is an endothermic fin, and 8 is an endothermic pipe. A block 9 is divided into a primary air passage 11 and a secondary air passage 12 connected to the blower 1o.
It communicates with the gas passage 14 of the block 9 via a pressure equalizing valve 13. Each passage 11.12.1 of block 9
4 is provided with a bench-like differential pressure generation section, and a control mechanism 1 that controls the area of each passage by connecting and sliding a needle 16 that narrows down the population area ratio of each pencilly at a constant ratio.
6 is provided, and 17 is the control 41! This is a drive unit that slides the structure 16.

1次空気通路11の高圧部18の圧力は、均圧弁13の
圧力室19に連結管20によってフィードバックされて
おり、かつ、1次空気通路11の低圧部21にガス路1
4が連結されており、混合気通路22によって混合気室
2へ連通されている。
The pressure in the high pressure section 18 of the primary air passage 11 is fed back to the pressure chamber 19 of the pressure equalizing valve 13 through a connecting pipe 20, and the gas passage 1 is fed back to the low pressure section 21 of the primary air passage 11.
4 are connected and communicated with the mixture chamber 2 through the mixture passage 22.

一方、2次空気通路12は2次空気供給管23によって
2次空気室4に連通されている。
On the other hand, the secondary air passage 12 is communicated with the secondary air chamber 4 through a secondary air supply pipe 23.

前記構成において、1次空気通路11.2次空く(通路
12.ガス路14は一定の面積比になる様に制御されて
いるので、1次空気、2次空姿(共におおよその空燃比
の制御がなされるものであり、かつ、−次空気通路11
の高圧部18と低圧部21間の差圧と均圧弁13のガス
出目部とガス路14の前記低圧部21への接続部のバ°
−圧が簀しくなる様に均圧弁13の圧力室19に前記高
IT部18の圧力がフィードバックされているので、1
次空気側の空燃比は精度よくほぼ一定の比に制御される
In the above configuration, the primary air passage 11, secondary air passage (passage 12, and gas passage 14) are controlled to have a constant area ratio. control is carried out, and - the next air passage 11
The differential pressure between the high pressure part 18 and the low pressure part 21 of the pressure equalizing valve 13 and the barrier of the gas outlet part of the gas path 14 and the connection part to the low pressure part 21 are
- Since the pressure of the high IT section 18 is fed back to the pressure chamber 19 of the pressure equalizing valve 13 so that the pressure is
The air-fuel ratio on the secondary air side is precisely controlled to a substantially constant ratio.

1次空気の空燃比を精度よく設定し、おおよその空燃比
制御された2次空気を予混合炎に供給するので広い範囲
の燃焼が可能であると」(に高負荷燃焼が達成される。
High-load combustion is achieved by setting the air-fuel ratio of the primary air with high precision and supplying the secondary air with approximately controlled air-fuel ratio to the premix flame, making it possible to burn a wide range of combustion.

さらに、1次空電通路11゜2次空気通路12.ガス路
14の各通路部の面積を面積比一定で制御する制御手段
によって、1次。
Furthermore, the primary air passage 11° and the secondary air passage 12. The primary control means controls the area of each passage portion of the gas passage 14 to keep the area ratio constant.

2次空気量、ガス量をほぼ一定の比で制御出来るもので
あるので、前記制御手段により燃焼量制御が出来、かつ
、出湯を検出し、設定湯温になる様いわゆる比例制御を
行うことも可能である。
Since the amount of secondary air and gas can be controlled at a nearly constant ratio, the amount of combustion can be controlled by the control means, and it is also possible to detect the hot water coming out and perform so-called proportional control to reach the set hot water temperature. It is possible.

この比例制御を行う時、送風機1oは一定の印加電圧で
運転されており、燃焼量を絞る時にはニードル弁16で
前記各通路11,12.14のペンチーリーム口部を絞
るものであるが、最大燃焼量時の1次空気通路11の高
圧部18.低圧部21間の差圧が、均圧弁13によって
精度よく一定の空燃比が得られる必要最小差圧だけあれ
ばよく、燃焼量を絞った場合には面積を絞るので差圧は
大きくなるが送風機は燃焼量大の時と同一条件で運転す
ればよいことになるので、送風機を特別に大能力化する
ことなく、広い範囲で燃焼量可変が出来る。
When performing this proportional control, the blower 1o is operated with a constant applied voltage, and when reducing the amount of combustion, the needle valve 16 is used to throttle the openings of the respective passages 11, 12, and 14. high pressure section 18 of the primary air passage 11 when The differential pressure between the low-pressure parts 21 only needs to be the minimum differential pressure necessary to obtain a constant air-fuel ratio with high accuracy by the pressure equalizing valve 13. If the combustion amount is reduced, the area is reduced, so the differential pressure increases, but the blower Since it is sufficient to operate under the same conditions as when the combustion amount is large, the combustion amount can be varied over a wide range without increasing the capacity of the blower.

以上、上記実施例より明らかなように本発明によれば次
の如き効果が得られる。
As is clear from the above embodiments, the following effects can be obtained according to the present invention.

(1)各通路部を同−面積比で制御するので1次空気、
2次空気共に空燃比制御が出来、かつ、1次空気側の空
燃比は均圧弁で精度よくほぼ一定に保つことが可能とな
り、広い範囲の安定燃焼が得られると共に、高負荷燃焼
が達成される。
(1) Each passage section is controlled with the same area ratio, so the primary air
The air-fuel ratio of both the secondary air can be controlled, and the air-fuel ratio of the primary air can be kept almost constant with high precision using a pressure equalization valve, allowing stable combustion over a wide range and achieving high-load combustion. Ru.

(2)1次空気通路、2次空気通路、ガス路の面積をほ
ぼ一定の比で制御する手段によって、空燃比と共に燃焼
111°を制御することが出来、いわゆる比例制御をガ
ス1d、制御弁等を用いなくても達成出来る。
(2) By controlling the areas of the primary air passage, secondary air passage, and gas passage at a nearly constant ratio, it is possible to control the combustion 111° as well as the air-fuel ratio, and perform so-called proportional control on the gas 1d and the control valve. This can be achieved without using etc.

(3)前記、燃焼111°制御を行う時、燃焼1.1最
大時に1次空気通路差圧を必斐最小圧に設定することに
より、1次空気側の空燃比制0(を均圧)1゛によって
行うので、燃焼量制御を行っても送風能力を大、きくす
る必要がなく、送風機が大型化する、送風騒音が高いと
いった従来の欠1.°J、を解消出来る。
(3) When performing the above-mentioned combustion 111° control, by setting the primary air passage differential pressure to the necessary minimum pressure at the maximum combustion 1.1, the air-fuel ratio on the primary air side is controlled to 0 (pressure equalized) Since the combustion rate is controlled by 1, there is no need to increase the blowing capacity even if the combustion amount is controlled, which eliminates the disadvantages of conventional methods such as the blower becoming larger and the blowing noise being higher. °J, can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例である給を動機の枯木構成図で
ある。 機、11・・・・・・1次空気通路、12・・・・・・
2次空気通路、13・・・・・・均圧弁、14・・・・
・・ガス路、18・・・・・・高圧部、19・・・・・
・圧力室、21・・・・・・低圧部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ρ7
The figure is a configuration diagram of a dead tree that is motivated by supply, which is an embodiment of the present invention. Machine, 11...Primary air passage, 12...
Secondary air passage, 13... pressure equalization valve, 14...
...Gas path, 18...High pressure section, 19...
・Pressure chamber, 21...Low pressure section. Name of agent: Patent attorney Toshio Nakao and one other person ρ7

Claims (1)

【特許請求の範囲】[Claims] 予混合火炎に2次空気を供給するバーナと、送風機と連
通した1次空気通路、2次空気通路および均圧弁と連通
したガス路を設けたブロックとを備え、前記ブロックの
各通路に差圧発生部を設け、前記差圧発生部の面積を各
通路ともほぼ同−比に制御する手段を有し、かつ前記面
積を制御する上流の1次空気通路の高圧部圧力を前記均
圧弁の圧力室にフィードバンクすると共に、前記面積を
制御する後流側のガス路を1次空気通路の低圧部に連通
し、前記制御手段で燃焼量制御する構成とした燃焼装置
The block includes a burner that supplies secondary air to a premixed flame, and a block that is provided with a primary air passage communicating with a blower, a secondary air passage, and a gas passage communicating with a pressure equalization valve, and has a differential pressure in each passage of the block. a means for controlling the area of the differential pressure generating section to be approximately the same in each passage; A combustion apparatus having a structure in which a gas passage on the downstream side that feeds into the chamber and controls the area is communicated with a low pressure part of the primary air passage, and the combustion amount is controlled by the control means.
JP57001460A 1982-01-07 1982-01-07 Combustor Pending JPS58117913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57001460A JPS58117913A (en) 1982-01-07 1982-01-07 Combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57001460A JPS58117913A (en) 1982-01-07 1982-01-07 Combustor

Publications (1)

Publication Number Publication Date
JPS58117913A true JPS58117913A (en) 1983-07-13

Family

ID=11502063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57001460A Pending JPS58117913A (en) 1982-01-07 1982-01-07 Combustor

Country Status (1)

Country Link
JP (1) JPS58117913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316454A1 (en) * 1987-05-28 1989-05-24 Eiken Kougyo Kabushiki Kaisha Gas-air ratio control valve for gas burners
FR2981863A1 (en) * 2011-10-26 2013-05-03 Gdf Suez DEVICE FOR REGULATING A GASEOUS MIXTURE
EP3211305A1 (en) * 2016-02-02 2017-08-30 Daesung Celtic Enersys Co., Ltd. Turn down ratio valve
JP2019011900A (en) * 2017-06-30 2019-01-24 リンナイ株式会社 Premixing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316454A1 (en) * 1987-05-28 1989-05-24 Eiken Kougyo Kabushiki Kaisha Gas-air ratio control valve for gas burners
FR2981863A1 (en) * 2011-10-26 2013-05-03 Gdf Suez DEVICE FOR REGULATING A GASEOUS MIXTURE
WO2013060997A3 (en) * 2011-10-26 2013-10-24 Gdf Suez Device for regulating a gas mixture
JP2014534406A (en) * 2011-10-26 2014-12-18 ジェデエフ スエズ Device for adjusting the gas mixture
EP3211305A1 (en) * 2016-02-02 2017-08-30 Daesung Celtic Enersys Co., Ltd. Turn down ratio valve
US10168074B2 (en) 2016-02-02 2019-01-01 DAESUNG CELTIC ENERSYS Co., Ltd Turn down ratio (TDR) damper
JP2019011900A (en) * 2017-06-30 2019-01-24 リンナイ株式会社 Premixing device

Similar Documents

Publication Publication Date Title
US6135063A (en) Dual regulator direct-fired steam generator
JPS58117913A (en) Combustor
JPS5885016A (en) Combustion control device
JP2905628B2 (en) Pulse combustor
JPH116617A (en) Combustion device
JP2848902B2 (en) Gas burner
JP2769586B2 (en) Combustion equipment
JPS586A (en) Combustion device
JPH07224688A (en) Fuel supply method for gas turbine
JPS6166019A (en) Gas turbine combustor
JPS59219622A (en) Gas combustion controller
JP2568461B2 (en) Gas combustion method and combustion apparatus for implementing the method
JPS60162122A (en) Controller for blower for forced-feed air type burner
JPS59109710A (en) Burner
JPS5913820A (en) Burner
JP2877486B2 (en) Combustion equipment
JP2001021135A (en) Method for supplying fuel gas to gas burner requiring high turn down ratio
JPS62202928A (en) Combustion air control unit
JPS60191126A (en) Burner
JPS59142329A (en) Combustion control device
JPS59219623A (en) Gas combustion controller
JPH05312315A (en) Forced air blowing type combustion device
JP2533260Y2 (en) Semi Bunsen gas burner
JPH0212446Y2 (en)
GB2059568A (en) Burner controls