JPS58117650A - Manufacture of silver oxide battery - Google Patents

Manufacture of silver oxide battery

Info

Publication number
JPS58117650A
JPS58117650A JP57000716A JP71682A JPS58117650A JP S58117650 A JPS58117650 A JP S58117650A JP 57000716 A JP57000716 A JP 57000716A JP 71682 A JP71682 A JP 71682A JP S58117650 A JPS58117650 A JP S58117650A
Authority
JP
Japan
Prior art keywords
silver oxide
particle
battery
discharge
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57000716A
Other languages
Japanese (ja)
Inventor
Kazumi Yoshimitsu
由光 一三
Hiroshi Ishiuchi
石内 博
Akio Shimizu
清水 明夫
Yoshio Uetani
植谷 慶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57000716A priority Critical patent/JPS58117650A/en
Publication of JPS58117650A publication Critical patent/JPS58117650A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a silver oxide battery having decreased internal resistance and increased discharge capacity by forming silver layer on the particle surface by chemically reducing the surface of secondary particle of silver oxide, and assembling a battery using this particle as a positive active mass, and conducting pre-discharge of a battery. CONSTITUTION:Secondary particle of silver oxide having a particle size of 100-400mum is preferable in this invention. This particle is prepared in such a way that primary particle of silver oxide having a particle size of 1.5-10mum is mixed with water, and after moisture is controlled adequately, the mixture is granulated, and balled if necessary, to form the secondary particle. The chemical reduction of the surface of the silver oxide secondary particle is conducted in such a way that particle is dipped in a solution prepared by dissolving hydrezine acting as a reducing agent in ethyl alcohol. Pre-discharge is conducted at constant load discharge or constant current discharge or ac discharge. By this procedure, a battery having decreased internal resistance is provided.

Description

【発明の詳細な説明】 本発明は1価の酸化銀を正極活物質とする酸化銀電池の
製造法の改良に関し、内部抵抗が小さく、かつ放tJ量
の大きい酸化銀電池を提供することを目的とする〇 酸化銀電池の正極活物質としては一般に粒径が6μm前
後の微粉末状の酸化銀が使用されているが、この酸化銀
粉末は流動性が急く、工業的にマス切りh式で秤蓋する
ことが困離であることから、りん状黒鉛を加えて流動性
を改良することが行なわれているが、りん状黒鉛の添加
によ)流動性は改良され導電性が付与されるものの、り
ん状黒鉛の占める体積が大きいので、そのぶん活物質の
充装置が低下してλh容装化がはかれないという問題が
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the manufacturing method of a silver oxide battery using monovalent silver oxide as a positive electrode active material, and aims to provide a silver oxide battery with a low internal resistance and a large amount of tJ emitted. Purpose〇 Finely powdered silver oxide with a particle size of around 6 μm is generally used as the positive electrode active material of silver oxide batteries, but this silver oxide powder has rapid fluidity and is industrially used in the mass cutting method. Since it is difficult to cover the scale with a lid, it has been attempted to improve the fluidity by adding phosphorous graphite. However, since the volume occupied by phosphorous graphite is large, there is a problem that the filling capacity of the active material is reduced accordingly, making it impossible to achieve λh packaging.

そこで、りん状黒鉛の添加による流動性の改爽に代えて
、酸化銀を二次粒子化してtIt!III性を向上させ
ることが提案されているが、二次粒子化によって流動性
は改良されるものの、妙ん状黒鉛の減少ないしtま添加
中止により導電性が低下して、電池の内部抵抗が増加す
るという問題がある。
Therefore, instead of adding phosphorous graphite to improve fluidity, silver oxide was made into secondary particles and tIt! Although fluidity is improved by forming secondary particles, the conductivity decreases due to the reduction or discontinuation of the addition of graphite, and the internal resistance of the battery increases. The problem is that it increases.

そのため、酸化銀二次粒子の表面を還元して粒子表面に
銀J−を形成させ、正極活物質自体に導電性を付与しで
、内部抵抗が小さくかつ一装置の電池を得ようとする試
みがなされているが、島密度4に加圧成形したときに二
次粒子が一部破壊され、銀の経路が一部遮断されて内部
抵抗が充分に小さくならないという問題がある。
Therefore, attempts have been made to reduce the surface of secondary silver oxide particles to form silver J- on the particle surface and to impart conductivity to the positive electrode active material itself, thereby obtaining a battery with low internal resistance and a single device. However, there is a problem in that when pressure molding is performed to an island density of 4, some of the secondary particles are destroyed, part of the silver path is blocked, and the internal resistance is not sufficiently reduced.

また、正極に4電柱を付与するため、電池組立後に予備
放電−rることか提案され、本出槻人によってもすでに
出願がなされているが、予備放電によって正極活物質の
みならずに接法物質も消費され、この系の電池が負極規
制圧しなければならないことも関連して、電池全体とし
ての放電容量の低下が大きくなり、必らずしも高容量化
が達成しえない。
In addition, in order to add four utility poles to the positive electrode, it has been proposed that a preliminary discharge be carried out after battery assembly, and an application has already been filed by Hitoshi Motoidetsu. Materials are also consumed, and this type of battery must have a negative electrode regulation pressure, which leads to a significant decrease in the discharge capacity of the battery as a whole, and it is not always possible to achieve a high capacity.

本発明者らは、そのような事情に照らして樵々研究を重
ねた結果、酸化銀二次粒子の表面を化学還元して粒子表
面に銀層を形成させ、この粒子表面に#M層を有する酸
化銀二次粒子を正極活物質と]〜てIIEa組立を行な
い、組立後に予備放電するときは、内部抵抗が小さく、
かつ放電容量が大きい酸化銀電池が得られることを見出
し、本発明を完成するKいたつ友。
In light of such circumstances, the inventors of the present invention have carried out extensive research on the surface of silver oxide secondary particles, and as a result, the surface of secondary silver oxide particles is chemically reduced to form a silver layer on the surface of the particle, and the surface of this particle has a #M layer. When performing IIEa assembly using silver oxide secondary particles as the positive electrode active material and pre-discharging after assembly, the internal resistance is small;
Itatsutomo K. discovered that a silver oxide battery with a large discharge capacity could be obtained, and completed the present invention.

すなわち本発明においては、粒子表面の還元により正極
活物質自身に導電性を付与させ、加圧成形によって一部
破壊された導電経路を予備放電によって再生させるので
、予備放電による電気量の損失が予備放電だけで導電性
を付与する場合に比べて非常に少ない。また、りん状黒
鉛の添加をとくに要しないので、そのぶん正極活物質の
充填量が増加して放電容量が大きくなるし、また還元に
より形成した銀層は脱酸素により多孔質化しているので
、電解液とのなじみがよく、放電利用率が向上する上に
、予備放電による導電経路の形成も容易であり、より少
ない放電電気量で正極に充分な導電性を付与することが
できる。
In other words, in the present invention, conductivity is imparted to the positive electrode active material itself by reduction of the particle surface, and the conductive path partially destroyed by pressure molding is regenerated by preliminary discharge, so that the loss of electricity due to preliminary discharge is reduced. This is much less than when electrical conductivity is imparted only by discharge. In addition, since the addition of phosphorescent graphite is not particularly required, the filling amount of the positive electrode active material increases accordingly, resulting in a larger discharge capacity.Also, since the silver layer formed by reduction becomes porous due to deoxidation, It has good compatibility with the electrolytic solution, improves the discharge utilization rate, and also facilitates the formation of a conductive path through preliminary discharge, making it possible to impart sufficient conductivity to the positive electrode with a smaller amount of discharged electricity.

本発明において酸化銀二次粒子としては、粒径が100
〜400amのものが好用され、これらはたとえば粒径
1.5〜10ams程度の酸化銀−次粒子に水を加えて
混合し、適度に水分調整したのち、造粒し、要すれば整
粒することKよって得られる。そして、酸化銀二次粒子
の表面の化学還元は、たとえばヒドラジンを還元剤とし
、これをエチルアルコールに溶解させた液に浸漬するこ
とによって行なわれる。その際の還元量としては1〜2
チ(重量−1以下同様)程度にするのが好ましい。
In the present invention, the silver oxide secondary particles have a particle size of 100
-400 ams are preferably used, and these are made by adding water to secondary silver oxide particles with a particle size of about 1.5 to 10 ams, mixing them, adjusting the moisture appropriately, and then granulating them, and granulating them if necessary. It is obtained by doing K. The surface of the silver oxide secondary particles is chemically reduced by immersing them in a solution prepared by dissolving hydrazine in ethyl alcohol using, for example, hydrazine as a reducing agent. In that case, the amount of return is 1 to 2
It is preferable to set it to about 1 (weight -1 or less).

予備放電は定抵抗放電によってもよいし、また定電流放
電や交流による放電圧よってもよい。
The preliminary discharge may be a constant resistance discharge, a constant current discharge, or a discharge voltage using alternating current.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1 平均粒径25θμ鯛の酸化銀二次粒子をヒドラジンの1
%エチルアルコール溶液に浸漬して粒子表面を嫁に還元
し、酸化銀含量を98.6%にした。
Example 1 Silver oxide secondary particles of sea bream with an average particle size of 25θμ were mixed with hydrazine.
% ethyl alcohol solution to reduce the particle surface to a silver oxide content of 98.6%.

つぎに、この酸化銀二次粒子277qを@ L /lx
2で加圧成形して直径9g、厚さ0.69鱈の成形体を
作製し、この成形体を正極として次に示すようKして第
1図のような構成の電池を組み立て丸。
Next, this silver oxide secondary particle 277q is @ L /lx
A molded body having a diameter of 9 g and a thickness of 0.69 mm was prepared by pressure molding in Step 2, and this molded body was used as a positive electrode as shown below, and a battery having the configuration as shown in Fig. 1 was assembled into a circle.

すなわち、前記の正極(1)を電解液の一部が注入され
た正極缶(2)に挿入し、正極(1)上に微孔性ポリグ
ロビレンフイルムとセロハンとからなるセパレータ(3
)およびビニロン−レーヨン混抄紙かうなる電解液吸収
体(4)を載置した。
That is, the above-mentioned positive electrode (1) is inserted into a positive electrode can (2) into which a part of electrolyte is injected, and a separator (3) made of microporous polyglobylene film and cellophane is placed on the positive electrode (1).
) and an electrolyte absorber (4) made of vinylon-rayon mixed paper were placed.

この正極缶(2)を周縁折り返し部に環状ガスケット(
5)を滅合し内部に62qの氷化亜鉛を活物質とする負
極(6)と残り大半量の電解液とを充填した負極端イ゛
板(7)K嵌合し、正極缶(2)の開口部局壁を内方へ
締め付は彎曲させてその内w4面を環状ガスケット(5
)に圧接させて封口した・使用された電解液は鹸化健鉛
を溶解させた85囁水酸化カリウム水溶液である。
This positive electrode can (2) is attached to a circular gasket (
5), the negative electrode plate (7) K filled with the negative electrode (6) containing 62q of frozen zinc as an active material and the remaining half of the electrolyte is fitted, and the positive electrode case (2) is fitted. ) To tighten the opening local wall inward, curve it and insert an annular gasket (5
) The electrolyte used was an 85% potassium hydroxide aqueous solution in which saponified lead was dissolved.

このようにして組み立てた電池をlΩ定抵抗で0.80
 rQAh予備放電した・なお、この電池の化学還元量
!′i0.96 mbに相当し、予備放電による還元量
との合計は1.76 mAhである。
The battery assembled in this way has a constant resistance of 0.80 lΩ.
rQAh pre-discharged・In addition, the amount of chemical reduction of this battery! 'i corresponds to 0.96 mb, and the total amount including the amount reduced by preliminary discharge is 1.76 mAh.

この電池の内部抵抗(20℃における内部抵抗、以下同
様)を測定した結果を第1表に示す。
Table 1 shows the results of measuring the internal resistance (internal resistance at 20° C., hereinafter the same) of this battery.

比較例1 平均粒径250%肩の酸化銀二次粒子をヒドラジンの1
%エチルアルコール浴液に浸漬し、酸化銀含量が97.
2チになるまで粒子表面を銀に還元した〇つぎ罠、この
酸化銀二次粒子2771+1を実施例1と同様に加圧成
形して直径9M、厚さ0.69mの成形体を得た。この
成形体における酸化銀から銀への還元量は1.76 m
Ahに相当する。
Comparative Example 1 Silver oxide secondary particles with an average particle diameter of 250% were mixed with hydrazine.
% ethyl alcohol bath solution, silver oxide content was 97.
The surface of the particles was reduced to silver until the particle size became 2 cm.The silver oxide secondary particles 2771+1 were then pressure-molded in the same manner as in Example 1 to obtain a molded body with a diameter of 9M and a thickness of 0.69m. The amount of reduction from silver oxide to silver in this molded body was 1.76 m
Corresponds to Ah.

つぎに、上記のような成形体を正極と1−1実施例1と
同様圧して電池を組み立て、内部抵抗を一定した◇その
結果を第1表にボす。
Next, a battery was assembled by pressing the molded body as described above with the positive electrode in the same manner as in 1-1 Example 1, and the internal resistance was made constant. The results are shown in Table 1.

比較例2 平均粒径250μ肩の酸化銀二次粒子28OIfを@t
/3tで加圧成形し、直径9顛、厚さ0.69mの成形
体を作製し、該成形体を正極としたほかは実施例1と同
様にして電池組立を行なった。
Comparative Example 2 Silver oxide secondary particles 28OIf with an average particle size of 250μ were @t
A molded body having a diameter of 9 meters and a thickness of 0.69 m was produced by pressure molding at /3t, and a battery was assembled in the same manner as in Example 1 except that the molded body was used as a positive electrode.

組立後、lΩ定抵抗で1.76 mAh相当の予備放電
ffTない、予備放電後の電池の内部抵抗を調定した。
After assembly, the internal resistance of the battery after pre-discharge was adjusted, with a pre-discharge ffT equivalent to 1.76 mAh with a constant resistance of 1Ω.

その結果を第1表に示す。The results are shown in Table 1.

第   1   表 ・君1表に示すように、遺元鎗はいずれも1.76mA
hであるが、本発明の方法による場合は内部抵抗の小さ
い電池が得られる。
As shown in Table 1 and Kimi 1, both Igenyari have 1.76mA.
However, when using the method of the present invention, a battery with low internal resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る酸化銀電池を示す断面図である。 (1)・・・正極 第1図 FIG. 1 is a sectional view showing a silver oxide battery according to the present invention. (1)...Positive electrode Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、粒子表面を化学還元して粒子表面に銀層を形成した
酸化銀二次粒子を正極活物質とし、電池組立後に予備放
電することを特徴とする酸化銀電池の製造法◎
1. A method for producing a silver oxide battery, characterized in that silver oxide secondary particles whose particle surfaces are chemically reduced to form a silver layer on the particle surfaces are used as a positive electrode active material, and a preliminary discharge is performed after battery assembly.
JP57000716A 1982-01-05 1982-01-05 Manufacture of silver oxide battery Pending JPS58117650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57000716A JPS58117650A (en) 1982-01-05 1982-01-05 Manufacture of silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57000716A JPS58117650A (en) 1982-01-05 1982-01-05 Manufacture of silver oxide battery

Publications (1)

Publication Number Publication Date
JPS58117650A true JPS58117650A (en) 1983-07-13

Family

ID=11481479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57000716A Pending JPS58117650A (en) 1982-01-05 1982-01-05 Manufacture of silver oxide battery

Country Status (1)

Country Link
JP (1) JPS58117650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073095A1 (en) 2003-02-13 2004-08-26 Dowa Mining Co., Ltd. Silver oxide powder for alkali battery and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101630A (en) * 1977-02-16 1978-09-05 Hitachi Maxell Method of manufacturing silver*i* oxide battery
JPS53115028A (en) * 1977-03-18 1978-10-07 Hitachi Maxell Method of manufacturing silver*i* oxide battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101630A (en) * 1977-02-16 1978-09-05 Hitachi Maxell Method of manufacturing silver*i* oxide battery
JPS53115028A (en) * 1977-03-18 1978-10-07 Hitachi Maxell Method of manufacturing silver*i* oxide battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073095A1 (en) 2003-02-13 2004-08-26 Dowa Mining Co., Ltd. Silver oxide powder for alkali battery and process for producing the same
EP1594180A1 (en) * 2003-02-13 2005-11-09 Dowa Mining Co., Ltd. Silver oxide powder for alkali battery and process for producing the same
EP1594180A4 (en) * 2003-02-13 2009-12-30 Dowa Electronics Materials Co Silver oxide powder for alkali battery and process for producing the same

Similar Documents

Publication Publication Date Title
EP0477461A2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPS58117650A (en) Manufacture of silver oxide battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPS59173961A (en) Organic electrolyte secondary battery
JPH0212762A (en) Silver oxide battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JPS5928025B2 (en) Alkaline battery manufacturing method
JPH0474833B2 (en)
JPS58128655A (en) Silver oxide secondary battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPS6065479A (en) Lithium secondary battery
JPH071695B2 (en) Alkaline zinc storage battery
JPS58121564A (en) Manufacturing method of button type alkaline battery
JPH01232663A (en) Non-sintered cadmium negative electrode for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPS61273862A (en) Button type alkaline battery
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JPS6113562A (en) Manufacture of anode plate for nickel-cadmium storage battery
JPS58137964A (en) Alkaline zinc storage battery
JPH04171665A (en) Button type alkaline battery
JPS58128656A (en) Silver oxide secondary battery
JPS58137963A (en) Alkaline zinc storage battery
JPS61104563A (en) Silver oxide battery