JPS58117501A - Plane microlens - Google Patents

Plane microlens

Info

Publication number
JPS58117501A
JPS58117501A JP74582A JP74582A JPS58117501A JP S58117501 A JPS58117501 A JP S58117501A JP 74582 A JP74582 A JP 74582A JP 74582 A JP74582 A JP 74582A JP S58117501 A JPS58117501 A JP S58117501A
Authority
JP
Japan
Prior art keywords
metallic
microlens
metallic ions
substrate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP74582A
Other languages
Japanese (ja)
Other versions
JPH044261B2 (en
Inventor
Yoshio Yamazaki
山崎 淑夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP74582A priority Critical patent/JPS58117501A/en
Publication of JPS58117501A publication Critical patent/JPS58117501A/en
Publication of JPH044261B2 publication Critical patent/JPH044261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To shorten the diffusion treating time of metallic ions by diffusing metallic ions in a glass substrate of optically uniform quality which has micropores and forming a plane microlens having a refractive index distribution. CONSTITUTION:On a surface of the microporous glass substrate 5 of optically uniform quality formed by solgale method, an anticorrosive metallic mask 6 having small holes 7 as diffusion windows is formed by vapor deposition, sputtering, etc., to obtain a blank substrate. The anticorrosive metallic mask material is selected on the basis of the kind of metallic ions to be diffused from the small holes 7 and treatment temperature depending upon its salt and substrate glass composition, but Ti and Ta should be relatively superior. Said blank substrate is placed in a heat-resistant container 8 containing salt 9 as a metallic ion source, thereby diffusing metallic ions. The metallic ions to be diffused are Tl<+>, Cs<+>, Pb<++>, etc.

Description

【発明の詳細な説明】 本%明は平板ガラスに適当なマスクtそ曾さぜ金鴫イオ
ン+rs分的に拡散さぞ屈折率分布形の平板マイクロレ
ンズに−する0 さらに詳しくは、該平板ガラスに光学的に均質なマイク
ロポーラス會肩するガラス基板を用いることに工9、@
4イオンの拡散処理時間τ着るしく短軸したことt%黴
とする新規な屈折卓分布形の半板マイクロレンズに関す
るものでるる。
DETAILED DESCRIPTION OF THE INVENTION In this invention, a mask suitable for the flat glass is used to partially diffuse the gold ion + rs into a flat plate microlens with a refractive index distribution type. Engineering 9,@
This article relates to a novel half-plate microlens with a refractive table distribution type, in which the diffusion processing time τ of 4 ions has a relatively short axis of t%.

マイクロレンズは、最近、果光用、結導用のレンズとし
て注目kmめ、ガラス製のロンド状マイクロレンズは丁
でに市販さnているが、本発明に係わる平板マイクロレ
ンズ【使えば一枚の平板上にJIkIal!!l路作我
と1町じ要領で多数のマイクロレンズtいっぺんにつく
9アレー化することかできる〇ロンド状のマイクロレン
ズは、丁でにいろいろな分野で便りfLはじめて!?す
、たとえば十のひとつにPP0(普通紙複写機)かめる
。PPOでは画律の転写にレンズ系か必要で、従来は普
通のレンズ【使っていたoしかし、普通のレンズでは結
像さfるのにかなりの距離かいるため複写機のすイズか
相当大きくなってし1う0そこで焦点距離の短いロンド
状マイクロレンズを数6本たばねてアレー化し、こn2
レンズ系に使えば複4嶺の薄形小形化ができる0 このはか、゛凭JaI信用の部品(分波器、カブ2など
)にt使わnl さらに元字式ビデオディス!Oレーザ
ービーム果光用レンズとしても注目さnる〇しかし、C
のロンド状マイクロレンズは、例えはアレー化するため
VC,tri数6本?たばねて固定化しなI/″′ff
′Lばlらないことのはか、屈折率がロンドの中心軸か
ら外周に同ってなだらかに減少する構造にするため、T
n  (タリウム)やOs (セシウム)などの′iX
イオン’7K(カリウム)などのイオンと交遺する皮め
の侵時間に渡る熱処理tしなけ几ばならない。4常この
拡散処理時間は、150〜200時間に及ぶため生産性
は必ずしも良くない〇この屈折率分布形のマイクロレン
ズでは、!1′I配した平板マイクロレンズに2hでも
同じ問題でめるO 本冗明は、この1うなレンズ満作のための艮時間にぼる
処理時間r1元学的に均質なマイクロポーラスを舊する
ガラス扇板r用いることに19、者るしく@匍して衾遺
した屈折率分布形平板マイクロレンズを陣供するもので
める〇 一般にイオン砿敏交換による屈折率分布の形成に、電子
分極率の小さいイオン(Kなど)が電子価イオン(Tl
、C:など)と浴融堰の接触にエフ界面を通じてイオン
交侠嘔n1こnにLつて生じるガラス2115仮内のイ
オン濃度分布に対応して2乗分布近似の屈折率分布が缶
底さnるのである。
Recently, microlenses have been attracting attention as lenses for fruit light and directing, and glass rond-shaped microlenses are commercially available. On the flat plate of JIkIal! ! The Rondo-shaped microlens, which can be made into 9 arrays with multiple microlenses attached at once, is being used in a variety of fields for the first time! ? For example, put PP0 (plain paper copying machine) in one of the tens. In PPO, a lens system is required to transfer the image, and conventionally a normal lens was used. So, I created an array by combining several rond-shaped microlenses with short focal lengths.
If used in a lens system, it can be made thinner and more compact. It is also attracting attention as a lens for O laser beam output. However, C
For example, the Rondo-shaped microlens requires 6 VCs and 6 tris to form an array. Don't stick around I/'''ff
'L is not the same, but in order to create a structure in which the refractive index decreases gently from the center axis to the outer circumference, T
'iX such as n (thallium) and Os (cesium)
The skin must be heat-treated for a long time so that it can interact with ions such as 7K (potassium). 4.Productivity is not necessarily good because the diffusion processing time is usually 150 to 200 hours. With this gradient index microlens,! The same problem can be solved even if the flat microlenses arranged in 1'I are used for 2 hours.This paper describes the processing time r1 equivalent to the time it takes to fully produce a single lens. In order to use the plate r, it is said that the refractive index distribution type flat microlens, which has been left behind since 1998, is used as a field. In general, in order to form a refractive index distribution by ion agglomeration exchange, the electron polarization is small. Ions (such as K) become valence ions (Tl
, C: etc.) and the bath melting weir through the F interface, the refractive index distribution approximating the square distribution corresponds to the ion concentration distribution in the glass 2115 temporary that occurs at the bottom of the can. That's what happens.

図1は屈折率分布形レンズの元学籍性を模式的に示し7
2.ものでるる。
Figure 1 schematically shows the original characteristics of a gradient index lens7.
2. It comes out.

光#■ば、常に屈折率の大きい方向に曲げられるので、
ガラス基板■を透過するとも、IINIJlliI折皐
績域■で曲げら几、IIk元して■で焦点を結ぶ。
Since light #■ is always bent in the direction of the larger refractive index,
Even when it passes through the glass substrate (2), it bends at the IINIJlliI folding region (2), and focuses at the IIK point (2).

−牧に拡散g4象に以下の式で費わさn;b法則に1っ
て起る。
- Maki is diffused into g4 elephants by the following formula, and 1 occurs in the n;b law.

a%t=DΔc+aiv  (MCff)−〇、\でC
:粒子磯度、r:収子に作用する刀、μ:粒子の移jl
oMID:拡散係数で(r、llr −1)の次21′
9°            。
a%t=DΔc+aiv (MCff)-〇, \C
: Particle degree, r: Sword that acts on the grain, μ: Particle movement jl
oMID: diffusion coefficient of (r, llr −1) order 21′
9°.

拡散係数りに、固体、液体の場合原子かその位&′9!
を変える過程には活性化エネルギーEか必要で次式のL
5な@係か成立つ。
In terms of diffusion coefficient, in the case of solids and liquids, it is atomic or so &'9!
The process of changing requires activation energy E, and L in the following equation
5 @ person is established.

D = (’4 ) III X I) (へr)!1
:粒子間隔、τ錠 =粒子の飛−か起こる頻度。
D = ('4) III X I) (her)! 1
: Particle spacing, τ = Frequency of particle flying.

k:ボルツマン定数。k: Boltzmann constant.

土酸から刊るLうに、拡政保数に温度によって着るしく
変化すると同時に、粒子間隔の自乗に比例して拡故係数
は変化する0 本発明は従来のガラスへの金属イオンの拡散では考えら
fLなかった粒子間14ar素材のガフス基叡tマイク
ロポーラス質のガラスとすることにLり着るしく大きク
シ、拡散係数tそf’LK工って数倍から一悄近く上げ
、前記したノml折卓分布形マイクロレンズのgE、重
性r飛1−β′・1に^めたものであるO本娼゛明のマ
イクロポーラスガラス基板の具体的な例としては、−i
属アルフキシトの刀■水分解鷺利用し友、いわゆるゾル
−ゲル法にエリ、必要とする曽萬イオンの拡故処理に必
要な温度に耐える光学的にPjji[なマイクロポーラ
スr付するガラス基板τ作成できる0 以下に1鵬アルコー+7ドの加水分解を利用したゾル−
ゲル法によるガラス基或の作成について説明する〇 ガとしてシリカガラスtめげると、尚温浴融法では水i
【原料として20tlOC近り部属を必要とする0こn
K−肘して、ゾル−ゲル法で蝶、シリコンアルコキシド
を原料とする場合、たとえばけい酸エチル(Si(OC
*H@)a)と水とエチルアルコールを混合し、けい酸
エチルr〃n水分解し、けい酸ゲルとして一定形状物’
t )10熱しながら、水、アルコールを追い出し、8
10.の三次元構造のシリカガラスを得ることができる
Published by Dosan, the expansion modulus varies depending on the temperature, and at the same time, the diffusion coefficient changes in proportion to the square of the particle spacing.The present invention is based on the conventional diffusion of metal ions into glass. In order to use microporous glass, the diffusion coefficient was increased several times to nearly an hour, increasing the diffusion coefficient by several times to nearly an hour. As a specific example of the microporous glass substrate described in this paper, the gE and weight r of the microlens with ml folding table distribution type are set to 1-β'・1.
The sword of the genus Alfuxito ■ Water-splitting heron A friend of the so-called sol-gel method is the use of a glass substrate with an optical microporous layer that can withstand the temperature required for the necessary ion diffusion treatment. The following is a sol that uses the hydrolysis of 1 Peng alcohol + 7 alcohol.
Explaining how to prepare a glass base by the gel method.
[0con that requires about 20 tlOC as a raw material
When using silicon alkoxide as a raw material using the sol-gel method, for example, ethyl silicate (Si(OC)
*H@) Mix a) with water and ethyl alcohol, decompose the water into ethyl silicate r〃n, and form a silicate gel with a certain shape.
t) 10 While heating, expel water and alcohol, 8
10. Silica glass with a three-dimensional structure can be obtained.

この場合、′R鳩1200℃楊度1での温度で、810
2の完全な三次元構造か完成するか、その途中の温度で
そnぞれ初期の7IO*分解条件に依存する4gI!確
な構造rとる。その一つが吸着水やガスの1152!1
1!71どによる数十オングストロームから数百オング
ストローム忙護る孔径のマイクはポーラス構造の形成で
7b9、シリカガラスの場合、500℃〜700℃の温
度で形成さnる〇 このマイクロポーラスの孔径は、処理温健と、′vJJ
91の雀属アルコキシド庫科に各種の金Xk用いたり、
υU水分解粂件を変えることKより歳小十数オングスト
ロームから数6オングストローム1でコントロールロエ
能である。
In this case, the temperature at 'R pigeon 1200℃ and the degree of rotation is 810℃.
4gI depending on the initial 7IO* decomposition conditions at the complete three-dimensional structure of 2 or at an intermediate temperature, respectively! Take a certain structure. One of them is 1152!1 of adsorbed water and gas.
7b9 Microphones with pore diameters ranging from tens of angstroms to hundreds of angstroms due to silica glass are formed at temperatures of 500°C to 700°C.The pore diameter of this microporous is Processing temperature and 'vJJ
Various types of gold
Changing the water-splitting properties of υU can be controlled from a few tens of angstroms to a few six angstroms.

対象となるガラス基板組成は、はとんど丁ぺての金S酸
化物が可能でろるが、上配し友シリカガシスr初め、硼
硅酸最ガラス、極低彫脹性シリカナタニアガラス(81
0,−’rso、)lit熱性シリカ−7ル< f−’
) ルコニ7 カフ ス(S iol  1N20B−
Z ro2 )yzトのマイクロポーラス基板の作成か
、特に特徴勿出し易いLうである。
The target glass substrate composition can be almost any gold S oxide, but it is also possible to use overlay silica glass, borosilicate glass, ultra-low chiseling silica tania glass ( 81
0,-'rso,)lit thermal silica-7ru<f-'
) Luconi 7 Cufflinks (S iol 1N20B-
It is especially easy to create a microporous substrate with special characteristics.

次に本発明に具体的に説明する。Next, the present invention will be specifically explained.

図21よ、ゾルブール法で作成した光学的に均質なマイ
クロポーラスr有するガラス基板■の表面に拡散窓用の
小孔のr設げ之耐g虫性金属マスク(りr蒸着、スパッ
ター等で杉成した原料基板に模式的に示したもので弗る
0耐蝕性台鵬マスク材料は、小孔(7)から拡散さぞる
金鴫イオンの種類やその塩文び3叡ガラス組成に依存す
る処理温度によって適当に選べるが、Ti、Taか比候
的優几ている。
As shown in Figure 21, small holes for diffusion windows are formed on the surface of a glass substrate (2) having optically homogeneous microporous holes prepared by the Solbur method. The corrosion-resistant mask material, which is shown schematically on the raw material substrate prepared, is processed depending on the type of gold ions diffused through the small holes (7), its salt pattern, and the composition of the three-layer glass. It can be selected depending on the temperature, but Ti and Ta are preferable depending on the temperature.

図3ば、〆j2で作成し*XfL抜マイクロレンズ用原
料、J!板を耐熱性容器■に入1した拡散させる金属イ
オン源となる塩■中に、浸漬した状態r示し友ものでめ
る。もちろん周囲は拡散に必kI!な処理温度環境にな
っている。
Figure 3 shows the raw material for microlenses prepared in 〆j2 and excluding *XfL, J! The plate was placed in a heat-resistant container (1) and immersed in salt (1), which serves as a source of metal ions to be diffused. Of course, the surrounding area must spread the word! processing temperature environment.

拡畝嘔ぜゐ金属イオンはTi、Os、Pb などがあり
、そnらの硫酸塩、硝暇堪、塩酸填か有効でおるO 本発明によるマイクロポーラス基板ガラス會用いた一合
には、従来のガラス基板か150〜200時間の熱処f
i時間(処理温度600℃で)k賛したのに対し、平均
して20〜25時間で同等の拡歌濃廣分布r得ることが
でき友。
The metal ions that cause the expansion of the ridges include Ti, Os, and Pb, and their sulfate, nitric acid, and hydrochloric acid fillings are effective. Heat treatment for 150 to 200 hours for conventional glass substrates
In contrast to the conventional method, which takes about 1 hour (at a processing temperature of 600° C.), it is possible to obtain the same wide distribution in 20 to 25 hours on average.

しかも、熱処理時間がきわめて短縮でさたことにLり、
こf’14で問題とさnていたマスクの耐蝕性について
も、きろめて有利とな9解決さnた。
What's more, the heat treatment time is extremely shortened.
The corrosion resistance of the mask, which had been an issue in F'14, was resolved with great advantage.

以上本発明の概要tゾルーゲル法による光学的に均質な
マイクロポーラスを有するガラろ基板r用いた4合r中
心に説明してきたが1ゾにグル法以外にも例えは、単な
る溶融法にνいても適当なガスrコントロールしながら
導入して内部に吸着さぞ、マイクロポーラス化すること
も可能である◎本発明の’!>41は、以上述べたよう
に、こnlでpi造にきわめて長時間の熱処理と長時間
の梢密なm[利#r必要としたマイクロレンズ【、マイ
クロポーラス4板を由いることにより約十分の−に襄遣
時ll1lt短嘲したことにめる0こ几にL!7平板マ
イクロレンズの生#L注は飛躍的にiaJよした0
The outline of the present invention has been mainly explained above using a 4-polymer substrate with optically homogeneous microporous using a sol-gel method. It is also possible to introduce microporous gas by controlling it properly and adsorb it inside. >41, as mentioned above, is a microlens that requires an extremely long heat treatment and a long period of dense microlens [by using four microporous plates]. L! 7 Planar microlens raw #L note has dramatically improved iaJ0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に保わる平成マイクロレンズの光学時性
の准JS!凶でろる。 第2図は本発明に係わる串阪マイクロレンズ義作の呪男
図でろる0 第5区は本発明に諏わゐ平板マイクロレンズ装作の政明
図である。 以   上 出願人 株式会社 d 助 稽 工 會/”λ 代1八 *j!!±  殿  上    標−1,・ブ
′。 776 1     ) i、Ii 2図 三1′53図
Figure 1 shows the optical time characteristic of the Heisei microlens according to the present invention. It's evil. Figure 2 is a picture of a man made by Gisaku Kushizaka microlens according to the present invention, and the fifth section is a picture of Masaaki of a plate microlens fitted with a flat plate microlens according to the present invention. 776 1) i, Ii 2 Figure 31'53

Claims (1)

【特許請求の範囲】 tl)  元学的拘買なマイクロポーラスを有する力2
ス羞板に金欄イオンr拡赦さぜノIl折率分仇を形成し
た平板マイクロレンズ。 −2)  金属アルコギシドの加水分解を利用したゾル
−ゲル法にL9作成したマイクロポーラスtiするガラ
スゑ板を用い友W粁請氷の範囲第1項記載の半被マイク
ロレンズ〇
[Claims] tl) Force with scientifically sensitive microporous 2
A flat plate microlens with a metal column ion r magnification sazeno Il refractive index formed on the glass plate. -2) The semi-covered microlens described in item 1 of the scope of Tomo W. C. L9 using a microporous glass plate prepared by a sol-gel method utilizing hydrolysis of metal alkogides.
JP74582A 1982-01-06 1982-01-06 Plane microlens Granted JPS58117501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP74582A JPS58117501A (en) 1982-01-06 1982-01-06 Plane microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP74582A JPS58117501A (en) 1982-01-06 1982-01-06 Plane microlens

Publications (2)

Publication Number Publication Date
JPS58117501A true JPS58117501A (en) 1983-07-13
JPH044261B2 JPH044261B2 (en) 1992-01-27

Family

ID=11482234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP74582A Granted JPS58117501A (en) 1982-01-06 1982-01-06 Plane microlens

Country Status (1)

Country Link
JP (1) JPS58117501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090514U (en) * 1983-11-29 1985-06-21 カルソニックカンセイ株式会社 exhaust system
JP2002006111A (en) * 2000-06-19 2002-01-09 Canon Inc Image pickup device and packaged apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849639A (en) * 1981-06-25 1983-03-23 コ−ニング・グラス・ワ−クス Method of imaging optical pattern in glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849639A (en) * 1981-06-25 1983-03-23 コ−ニング・グラス・ワ−クス Method of imaging optical pattern in glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090514U (en) * 1983-11-29 1985-06-21 カルソニックカンセイ株式会社 exhaust system
JP2002006111A (en) * 2000-06-19 2002-01-09 Canon Inc Image pickup device and packaged apparatus
JP4521938B2 (en) * 2000-06-19 2010-08-11 キヤノン株式会社 Imaging device

Also Published As

Publication number Publication date
JPH044261B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US3843228A (en) Production of light-conducting glass structures with refractive index distribution
US20190161389A1 (en) Methods of fabricating photosensitive substrates suitable for optical coupler
JP2003131002A (en) Optical element and manufacturing method thereof
WO2015112903A1 (en) Methods of fabricating photoactive substrates for micro-lenses and arrays
EP0163540B1 (en) Anamorphic lenses
US2659665A (en) Reticles
JPS58117501A (en) Plane microlens
JPS59146946A (en) Manufacture of slab-shaped lens having refractive index gradient only in thickness direction
JPS6157601B2 (en)
DE2032577A1 (en) Process for sintering and melting refractory materials without using a crucible
JPS5689703A (en) Manufacture of reflecting mirror for high output laser
Kang et al. Scalable laser-written Ge-As-Pb-Se chalcogenide glass-ceramic films and the realization of infrared gradient refractive index elements
WO1998033091A1 (en) Lens array on lcd panel and method
JPS638239A (en) Production of diverging light-transmission material
JPH071351B2 (en) Optical device and manufacturing method thereof
Mingareev et al. Laser-induced modification of local refractive index in infrared glass-ceramic films
JPS5964547A (en) Preparation of lens having refractive index distribution in axial direction
JPS57211103A (en) Production for optical waveguide
JP2579358B2 (en) Photosensitive glass pattern formation method
JPS58167452A (en) Preparation of material wherein very small lenses are arranged
JPH02311801A (en) Distributed index type circular columnar lens of quartz glass system and production thereof
DE4321301A1 (en) Coating method for glass substrates - comprises coating with gallium oxide by reactive vaporisation of gallium in oxygen@ to form anti-reflection layer
JPH0411841B2 (en)
JPH0193116A (en) Laser annealing device
JPS58167453A (en) Preparation of material wherein cylindrical lenses are arranged