JPS5811747A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS5811747A
JPS5811747A JP10957681A JP10957681A JPS5811747A JP S5811747 A JPS5811747 A JP S5811747A JP 10957681 A JP10957681 A JP 10957681A JP 10957681 A JP10957681 A JP 10957681A JP S5811747 A JPS5811747 A JP S5811747A
Authority
JP
Japan
Prior art keywords
zone
temperature
ignition
furnace
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10957681A
Other languages
Japanese (ja)
Inventor
Nobuhiko Takamatsu
高松 信彦
Tadahiro Inasumi
忠弘 稲角
Koichiro Nakagawa
中川 浩一郎
Kinji Matsumura
松村 勤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10957681A priority Critical patent/JPS5811747A/en
Publication of JPS5811747A publication Critical patent/JPS5811747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain a sintered ore of a good quality, which is high in its reduced property and low in its low temperature reduction pulverization rate, by partitioning an ignition surface into 3 zones, and heating a igniting a sintering material in each section under prescribed conditions. CONSTITUTION:In a material advancing direction of an ignition furnace 3 of a continuous sintering machine, a pre-heated temperature raising zone 7, a tempera ture equalizing zone 8 and an ignition heat holding zone 9 are provided, and a furnace partition wall 5 and a wind box partition plate 6 are provided so as to correspond to each boundary of these 3 zones. Also, in said temperatur raising zone 7, the surface layer of a sintering material 2 is pre-heated to a temperature of 400-600 deg.C under <=5% oxygen concentration. Subsequently, in the equalizing zone 8, the material 2 is subjected to a high calory temperature rise by 1.05- 1.3 air ratio by use of a burner 22. After that, in the heat holding zone 9, mixed fuel is ignited by setting the atmospheric oxygen concentration to >=16% and by heat blast of >=800 deg.C temperature.

Description

【発明の詳細な説明】 本発明は高炉用焼結鉱の製造方法に係り、低”” 01
 、(,1lFeO1高被還元性かつ低温還元粉化率の
低い良品質の焼結鉱を生産性よく製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sintered ore for blast furnaces.
, (,1lFeO1) This relates to a method for producing high-quality sintered ore with high reducibility and low low-temperature reduction powdering rate with good productivity.

周知の如く、一般に用いられている下方吸引式連続焼結
機は、第1図(−)に示す様に、エンドレス・ルット台
車lに焼結原料2を積載し、順次点火炉および/または
保熱炉3(以下炉3と称す)内に搬送される。炉3内は
気体燃料あるいは液体燃料(以下燃料と称す)をノ々−
ナ一群4に供給し【燃焼させ、その燃料の燃焼熱によっ
て焼結原料20表層部を予熱昇温し、焼結原料2の中に
配合された配合燃料に点火する。その後、配合燃料は燃
焼ガス中の残存酸素で燃焼し、燃焼帯を形成することに
より、焼結原料を焼結させるものである。
As is well known, the generally used downward suction type continuous sintering machine loads the sintering raw material 2 onto an endless rut truck 1 and sequentially moves it to the ignition furnace and/or storage, as shown in Fig. 1 (-). It is transported into a thermal furnace 3 (hereinafter referred to as the furnace 3). Inside the furnace 3, gaseous fuel or liquid fuel (hereinafter referred to as fuel) is supplied.
The fuel is supplied to a group 4 and burned, and the surface layer of the sintering raw material 20 is preheated and heated by the combustion heat of the fuel, and the blended fuel mixed in the sintering raw material 2 is ignited. Thereafter, the blended fuel is combusted with residual oxygen in the combustion gas to form a combustion zone, thereby sintering the sintering raw material.

この焼結過程で生ずる燃焼帯に供給される酸素濃度及び
気体温度は生成される鉱物組織を大きく左右する。例え
ば、炉3内に於いて焼結された焼結鉱層の表層部は炉3
外で焼き上った中層部、下層部の品質に比べ著しく脆弱
な層となっていることはよく知られている。
The oxygen concentration and gas temperature supplied to the combustion zone generated during this sintering process greatly influence the mineral structure produced. For example, the surface layer of the sintered ore layer sintered in the furnace 3
It is well known that the quality of the middle and bottom layers, which are baked outside, is significantly weaker than the quality of the middle and bottom layers.

そこで本発明者等は炉3内に於ける昇温着火機構を詳細
に調査検討した結果、従来の点火炉において、炉内長手
方向の0.身震が、第1図(b)で示す高温部41)で
、第1図(C)に示すように著しく低下し5−以下とな
り、表層の配合燃料は昇温さ隼るだけで燃焼には至って
いないことが明らかになった。
Therefore, the present inventors conducted a detailed investigation and study on the temperature increasing ignition mechanism in the furnace 3, and found that in the conventional ignition furnace, 0. As shown in Figure 1 (C), the shudder decreases significantly in the high-temperature section 41) shown in Figure 1 (B) to below 5 -, and the blended fuel in the surface layer is not able to burn simply by increasing its temperature. It has become clear that this has not been achieved.

又、炉3内でのO1濃度が大気同様の21g4に回復す
るものは炉3内の出口近傍であり、有効焼結反応面積が
減少していることが判明した。
It was also found that the area where the O1 concentration in the furnace 3 recovered to 21g4, which is similar to that in the atmosphere, was near the outlet of the furnace 3, and the effective sintering reaction area was reduced.

本発明はこれらの知見をもとに種々の実験検討を貞ノa
て完成した焼結鉱の製造方法であり、その特徴とすると
ころは、焼結鉱の製造に際しての点火部を予熱昇温帯と
昇温均一帯及び着火保熱帯の二帯に区分し、該二帯の各
境界に対応して炉体仕切壁と風箱仕切板を設け、予熱昇
温帯では酸素濃度5−以下のもとで焼結原料表層を40
0℃〜600℃まで予熱し、昇温均一帯ではノ々−す−
を用い且つその空気比を1.05〜1.30とし焼結原
料を高熱量昇温し、着火保熱帯では雰囲気酸素濃度を1
6−以上に維持し10℃以上の熱風により配合燃料に着
火することにある。
The present invention utilizes various experimental studies based on these findings.
This is a method for producing sintered ore, which was completed in 2007.The feature is that the ignition zone during the production of sintered ore is divided into two zones: a preheating temperature rising zone, a uniform temperature rising zone, and an ignition holding zone. A furnace body partition wall and a wind box partition plate are provided corresponding to each boundary of the zone, and in the preheating temperature zone, the surface layer of the sintered raw material is
Preheat to 0°C to 600°C.
and the air ratio is 1.05 to 1.30, the sintering raw material is heated by a high amount of heat, and the atmospheric oxygen concentration is reduced to 1 in the ignition and holding zone.
The purpose is to ignite the blended fuel with hot air of 10°C or higher while maintaining the temperature at 6- or higher.

以下、本発明方法を下方吸引式の連続焼結機に適用して
実施するための有利な装置例を示す側面次いで設置する
点火炉3は原料2を装入したエンドレスパレット台車1
の進行方向に予熱昇温帯7、昇温均−帯亀着火保熱帯9
を順次設け、これら各帯間には、天井壁から骸ノ臂しッ
ト台車1内鳳料の表面通過ライン直近に亘る炉体仕切壁
5を設けると共に、各仕切壁5と点火炉3の前壁11.
後壁12の夫々の下方には風箱仕切板6を設けると共 
  ・に、各帯内に設けた炉圧検出@13に制御@14
を介して応動する電動タンA−15を各帯対応の風箱1
0の各ライ/レッグ16に設けて、各帯単位に当該ノぐ
レット台車1内原料層2の通風量を制御し、炉圧制御、
炉内温度制御を有利に可能ならしめている。
The following is a side view showing an example of an advantageous device for applying the method of the present invention to a downward suction type continuous sintering machine.
In the direction of movement, there is a preheating temperature rising zone 7, a temperature increasing uniformity zone, and a ignition holding zone 9.
A furnace body partition wall 5 is provided between each of these zones, extending from the ceiling wall to the immediate vicinity of the surface passage line of the porcelain inside the skeleton armchair truck 1. Front wall 11.
A wind box partition plate 6 is provided below each of the rear walls 12.
・Control @14 to furnace pressure detection @13 installed in each zone
The electric tongue A-15 that responds via the wind box 1 corresponding to each band
0 to each lie/leg 16 to control the ventilation amount of the raw material layer 2 in the noglet cart 1 for each band, and to control the furnace pressure.
This makes it possible to advantageously control the temperature inside the furnace.

予熱昇温帯7は鋏焼結機側方に設置した内燃式熱風炉1
7の燃鬼廃ガス用排出ダクト18を連結し、同ダクト1
8には予熱昇温帯T内の温度計19に制御器41を介し
て応動する流量調節弁20を介設しており、これによっ
て咳熱風炉17で燃料ガスを燃焼させて得た400℃〜
6oo℃、0、≦5−の燃焼廃ガスを予熱昇温帯7内が
600“0〜400℃の範囲内の所定温度になるように
供給するものである。
The preheating temperature rising zone 7 is an internal combustion type hot blast furnace 1 installed on the side of the scissors sintering machine.
The exhaust duct 18 for Moki waste gas of No. 7 is connected, and the same duct 1
8 is provided with a flow rate control valve 20 that responds to a thermometer 19 in the preheating temperature rising zone T via a controller 41, whereby the temperature of 400° C.
The combustion waste gas of 600°C, 0, ≦5- is supplied so that the inside of the preheating temperature rising zone 7 reaches a predetermined temperature within the range of 600°C to 400°C.

昇温均一帯8にはノ々−ナー22を設け、これに燃料ガ
スとしてのCOGガス供給管21と燃焼用空気供給管2
3を連通接続し、図示していないがこれら容管22.2
3に介設した流量調節弁を制御器で比率制御し空気比を
1.05〜1.30の範囲内の所定値に維持せしめる。
A nozzle 22 is provided in the temperature increasing uniform zone 8, and a COG gas supply pipe 21 as a fuel gas and a combustion air supply pipe 2 are connected to this.
3 are connected in communication, and although not shown, these container pipes 22.2
A controller controls the ratio of the flow rate regulating valve provided at 3 to maintain the air ratio at a predetermined value within the range of 1.05 to 1.30.

着火保熱帯9には前記内燃式熱風炉1γの燃焼室と炉本
体外壁間に導入して間接加熱した800℃以上で0.1
64以上の高温空気を圧送する配管24を連通接続し、
同配管24には着火保熱帯9内に設けた表面温度計25
に制御器26を介して応動する流量調節弁27を介設し
た稀釈用空気導入管28を途中に接続すると共に、前記
圧力検出器13に制御器29を介して応動する流量調節
弁30を咳管28接続部の下流側に介設しである。
The ignition insulation zone 9 has a temperature of 0.1 at 800° C. or higher, which is indirectly heated by introducing the air between the combustion chamber of the internal combustion hot blast stove 1γ and the outer wall of the furnace body.
A pipe 24 for pressurizing high-temperature air of 64 or more is connected in communication,
The piping 24 has a surface thermometer 25 installed inside the ignition insulation zone 9.
A diluent air introduction pipe 28 having a flow rate control valve 27 which responds to the pressure sensor 13 via a controller 26 is connected to the pressure sensor 13, and a flow rate control valve 30 which responds to the pressure sensor 13 via a controller 29 is connected to the pressure sensor 13. It is interposed on the downstream side of the pipe 28 connection part.

又第3図(a)において、原料供給装置(図示せず)に
次いで設置する点火炉3は、原料2を装入したエンドレ
スパレット台車1の進行方向に予熱昇温帯7、昇温均一
帯8、着火保熱帯9を順次設け、これら各帯間には天井
壁から諌パレット台車1内原料の表面通過ライン直近に
亘る炉体仕切壁5を設けると共に、各仕切壁5と点火炉
3の前壁11、後壁12の夫々の下方には風箱仕切板6
を設けると共K 、各帯内に設けた炉圧検出513に制
御器14を介して応動する電動ダンA−15を各帯対応
の風箱10の各ウィンP・レッグ16に設ffて、各帯
単位に当該パレット台車1弗内原料履2の通風量を制御
し、炉圧制御、炉内温度制御を有利に可能ならしめてい
る。
Further, in FIG. 3(a), the ignition furnace 3 installed next to the raw material supply device (not shown) has a preheating temperature rising zone 7 and a temperature increasing uniform zone 8 in the traveling direction of the endless pallet truck 1 charged with the raw material 2. , ignition and insulation zones 9 are sequentially installed, and between each of these zones, a furnace partition wall 5 is installed that extends from the ceiling wall to the immediate vicinity of the surface passage line of the raw material in the pallet truck 1, and in front of each partition wall 5 and the ignition furnace 3 A wind box partition plate 6 is provided below each of the wall 11 and the rear wall 12.
At the same time, an electric damper A-15 that responds to the furnace pressure detection 513 provided in each zone via the controller 14 is installed in each win P/leg 16 of the wind box 10 corresponding to each zone. The amount of ventilation of the pallet truck 1 and the raw material shoe 2 in the pallet truck 2 is controlled for each band, thereby making it possible to advantageously control the furnace pressure and the temperature inside the furnace.

予熱昇温帯はA−ナー31を設け、これに燃料ガスとし
てのBPQガス供給管32と燃焼用空気供給管33を連
通接続し、これら容管32.33に介設した流量調節弁
35.35′を制御器36で比率制御し、炉内温度が4
00℃〜600℃、0.濃度が5−以下の所定条件にな
るよう、ガスを燃焼するものである。
The preheating temperature rising zone is provided with an A-ner 31, to which a BPQ gas supply pipe 32 as a fuel gas and a combustion air supply pipe 33 are connected in communication, and flow rate regulating valves 35.35 are interposed in these container pipes 32.33. ' is controlled by the controller 36, and the temperature inside the furnace is 4.
00℃~600℃, 0. The gas is burned so that the concentration meets a predetermined condition of 5- or less.

昇温均一帯8は第2図(a)同様、ノ々−ナー31を設
け、これに燃料ガスとしてのBFGガス供給管32と燃
焼用空気供給管33を連通接続し、これら容管22.2
3に介設した流量調節弁37.37’を制御器38で比
率制御し、空気比を1.05〜1.30の範囲内の所定
値に維持せしめる。
As in FIG. 2(a), the temperature increasing uniform zone 8 is provided with a nozzle 31, to which a BFG gas supply pipe 32 as a fuel gas and a combustion air supply pipe 33 are connected in communication, and these container pipes 22. 2
The controller 38 controls the ratio of the flow control valves 37 and 37' provided at the air flow rate control valves 3 to maintain the air ratio at a predetermined value within the range of 1.05 to 1.30.

着火保熱帯9にはノ々−ナー31を設け、これに燃料ガ
スとしてのBFGガス供給管32と燃焼用空気供給管3
3を連通接続し、これら容管32,33に介設した流量
調節弁39.BCJを制御器40で比率制御し、炉内を
800℃以上で0ヨfel1以上の雰囲気を作り出すも
のである。
The ignition retaining zone 9 is provided with a nozzle 31, to which a BFG gas supply pipe 32 as a fuel gas and a combustion air supply pipe 3 are provided.
A flow rate control valve 39.3 is connected to the flow control valve 39. The BCJ ratio is controlled by a controller 40 to create an atmosphere in the furnace of 800° C. or higher and 0°C or higher.

賦各制御器36.38.40は上位の制御装置CPUに
よって制御されている。制御装置CPUは各相の温度検
出器42,43.44.0.濃度検出器45.46.4
7からの検出信号を各々導入し、予じめ設定しである各
相の目標温度およびO1濃度になるように各相の79−
ナー31の空燃比率を当該制御器36.38.40に設
定指令する。
Each controller 36, 38, 40 is controlled by a higher-level controller CPU. The control device CPU includes temperature detectors 42, 43.44.0 . Concentration detector 45.46.4
Introducing the detection signals from 7 and 79-7 of each phase so that the preset target temperature and O1 concentration of each phase are achieved.
The controller 36, 38, and 40 are instructed to set the air-fuel ratio of the fuel tank 31.

次に本発明における条件限定理由を説明する。Next, the reason for limiting the conditions in the present invention will be explained.

本発明において予熱昇温帯7の焼結原料表層温度を粉コ
ークス、無煙炭等の配合燃料の着火温度としてよく知ら
れている750℃に達しない400゛G〜600℃の範
囲への昇温に限定したのは、焼結原料表層水分の乾燥を
図り、層内の通気性を改善し、生産性を向上するためで
あり、また雰囲気酸素濃度を5%以下に抑えるのは、配
合燃料に発生するC + CO,→2COのソリューシ
ョン、ロス反応を抑制し、配合燃料の先行無効消費を抑
え、配合燃料の有効使用を可能として粉コークス原単位
の低限を実現すると共に局所的な昇温による配合燃料の
部分燃焼をも抑制して、焼結原料層内の均質な焼成を実
現するためである。
In the present invention, the surface temperature of the sintered raw material in the preheating temperature rising zone 7 is limited to a temperature rise within the range of 400°G to 600°C, which does not reach 750°C, which is well known as the ignition temperature of blended fuel such as coke powder and anthracite coal. This was done in order to dry the surface moisture of the sintered raw material, improve air permeability within the layer, and increase productivity.Also, the reason for keeping the atmospheric oxygen concentration below 5% was to reduce the moisture generated in the blended fuel. Solution for C + CO, → 2CO, suppresses loss reactions, suppresses advance ineffective consumption of blended fuel, enables effective use of blended fuel, achieves a low unit coke breeze consumption, and improves blending by local temperature rise. This is to suppress partial combustion of fuel and realize homogeneous firing within the sintering raw material layer.

次に昇温均一帯8で2−ナーを用いるのは、前記予熱昇
温帯7で予熱昇温された焼結原料の均一な仕上げを行な
5ためである。一般に焼結原料層の表面は均一な性状を
形成しているわけではなく、原料の諸条件を勘案すると
、不均質、不均一要素を多分に含んでいる。従って配合
燃料の着火温度750℃に焼結原料表層温度を昇温する
際、表面温度を巾方向に均一にしなければその後の焼結
反応の進行がばらつき、均質な焼結鉱の製造を妨げられ
る。このため熱効率の高いノ々−ナーを用い燃焼空気比
をm=1.O2N2.30に制御して得られる高熱量(
1500〜9500 Km/Nun’/am)で焼結原
料層表面全体を昇温して均一な仕上を行う。
Next, the reason why a 2-ner is used in the uniform temperature raising zone 8 is to uniformly finish the sintering raw material whose temperature has been preheated and raised in the preheating temperature raising zone 7. In general, the surface of the sintered raw material layer does not have uniform properties, and when the various conditions of the raw material are taken into consideration, it contains many non-uniform and non-uniform elements. Therefore, when raising the surface temperature of the sintered raw material to the ignition temperature of 750°C of the blended fuel, unless the surface temperature is made uniform in the width direction, the progress of the subsequent sintering reaction will be uneven, which will prevent the production of homogeneous sintered ore. . For this reason, a combustion air ratio of m=1. High heat amount obtained by controlling O2N2.30 (
1500 to 9500 Km/Nun'/am) to uniformly finish the entire surface of the sintered raw material layer.

また着火保熱帯9に酸素濃度が16%以上望ましくは2
5%以下でかつ温度が800℃の高温熱流体を供給する
のは、ここで配合燃料にはじめて着火せしめ積極的な燃
焼を図りつつ、表面温度計等の使用により焼結原料層表
面が本発明のめざす良品質な焼結鉱の製造できる温度、
即ち還元性及び強度に秀れる針状のカルシクムフエライ
トを生成し、低温還元粉化率を悪化する骸晶状菱臘へ!
タイトを減少し1斑状ヘマタイトを増大する温度1.1
00℃〜1,350℃を確保し、これによって従来方法
では不可避的に高温度域となるため、還元性の劣る板状
のカルシクムフエライトが生成し。
In addition, the oxygen concentration in the ignition retention zone 9 is desirably 16% or more.
The purpose of supplying high-temperature thermal fluid with a content of 5% or less and a temperature of 800°C is to ignite the blended fuel for the first time and actively burn it. The temperature at which high-quality sintered ore can be produced,
In other words, it produces acicular calcium ferrite that has excellent reducing properties and strength, and turns into skeleton-like rhombus that worsens the low-temperature reduction powdering rate!
Temperature 1.1 to decrease tightness and increase 1 patchy hematite
00°C to 1,350°C, which inevitably results in a high temperature range in conventional methods, resulting in the formation of plate-shaped calcium ferrite with poor reducibility.

かつOta度が低いため、焼結原料層表面の配合燃料が
有効に熱源として使用されていなかったことを改善して
燃料原単位の低減を図るためである。
In addition, since the Ota degree is low, the blended fuel on the surface of the sintered raw material layer is not effectively used as a heat source, and this is to improve the problem and reduce the fuel consumption rate.

また、該三相の境界に炉3の中に仕切壁5と、それと対
応する風箱10の仕切板6を設置するのは、侵入空気の
防止および各帯の干渉を抑えて各相を独立に平衡通風制
御を施すことにより前記各相の目的に対応した制御の効
果を一層高めるためである。
In addition, installing a partition wall 5 in the furnace 3 and a corresponding partition plate 6 of the wind box 10 at the boundary between the three phases prevents intrusion of air, suppresses interference between each zone, and separates each phase. This is to further enhance the effect of control corresponding to the purpose of each phase by applying equilibrium ventilation control to the phase.

以下に本発明の実施例を記す。Examples of the present invention are described below.

実験に使用した配合原料成分、粉度な表IK。Table IK of blended raw materials used in the experiment and fineness.

実験の諸条件を表2に、実験の結果を表3に夫々示す。The conditions of the experiment are shown in Table 2, and the results of the experiment are shown in Table 3.

表1 表2 表3 表3の結果から明らかのように、本発明法人。Table 1 Table 2 Table 3 As is clear from the results in Table 3, the present invention corporation.

Bによるものは従来法によるものに比べ、冷間強度が約
4%、成品歩留が約4.5−1JI8還元率が約6%向
上し、低温還元粉化率は約3−低下好転し、生産率も約
10−向上し、配合燃料の原単位δ慢低減が認められた
Compared to the conventional method, the cold strength of the method B was improved by about 4%, the product yield was improved by about 4.5-1, the JI8 reduction rate was improved by about 6%, and the low-temperature reduction powdering rate was improved by about 3-3%. The production rate was also improved by about 10%, and a reduction in the basic unit δ of the blended fuel was observed.

このように本発明方法の実施により、高被還元性でかつ
低温還元粉化率の低い嵐品質の焼結鉱な生産性よく製造
でき、かつ省エネルギーにも多大の効果が得られる。
As described above, by carrying out the method of the present invention, it is possible to produce sintered ore of storm quality with high reducibility and low low-temperature reduction powdering rate with good productivity, and a great effect on energy saving can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

および 第1図(a)は従来の点火炉   /マタハ保熱炉を示
す側断面図、第1図(b)は第1図(a)における炉お
よび 内温反分布な第1図(a)の点火炉   /マタハ保熱
炉に対応して示すグラフ、第1図(e)は第1図(a)
の炉内における02濃度分布を第1図(a)の点火炉”
1び/  保熱炉の位置関係に対応して示すグまたは ラフである。 第2図、第3図は本発明の実施例を示し、第2図(a)
は本発明の予熱昇温帯、昇温均一帯、着火保熱帯の構成
の1例を示す側断面図、第2図(b)は第2図(a)に
おける炉内温度分布を第2図(a)の各帯の位置関係と
対応して示すグラフ、第2図(C)は第2図(a)にお
ける炉内02濃度分布な第2図(a)の6帯の位置関係
と対応して示すグラフであ准。 第3図(a)は本発明の予熱昇温帯、昇温均一帯、(a
)における炉内温度分布を第3図(a)の6帯の位置関
係に対応させて示すグラフ、第3図(C)は第3図(a
)における炉内0.濃度分布を絡3図(a)の6帯の位
置関係に対応させて示したグラフである。 図中、 3は炉、5は炉体仕切壁、6は風箱仕切壁、7は予熱昇
温帯、8は昇温均一帯、9は着火保熱帯、22.31は
ノ々−ナーである。 代理人 弁理士 秋 沢 政 光 他2名
FIG. 1(a) is a side sectional view showing a conventional ignition furnace/Mataha heat retention furnace, and FIG. 1(b) is the furnace in FIG. 1(a) and FIG. 1(a) showing a reverse internal temperature distribution. The graph shown corresponding to the ignition furnace/Mataha heat retention furnace, Figure 1 (e) is the same as Figure 1 (a).
The 02 concentration distribution in the furnace is shown in Figure 1 (a).
1 and 2 are graphs or graphs shown corresponding to the positional relationships of the heat retention furnaces. 2 and 3 show embodiments of the present invention, and FIG. 2(a)
2(b) is a side cross-sectional view showing an example of the configuration of the preheating temperature rising zone, uniform temperature rising zone, and ignition holding zone of the present invention, and FIG. 2(b) shows the temperature distribution in the furnace in FIG. 2(a). The graph shown in FIG. 2(C) corresponding to the positional relationship of each zone in a) corresponds to the positional relationship of the six zones in FIG. 2(a), which is the in-furnace 02 concentration distribution in FIG. Associate with the graph shown. FIG. 3(a) shows the preheating temperature rising zone, uniform temperature rising zone, and (a) of the present invention.
) is a graph showing the temperature distribution in the furnace in correspondence with the positional relationship of the six zones in Fig. 3(a), and Fig. 3(C) is a graph showing the temperature distribution in the furnace in
) in the furnace 0. 3 is a graph showing the concentration distribution in correspondence with the positional relationship of the six bands in Figure 3(a). In the figure, 3 is the furnace, 5 is the furnace body partition wall, 6 is the wind box partition wall, 7 is the preheating temperature rising zone, 8 is the temperature rising uniform zone, 9 is the ignition holding zone, and 22.31 is the nozzle. . Agent: Patent attorney Masamitsu Akizawa and 2 others

Claims (4)

【特許請求の範囲】[Claims] (1)  焼結鉱の製造に際しての点火部を予熱昇温帯
と昇温均一帯及び着火保熱帯の二帯に区分し、該二帯の
各境界に対応して炉体仕切壁と風箱仕切板を設け、予熱
昇温帯では酸素濃度5−以下のもとで焼結原料表層を4
00℃〜600℃まで予熱し、昇温均一帯ではノ々−ナ
ーを用い且つその空気比を1.05〜1.30とし焼結
原料を高熱量昇温し、着火保熱帯では雰囲気酸素濃度を
16嗟以上に維持し800℃以上の熱風により配合燃料
に着火することを特徴とする焼結鉱の製造方法。
(1) The ignition zone during the production of sintered ore is divided into two zones: a preheating temperature rising zone, a uniform temperature rising zone, and an ignition holding zone, and a furnace partition wall and a wind box partition are installed corresponding to each boundary of the two zones. In the preheating temperature zone, the surface layer of the sintered raw material is
The sintering material is preheated to 00°C to 600°C, and the sintering material is heated to a high temperature using a non-heater in the uniform heating zone and its air ratio is 1.05 to 1.30, and the atmospheric oxygen concentration is increased in the ignition and holding zone. A method for producing sintered ore, which comprises maintaining the temperature at 16 minutes or more and igniting the blended fuel with hot air at 800°C or higher.
(2)予熱昇温帯に熱風炉等の燃焼排ガスを使用するこ
とを特徴とする特許請求の範囲第1項記載の方法、。
(2) The method according to claim 1, characterized in that combustion exhaust gas from a hot stove or the like is used in the preheating temperature rising zone.
(3)着火保熱帯に酸素濃度16−以上、好ましくは、
21−で800℃以上の熱風炉の加熱空気を供給するこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
方法。
(3) Oxygen concentration in the ignition retention zone is 16- or more, preferably
21. The method according to claim 1 or 2, characterized in that heated air from a hot stove at a temperature of 800° C. or higher is supplied at 21-.
(4)予熱昇温帯、昇温均一帯、着火保熱帯の二帯にノ
々−ナーを設置し、この空気比を調整することを特徴と
する特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, characterized in that a heater is installed in two zones: a preheating temperature increasing zone, a uniform temperature increasing zone, and an ignition holding zone, and the air ratio is adjusted.
JP10957681A 1981-07-14 1981-07-14 Manufacture of sintered ore Pending JPS5811747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10957681A JPS5811747A (en) 1981-07-14 1981-07-14 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10957681A JPS5811747A (en) 1981-07-14 1981-07-14 Manufacture of sintered ore

Publications (1)

Publication Number Publication Date
JPS5811747A true JPS5811747A (en) 1983-01-22

Family

ID=14513755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10957681A Pending JPS5811747A (en) 1981-07-14 1981-07-14 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS5811747A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412225B1 (en) * 1999-06-30 2003-12-31 주식회사 포스코 Apparatus for manufacturing an iron mine sinter and method of it
KR100432161B1 (en) * 2000-09-08 2004-05-20 주식회사 포스코 Preheation method of sintering mixture raw material and the system thereof
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
JP2020002457A (en) * 2018-06-25 2020-01-09 日本製鉄株式会社 Dl sintering machine and manufacturing method of sintered ore using dl sintering machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412225B1 (en) * 1999-06-30 2003-12-31 주식회사 포스코 Apparatus for manufacturing an iron mine sinter and method of it
KR100432161B1 (en) * 2000-09-08 2004-05-20 주식회사 포스코 Preheation method of sintering mixture raw material and the system thereof
JP2006194456A (en) * 2005-01-11 2006-07-27 Jfe Steel Kk Sintered ore manufacturing device and its manufacturing method
JP4677785B2 (en) * 2005-01-11 2011-04-27 Jfeスチール株式会社 Sinter ore manufacturing apparatus and method
JP2020002457A (en) * 2018-06-25 2020-01-09 日本製鉄株式会社 Dl sintering machine and manufacturing method of sintered ore using dl sintering machine

Similar Documents

Publication Publication Date Title
CN104593537B (en) Combustion apparatus and the method that reduced iron is manufactured using the combustion apparatus
US4259081A (en) Process of calcining limestone in a rotary kiln
CN105925276B (en) A kind of coke oven combustion chamber segmentation gas supply heating device and its method
JPS5811747A (en) Manufacture of sintered ore
CN106164302A (en) For heating the industrial furnace of the goods of such as steel part
US2148052A (en) Process and apparatus for burning cement and similar materials
US2078747A (en) Process of and apparatus for operating cupolas
CN102288032B (en) Heat compensation composite sintering method for sintering machine material surface in metallurgical industry
US2112566A (en) Process and apparatus for the production of metallic iron in the rotary tube kiln
US2062642A (en) Furnace for enameling, heat treating, etc., and process of applying heat therefor
US1403576A (en) Process of reducing ores
GB1371718A (en) Continuous heat treating furnace
CN108588374A (en) A kind of continuous heat treating furnace and its sealing device and method
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
JPS6044385B2 (en) Iron alloy manufacturing method and equipment
US1376479A (en) Smelting or fusing metallic substances
CN206787276U (en) Can-type calcine furnace
US2146410A (en) Heater for furnaces and method of operating the same
US2340346A (en) Apparatus for recovering metal from ore
US3511487A (en) Method of lighting a fluidised bed furnace
CN107151722A (en) Microwave fuel combined heat coal-based direct reduction experimental rig and method
CN112410544A (en) Double-layer sintering method and sintering device
US5257804A (en) Device for igniting a bed of a mixture of materials such as ore and coke
SU945207A1 (en) Method for ignition of agglomeration bath
US3554507A (en) Regenerative reverberatory predominantly open hearth, gas-fired furnace