JPS58116847A - Data transmission system - Google Patents

Data transmission system

Info

Publication number
JPS58116847A
JPS58116847A JP21367081A JP21367081A JPS58116847A JP S58116847 A JPS58116847 A JP S58116847A JP 21367081 A JP21367081 A JP 21367081A JP 21367081 A JP21367081 A JP 21367081A JP S58116847 A JPS58116847 A JP S58116847A
Authority
JP
Japan
Prior art keywords
phase
data string
modulated wave
binary
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21367081A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurihara
宏 栗原
Isao Nakazawa
中沢 勇夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21367081A priority Critical patent/JPS58116847A/en
Publication of JPS58116847A publication Critical patent/JPS58116847A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying

Abstract

PURPOSE:To prevent the detection output of a reception side from containing a phase error due to frequency variation of a carrier, by regarding three adjacent symbols as a unit of modulation and demodulation and carrying out logical processing at every unit. CONSTITUTION:A binary transmitted data string is converted by a binary-to-L scale converter 110 into an L-scale data string, which is further converted by a logical converter 120 into a data string which has specific correspondence relation between transmitted data and a phase angle phii+phii-2-2phii-1. This data string is modulated by a modulator 130 into a modulated wave corresponding to L phase angles. This modulated wave is transmitted to the reception side through a transmission circuit. On the reception side, the phase angle phii+phii-2-2phii-1 is detected from the modulated wave received by a detector 150. Then, a decoder 160 regenerates an L-scale data string corresponding to the phase angle, and further an L scale-to-binary converter 170 regenerates a binary data string. This phase string contains no phase error due to frequency variation of a carrier, so the regenerated data string is the same as the transmitted data string.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は、通信回線等におけるデータ伝送方式に係り、
特に搬送波の周波数変動の影舎の低減をはかった伝送品
質の改善に関するものである。
[Detailed Description of the Invention] (1) Technical Field of the Invention The present invention relates to a data transmission system in a communication line, etc.
In particular, it relates to improving transmission quality by reducing the effects of carrier wave frequency fluctuations.

(2)技術の背景 通信回線等におけるデータ伝送用の搬送周波数は、例え
ば無線回線では、法規等で割シ当てられたチャンネルの
範囲内で選択して使用される。
(2) Background of the Technology Carrier frequencies for data transmission in communication lines and the like, for example in wireless lines, are selected and used within the range of channels allocated by regulations.

搬送波の周波数変動に起因する符号誤り率ri搬送周波
数の上昇に伴い劣化する傾向があり、特に搬送周波数の
高いチャンネルを使用する場合、高いデータ品質を得る
ための技術的解決が望まれている。
The bit error rate ri caused by frequency fluctuations of the carrier wave tends to deteriorate as the carrier frequency increases, and a technical solution for obtaining high data quality is desired, especially when using a channel with a high carrier frequency.

(3)従来技術と問題点 データ伝送系における受信側で、受信された変調波を検
波する代表的な方式として、回路構成が簡単な遅延検波
方式がある。
(3) Prior Art and Problems As a typical method for detecting a received modulated wave on the receiving side of a data transmission system, there is a delay detection method with a simple circuit configuration.

第1図は、従来の遅延検波器の一例のブロック図であり
、原理的には、変調波の隣接する2個のシンボルに対応
する位相角の差から検波出力を得るものである。
FIG. 1 is a block diagram of an example of a conventional delay detector, which in principle obtains a detection output from the difference in phase angles corresponding to two adjacent symbols of a modulated wave.

図中、llt’!遅延器、12は位相器、13は乗算器
、14は低域r波器である。
In the figure, llt'! 12 is a phase shifter, 13 is a multiplier, and 14 is a low-frequency r-wave generator.

さて、端子10に 5l==ACO5(W t +p(t)) ・++++
+++++−・−・−・・■の変調波が入力されると、
■は遅延器11および位相器12を経て S z =Acos[w (重−T)+J21(1−T
)+θ〕・・・・・・・・・・・・・・・・・・・・・
■となる。ここに、Aは変調波の振巾、Wは角周波数、
yJ(1)は送信データに対応して変調された位相であ
る。また、Tは遅延器の設定遅延時間で、この時間は例
えば変調周期すがわち1シンボルの長さに選ばれる。0
は、位相器12の設定位相角で0が適当に調整されてい
る蜘のとすると、■と■とは乗算器13で乗算され、こ
の出力から差の成分が低域f波器】4で取り出され 53=A2CO3(j!I(t)−521(t−T)+
ΔwT)・・・・・・・・・・・・・・・・・・■が端
子15に出力される。ここに、△Wは搬送波の角周波数
変動中であり、搬送波の中心角周波数をWOとすれば、
Δw =w −w Oの関係にある。
Now, 5l at terminal 10==ACO5(W t +p(t)) ・++++
When a modulated wave of ++++−・−・−・・■ is input,
■ passes through the delay device 11 and the phase shifter 12 and becomes S z =Acos[w (heavy-T)+J21(1-T
)+θ〕・・・・・・・・・・・・・・・・・・
■It becomes. Here, A is the amplitude of the modulated wave, W is the angular frequency,
yJ(1) is a phase modulated corresponding to transmission data. Further, T is a set delay time of a delay device, and this time is selected to be, for example, the modulation period, that is, the length of one symbol. 0
Assuming that 0 is a spider whose phase angle is appropriately adjusted by the phase shifter 12, ■ and ■ are multiplied by the multiplier 13, and from this output, the difference component is calculated by the low-frequency f-wave filter]4. Taken out 53=A2CO3(j!I(t)-521(t-T)+
ΔwT)......■ is output to the terminal 15. Here, △W is the angular frequency of the carrier wave changing, and if the center angular frequency of the carrier wave is WO, then
The relationship is Δw = w − w O.

ているが、欅位相誤差は搬送波の周波数変動に起因する
ものであり、データ伝送の符号哄り率を劣化させる大き
が原因であることは良く知られている。
However, it is well known that the Keyaki phase error is caused by the frequency fluctuation of the carrier wave, and is caused by a large amount that degrades the code rate of data transmission.

該位相誤差を低減する一つの手段として、従来は搬送波
を発生する発振器の周波数変動を極力安定化する方法が
とられて来たが、発振器の構成が複雑高価となり、また
技術的にも限界がありて、データ伝送品質の向上を阻ん
でい友。
One way to reduce the phase error has conventionally been to stabilize the frequency fluctuations of the oscillator that generates the carrier wave as much as possible, but the configuration of the oscillator is complicated and expensive, and there are technical limitations. This is a problem that hinders the improvement of data transmission quality.

(4)本発明の目的 本発明は、かかる問題を解決するためになされたもので
、その目的とするところは、搬送波の周波数変動があっ
ても、受信側の検波出力に該周波数変動に起因する位相
誤差を含まないような論理処理手段をとることによって
、特に搬送波発振器の周波数を高安定化することなく高
いデータ伝送品質を得るデータ伝送方式を提供すること
にある。
(4) Purpose of the present invention The present invention was made to solve this problem, and its purpose is to prevent the detection output on the receiving side from changing due to the frequency fluctuation even if there is a frequency fluctuation of the carrier wave. It is an object of the present invention to provide a data transmission system that obtains high data transmission quality without particularly stabilizing the frequency of a carrier wave oscillator by using a logic processing means that does not include a phase error.

(5)発明の構成 本発明は、従来方式でrig接する2個のシンボルを変
復調の単位としていたものから、更にlシンボル前を加
えた隣接する3個のシンボルを変復調の単位として、該
単位ごとに一定の論理処理を行うことによって、受信側
の検波出力に搬送波の周波数変動による位相誤差を含ま
ないようにするものである。すなわち、1番目のシンボ
ルに対応する変調波の位相角をグ1、それより】シンボ
ルおデータを、該送信データと変調波の位相角戸i+!
1−z−2j!11−1とで対応関係をとった論理変換
をしてから変調して送信し、受信側では、受信された変
調波から位相角ダi+ダト2−2戸i−1を検出し、該
検出位相角と前記対応関係を参照して送信データを再生
することによって、本発明の目的を達成するデータ伝送
方式を提供するものである。
(5) Structure of the Invention The present invention changes the conventional system in which two adjacent symbols are used as a unit of modulation and demodulation, but the unit of modulation and demodulation is changed to three adjacent symbols, including the previous one symbol, for each unit of modulation and demodulation. By performing certain logical processing on the signal, the detection output on the receiving side does not include phase errors due to frequency fluctuations of the carrier wave. That is, the phase angle of the modulated wave corresponding to the first symbol is 1, and then the symbol data is converted to the phase angle of the transmitted data and the modulated wave i+!
1-z-2j! 11-1, and then modulates and transmits the modulated wave. On the receiving side, the phase angle d i + d 2 - 2 i - 1 is detected from the received modulated wave. The present invention provides a data transmission system that achieves the object of the present invention by reproducing transmission data with reference to the phase angle and the correspondence relationship.

(6)発明の実施例 以下、本発明の実施例を図面を参照して更に詳しく説明
する。
(6) Embodiments of the invention Hereinafter, embodiments of the invention will be described in more detail with reference to the drawings.

第2図は、本発明の基本思想を説明するための図である
。第2図において、21.30および31は遅延器、2
2と32は位相器、23と33は乗算器、24と34は
低域P波器である。以下の説明において、先に説明した
(3)従来技術と問題点の項の記号などを引用する。端
子20に変調波■が入力されると、端子25には S s =A cos(521(t)−93(t −T
 )+ΔW−T〕・・・・・・■が、また端子35には 54=A cos(p(t−T)−0(t−2T)+Δ
W−T〕・・・・・・・・・・・・・・Φ が、それぞれ出力される。
FIG. 2 is a diagram for explaining the basic idea of the present invention. In FIG. 2, 21, 30 and 31 are delay devices, 2
2 and 32 are phase shifters, 23 and 33 are multipliers, and 24 and 34 are low-frequency P wave shifters. In the following explanation, symbols etc. in the section (3) Prior Art and Problems explained above will be cited. When the modulated wave ■ is input to the terminal 20, the terminal 25 receives S s =A cos(521(t)-93(t-T
)+ΔW-T]......■, and 54=A cos(p(t-T)-0(t-2T)+Δ
W-T] . . . Φ are output respectively.

ここで、1番目、i−]番目およびi −2番目のシン
ボルに対応する変調波の位相をそれぞれl’+IzII
−1およびター2とすれば、52Ii=yj(t) l
r −1=l21(t−T)、および91i −2=ダ
(t −2T )であるから、■および■の位相角戸、
およびダ4は り3=ダ1−戸i−1+Δw −’f  ・・・・・・
・・・・・・・・[相]ダ4−ダ1−1−ダ1−2+Δ
w −’f  ・・・・・・・・・・・・・・・■とな
る。ここで、■と■の差を求めると、96s −fh 
=グミ十町−2−2ダi −1・・・・・・・・・・・
・■となる。すなわち、i番目のシンボルとi−1番目
のシンボルの変調波に対応する位相の差■とi−]査目
とi −2番目のシンボルの変調波に対応する位相の差
■との差■には、搬送波の周波数変動による位相誤差を
含まないことが示される。
Here, the phases of the modulated waves corresponding to the 1st, i-]th and i-2th symbols are respectively l'+IzII
-1 and ter2, 52Ii=yj(t) l
Since r −1=l21(t−T) and 91i −2=da(t −2T ), the phase angle door of ■ and ■
and da4beam3=da1-doori-1+Δw-'f...
・・・・・・・・・[Phase] Da4-Da1-1-Da1-2+Δ
w −'f ・・・・・・・・・・・・■. Here, if we calculate the difference between ■ and ■, 96s −fh
= Gummy Tocho - 2-2 Dai i -1・・・・・・・・・・・・
・It becomes ■. That is, the difference ■ between the phase difference ■ corresponding to the modulated waves of the i-th symbol and the i-1th symbol and the phase difference ■ corresponding to the modulated waves of the i-th symbol and the i-2th symbol. It is shown that this does not include phase errors due to frequency fluctuations of the carrier wave.

従って、受信側において、受信された変調波から戸i十
戸1−2−296i−1帷相を検出し、該位相から送信
データが再生できるように、送信側であらかじめ送信デ
ータと変調波の位相1 ’+1i−2−2yJi −1
との間で対応がとれるように、一定の対応関係に基づい
た論理変換を行ってから変調して送信するようにすれば
、搬送波の周波数変動による影響を理論的には受けない
高品質なデータ伝送が可能となる。第3図は、本発明を
L相変調方式(L=2゜3.4.・・・・・・)に適用
した場合の送信系の構成を示す。#!3図において、2
進数の送信データ列(1)は、2進→L進変換器110
で、L進数のデータ列(bl)に変換され、次いで論理
変換器130で、ci=bi−cl−2+2cH−1(
mod L)なる関係を満足するような条件でデータ列
(Ci)に変換される。次に、データ列(CI)は、変
調器130で、L個の位相角に対応付けられて変調波と
なる。
Therefore, on the receiving side, the phase of the transmitted data and the modulated wave is detected in advance from the received modulated wave, and so that the transmitted data can be reproduced from this phase. 1'+1i-2-2yJi-1
If we perform logical conversion based on a certain correspondence relationship before modulating and transmitting the data, we can theoretically obtain high-quality data that is not affected by frequency fluctuations of the carrier wave. Transmission becomes possible. FIG. 3 shows the configuration of a transmission system when the present invention is applied to an L-phase modulation method (L=2°3.4...). #! In Figure 3, 2
The base number transmission data string (1) is converted from binary to L base converter 110
, it is converted into an L-adic data string (bl), and then in the logic converter 130, ci=bi-cl-2+2cH-1(
It is converted into a data string (Ci) under conditions that satisfy the relationship mod L). Next, the data string (CI) is associated with L phase angles by the modulator 130 and becomes a modulated wave.

該変調波には、送信データ列が位相列(幻)として折り
こまれており、伝送回線を経て受信側に伝送される。受
信された変調波に折シ込まれている位相列(Fi)は、
伝送過程で雑音等が混入した場合は一部誤りが生じ、送
信時の(gl+)と異つ九ものとなることを示す。該位
相列(ai)から検波器150 テF 1=12” +
52’1−2−2yJi−tノ位相列(Fi ) 力検
出される。次いで、後号器160で位相列(Fi)に対
応するL進数のデータ列(al)、更にL進→2進変換
器で、2進数のデータ列(aI)が再生される。
The transmission data sequence is folded into the modulated wave as a phase sequence (phantom), and is transmitted to the receiving side via a transmission line. The phase sequence (Fi) inserted into the received modulated wave is
This shows that if noise or the like is mixed in during the transmission process, some errors will occur and the result will be 9 different from (gl+) at the time of transmission. From the phase sequence (ai), the detector 150 F1=12” +
52'1-2-2yJi-t phase sequence (Fi) Force is detected. Next, an L-adic data string (al) corresponding to the phase sequence (Fi) is reproduced in a post-encoder 160, and a binary data string (aI) is reproduced in an L-adic to binary converter.

以上の過程において、変調波が誤りなく伝送された場合
は、位相列+#+)は位相列(%i)と等しいものとな
り、該位相列より検出された位相列(vl)には搬送波
の周波数変動による位相誤差を含まないから再生され九
データ列(ai)は送信データ列(ai)と同じものが
得られることになる。
In the above process, if the modulated wave is transmitted without error, the phase sequence +#+) will be equal to the phase sequence (%i), and the phase sequence (vl) detected from the phase sequence will include the carrier wave. Since phase errors due to frequency fluctuations are not included, the reproduced data sequence (ai) is the same as the transmitted data sequence (ai).

次に本発明を、4相位相変調(QPSK)方式に適用し
た場合の一実施例について、第3図〜第7図を用いて、
さらに具体的に説明する。
Next, an example in which the present invention is applied to a quadrature phase keying (QPSK) system will be described using FIGS. 3 to 7.
This will be explained more specifically.

QPSK方式で、送信データとして2進データ列(m 
i )=0.1.0.0. l、 l、 l、 1.0
.1.0.1.0.0.0゜0、1.1.・・・・・・
・・・ を伝送する場合を例にとると、このデータ例は2進→L
道変換回路110で4進符号化されて、(bi)=1.
0.3,3,1,1,0,0,3.・・・・・・・・・
となる。次いで、論理変換回路120(第4図に一例の
ブロック図を示す。)で ci==bi−cl−2+2cl−1(mod 4)な
る条件を満たすように変換されて、 (c i )=1.0.2.3. ]、 0.3.2.
0.−−・・・−・・・となる。ここに、変調器130
は、4進数1141,2゜3をそれぞれ0°、90°、
180°、270°に対応付けて4相位相変調するもの
とすると、 (ci)に対応した変調波の位相列(#i)は(yJi
)−0°、 o’、 1so°、270°、90’、0
°、 2700゜180’、0°、・・・・・・・・・ となる。
In the QPSK system, a binary data string (m
i)=0.1.0.0. l, l, l, 1.0
.. 1.0.1.0.0.0゜0, 1.1.・・・・・・
Taking the case of transmitting ... as an example, this data example is binary → L
The path conversion circuit 110 performs quaternary encoding to obtain (bi)=1.
0.3, 3, 1, 1, 0, 0, 3.・・・・・・・・・
becomes. Next, the logic conversion circuit 120 (an example block diagram is shown in FIG. 4) performs conversion to satisfy the condition ci==bi-cl-2+2cl-1 (mod 4), so that (c i )=1 .0.2.3. ], 0.3.2.
0. ---...-... Here, the modulator 130
The quaternary numbers 1141 and 2°3 are respectively 0°, 90°,
Assuming that four-phase phase modulation is performed in association with 180° and 270°, the phase sequence (#i) of the modulated wave corresponding to (ci) is (yJi
)-0°, o', 1so°, 270°, 90', 0
°, 2700°180', 0°, etc.

回線140を介して伝送された変調波は、受信側におい
て検波器150(IE5図および第6図に実施例のブロ
ック図を示す)で、位相列(Fi)=Fi +l r 
−z −2521!−0が検出されて、(Fi )=2
70°、2700,900.90°、0°、 o’、 
2717°、・・・が出力される。ここで、復調器16
0は位相00゜90°、180°、270°tそれぞれ
4進数0.1.2.3に対応付けて復号するものとする
と、位相列(Fi)に対応する4進符号列(bi)は を得る。該再生データ列(ai)は、送信データ列(a
i)と同じ内容である。
The modulated wave transmitted via the line 140 is processed by a detector 150 (block diagrams of the embodiments are shown in FIG. 5 and FIG. 6) on the receiving side, where the phase sequence (Fi)=Fi
-z -2521! -0 is detected and (Fi)=2
70°, 2700, 900.90°, 0°, o',
2717°, . . . are output. Here, the demodulator 16
Assuming that 0 is decoded by corresponding to the phase 00°90°, 180°, 270°t, respectively, with the quaternary numbers 0.1, 2.3, the quaternary code string (bi) corresponding to the phase sequence (Fi) is get. The reproduced data string (ai) is the transmission data string (a
The content is the same as i).

なお、送信データ列(11)の最初の4ビツトは、いわ
ゆる遅延検波方式のため復号データとして意味をもたな
い。以上t−まとめて第1表に示す。
Note that the first 4 bits of the transmission data string (11) have no meaning as decoded data because of the so-called delayed detection method. The above is summarized in Table 1.

第1表 なお、本発明は、以上の実施例に限定されるものではな
い。例えば、武調方式として、4位相変調K11lらず
2相中8相、オフ七ツ)P8に変調方式等の他の多相変
調方式でもよい。さらに、本発明は、多相位相変調方式
に限らず、例えば変調指数0.5の馬波数変調別名MS
K方式等の送信データと変調波の位相との対応がとり得
る他の変調方式でも実施することができる。
Table 1 Note that the present invention is not limited to the above examples. For example, other polyphase modulation methods such as 4-phase modulation (K111), 8 out of 2 phases (off 7), P8 modulation method may be used as the Takeho method. Furthermore, the present invention is not limited to the polyphase phase modulation method, but is also applicable to horse wave number modulation (also known as MS) with a modulation index of 0.5, for example.
It is also possible to implement the present invention using other modulation methods such as the K method in which the transmission data and the phase of the modulated wave can correspond.

(7)発明の効果 以上詳細に説明したように、本発明によるデータ伝送方
式は搬送波の周波数変動の影響を理論的にまつ丸く受け
ない方式であり、とくに搬送周波数の高い回線における
データ伝送品質の向上の効果が大きい。さらに、送信側
における搬送波発振器の周波数安定度が緩和でき、1+
受信伺における検波器は、いわゆる遅延検波方式で回路
が簡単な構成で済むので、機器の経済化および信頼性の
向上がはかれるという効果も得られる。
(7) Effects of the Invention As explained in detail above, the data transmission method according to the present invention is a method that theoretically does not suffer from the influence of carrier wave frequency fluctuations, and particularly improves data transmission quality on lines with high carrier frequencies. The improvement effect is significant. Furthermore, the frequency stability of the carrier wave oscillator on the transmitting side can be relaxed, and 1+
The detector at the receiving station uses a so-called delayed detection method and requires a simple circuit configuration, which also provides the advantage of making the equipment more economical and improving its reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、遅延検波器のプロ、り図、餌2図は〕も 本発明の基本着想を説明するための図、第3図は本発明
を位相変調方式に適用し九場合の送受系の構成を示す図
、第4図は第3図における論理変換器】20の実施例の
ブロック図、第5図および第6図は第3図における検波
器350の実施例のブロック図、である。 図中、110は2進→L進変換器、120は論理変換器
、130は変調器、14oは回線、150は検波器、1
60は復号器、] 7oFiL進→2進変換器である。 茸 S  21 オ乙目
Figure 1 is a professional diagram of a delay detector, Figure 2 is a diagram for explaining the basic idea of the present invention, and Figure 3 is a transmitting and receiving system in which the present invention is applied to a phase modulation method. FIG. 4 is a block diagram of the logic converter in FIG. 3; FIGS. 5 and 6 are block diagrams of the embodiment of the detector 350 in FIG. 3. . In the figure, 110 is a binary to L-ary converter, 120 is a logic converter, 130 is a modulator, 14o is a line, 150 is a detector, 1
60 is a decoder,] 7oFiL base to binary converter. Mushroom S 21 Ootome

Claims (1)

【特許請求の範囲】[Claims] 送信データを複数個の位相に対応付けて変復調するデー
タ伝送方式にお論て、i番目のシンボルに対応する変調
波の位相角を戸iとし、それより41シンボルおよび2
シンボル前のi=]番目お一定の対応関係を設けておき
、送信側で送信データを該対応関係に基づいて論理変換
してから変調して送信し、受信側では受信された変調波
から位相角戸i+J21i−2−2ダi−1を検出し、
該位相角と前記対応関係を参照して、送信データを再生
すること1**とするデータ伝送方式。
We will discuss a data transmission method in which transmission data is modulated and demodulated by associating it with multiple phases.Let the phase angle of the modulated wave corresponding to the i-th symbol be i, and then 41 symbols and 2
A certain correspondence relationship is established for the i=]th symbol before the symbol, and the transmission side logically converts the transmission data based on the correspondence relationship, modulates and transmits it, and the reception side calculates the phase from the received modulated wave. Detect Kakudo i+J21i-2-2 da i-1,
A data transmission method in which transmission data is reproduced with reference to the phase angle and the correspondence relationship.
JP21367081A 1981-12-29 1981-12-29 Data transmission system Pending JPS58116847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21367081A JPS58116847A (en) 1981-12-29 1981-12-29 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21367081A JPS58116847A (en) 1981-12-29 1981-12-29 Data transmission system

Publications (1)

Publication Number Publication Date
JPS58116847A true JPS58116847A (en) 1983-07-12

Family

ID=16643013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21367081A Pending JPS58116847A (en) 1981-12-29 1981-12-29 Data transmission system

Country Status (1)

Country Link
JP (1) JPS58116847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002885A (en) * 2005-06-22 2007-01-11 Aisin Takaoka Ltd Differential gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002885A (en) * 2005-06-22 2007-01-11 Aisin Takaoka Ltd Differential gear

Similar Documents

Publication Publication Date Title
JPH06505852A (en) Quadrature amplitude modulation synchronization method
JPH061908B2 (en) Transmission line distortion compensation method
US4979052A (en) Digital signal magnetic recording/reproducing apparatus
JPS58130658A (en) Modulator/demodulator set for digital communication
USRE38932E1 (en) Digital demodulator
JP3267445B2 (en) Error detection circuit and method
JPS58116847A (en) Data transmission system
JPH0542863B2 (en)
GB1594320A (en) Method and device for measuring the difference in envelope delay at the extreme frequences of channel passband in a data transmission system
CA1066782A (en) Receiver for synchronous signals with double phase-locked loop
JPS6025354A (en) Radio communication system
JP3278311B2 (en) Data transceiver
EP0534180B1 (en) MSK signal demodulating circuit
JPH0142528B2 (en)
JPS6323444A (en) Automatic transmission speed adjusting system for digital communication
JP3582666B2 (en) Orthogonal frequency multiplex signal demodulator
JP2522045B2 (en) Automatic interference remover
JPS63232664A (en) Demodulation device using multivalued qam modulating and demodulating system
JP2689922B2 (en) Demodulator
JPH10224415A (en) Modulator, modulation method, demodulator and demodulation method
JPS5835408B2 (en) AFC circuit for demodulating differential phase modulated waves
JPS63244938A (en) Method for transmitting transmission line signal
JPH11163769A (en) Distribution line carrier method by orthogonal amplitude modulation
JPH048043A (en) Digital demodulator
JPS61159851A (en) Receiving circuit of phase modulating signal