JPS58116810A - Frequency adjusting method of thickness-slipping crystal resonator - Google Patents

Frequency adjusting method of thickness-slipping crystal resonator

Info

Publication number
JPS58116810A
JPS58116810A JP18034782A JP18034782A JPS58116810A JP S58116810 A JPS58116810 A JP S58116810A JP 18034782 A JP18034782 A JP 18034782A JP 18034782 A JP18034782 A JP 18034782A JP S58116810 A JPS58116810 A JP S58116810A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
frequency
resonator
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18034782A
Other languages
Japanese (ja)
Inventor
Takao Watabe
隆夫 渡部
Koichi Kawasaki
公一 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP18034782A priority Critical patent/JPS58116810A/en
Publication of JPS58116810A publication Critical patent/JPS58116810A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To adjust the resonance frequency of a thickness-slipping crystal resonator with couples of electrodes finely through an inexpensive device by trimming the spreading direction of the electrodes through low-voltage arc discharge work. CONSTITUTION:On a crystal oscillator blank plate 1, electrode couples 2 and 2' are provided. The spreading direction of an electrode 2 whose resonance frequency is to be adjusted is trimmed through low-voltage arc discharge work. A low voltage discharging device for trimming the spreading direction of the electrode consists of a battery E of several volts, a capacitor C, and a switch S and is equipped with connection terminals 10 and 11. Those connection terminals 10 and 11 are brought into contact with the electrode 2 and the trimming is carried out by arc discharge. Thus, the resonance frequency is adjusted finely by the inexpensive device.

Description

【発明の詳細な説明】 本発明はムチカット或いはBTカット勢の厚み辷り振動
水晶共振子の周波数調整法に係り、41に多対電極の厚
み辷り水晶共振子であれば、着目した電極をアー′り放
電加工で任意にトリミングすることによって相隣り合う
電極対間の音響結合係数を容易に調整し得、しかも安定
で黴細な周波数調整が可能となる厚み辷や水晶共振子の
周波数調整方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency adjustment method for a whip-cut or BT-cut type thickness-stretching crystal resonator. We have developed a method for adjusting the thickness and frequency of a crystal resonator that allows for easy adjustment of the acoustic coupling coefficient between adjacent pairs of electrodes by arbitrary trimming using electrical discharge machining, and also enables stable and precise frequency adjustment. This is what we are trying to provide.

一般に水晶振動子素板上に装着される電極の負荷効果に
よって振動エネルギーが電極近傍に閉じ込められ、その
外側の振動変位は急激に減少して周辺部に影響を及ぼさ
な(なる。いわゆるエネルギー閉じ込め形水晶共振子と
して代表的なものを第1図に示す。
Generally, vibration energy is confined near the electrodes due to the loading effect of the electrodes mounted on the crystal resonator element plate, and the vibration displacement outside the electrodes is rapidly reduced and does not affect the surrounding areas (this is a so-called energy trapping type). A typical crystal resonator is shown in FIG.

第1図に於て1は厚みtlのATカット水晶素職でこの
振動子素板(1)は円形、四辺形、三角形等任意形状で
あるがここでは円形(この径はφ!)を示す。2は厚み
txの良電導金属で例えば金、銀、鋼・アルミ、ニッケ
ル等が使用され、ここでは銀を上下電極として図示する
橡に振動予電1[1の上下面に夫々装着している。5及
び4は夫々上下電極20リード部でこの上下電極の径を
φ鵞として示しである。
In Fig. 1, 1 is an AT-cut crystal element with a thickness of tl, and this resonator plate (1) can have any shape such as a circle, quadrilateral, or triangle, but here it is shown as a circle (its diameter is φ!). . 2 is a good conductive metal with a thickness tx, such as gold, silver, steel/aluminum, nickel, etc. Here, silver is used as the upper and lower electrodes, which are attached to the upper and lower surfaces of the vibration pre-electrode 1 [1, respectively. . 5 and 4 are lead portions of the upper and lower electrodes 20, respectively, and the diameters of the upper and lower electrodes are shown as φ.

こ011に形成されるエネルギー閉じ込め形水晶共振子
を例にとって説明する。
An example of an energy trap type crystal resonator formed in this embodiment will be explained.

一一子嵩1[(1)の厚み(tl)で定まる無限平板の
nは補正され九スチッ7ネス、Plは水晶の密度)、ム
チカット水晶振動子の場会スチッフネスC−e′はC−
−m 2 9.2 1  x  1 0”  dyn@
ん 、 Pt=2.65g/−であるからn=x1の時
ttf@= 1.66 (mm、MH,) 川(2)と
なる、ここで説明を簡単化する為に例えば振動予電1[
1の厚み(ts)をtl=a164mm、径(φ、)を
−φr−&Omm  :J電極2o厚み(ts)をts
=(LOOO2でToゐから水晶嵩1[1は無鉄平面と
いえ、更に電の距階にあシ、水晶振動子10周辺の形状
及び仕上げの具合を無視して説明できる。この条件の下
での水晶共振子の共振周波数fはエネルギー閉じ込め振
動理論によって前述したf・、4 e  bと電極の負
荷効果に関連するΔの関数として求まる。
The field stiffness C-e' of a whip-cut crystal resonator is C-
-m 2 9.2 1 x 1 0” dyn@
Since Pt=2.65g/-, when n=x1, ttf@=1.66 (mm, MH,) river (2).To simplify the explanation, for example, vibration precharge 1 [
Thickness (ts) of electrode 1 is tl=a164mm, diameter (φ,) is -φr-&Omm: Thickness (ts) of J electrode 2o is ts
=(LOOO2, from Toi to crystal volume 1 [1 can be said to be a non-ferrous plane, and it can be explained by ignoring the distance of the electric current and the shape and finish of the area around the crystal resonator 10. Under these conditions The resonant frequency f of the crystal resonator at is determined by the energy-confined vibration theory as a function of the aforementioned f·, 4 e b and Δ related to the loading effect of the electrodes.

密度でP、=1α50g/、iである。この(3)式は
共振子の共振周波数を定める要因を示すもので(1バ4
)俤)の各式によって展開すると、(n*c@・′ν1
 +  tl eplet2.φコ〕になる。この要因
の円n * Can’ e Ptは前述した如く予め足
まっているので残る(ts・ts#p2.φ3)が設計
論的K11l立因子である。この独立因子群とエネルギ
ー閉じ込めモードの最低次基本周波数となる水晶共振子
の共振周波数fとの関係は、パラメーターを媒介変数と
して対応づけ得る。
The density is P,=1α50g/,i. This equation (3) shows the factors that determine the resonant frequency of the resonator (1 bar 4
) 俤), (n*c@・′ν1
+ tl eplet2. It becomes φko]. Since this factor circle n*Can' e Pt is predetermined as described above, the remaining (ts·ts#p2.φ3) is the design theory K11l factor. The relationship between this group of independent factors and the resonance frequency f of the crystal resonator, which is the lowest fundamental frequency of the energy trapping mode, can be established using parameters as mediating variables.

例えばn=1の時、共振lI波数fはf=f・(1−R
s i n”# ) ”’ (6)1” 示すtL L
。コo(6)jc−t’#ハ@l1i4り振動方1式を
上記の条件で境界間層を屏いて得たし、且つ領域(0,
7:)にある根を示す。この(7)式でkは普通異方性
系数に同値であるがここでは電極が円形であることと、
前記ΔをRと近似した補正を含めて略Q、71にすると
実験値と一致する。
For example, when n=1, the resonance lI wave number f is f=f・(1−R
s in”#) ”’ (6) 1” tL L
. ko (6)
7:) shows the root. In this equation (7), k is normally the same value as the anisotropic coefficient, but here the electrode is circular,
If the above-mentioned Δ is made to be approximately Q, 71 including a correction that approximates R, it agrees with the experimental value.

チフを作ったのが第2図である8以上の準備によって水
晶共振子の共振周波数fは前記(3)式に対応する具体
的な式として、(6)式に(21(5) (8)の各式
を代入すると となる。例えばこの共振周波数fを素板1及び電極2の
寸法で計算するとf=10.OMthになる。
The resonant frequency f of the crystal resonator is determined by the above preparation as shown in Figure 2.The resonant frequency f of the crystal resonator can be expressed as (21(5) (8) in equation (6) as a specific equation corresponding to equation (3) above. ).For example, if this resonance frequency f is calculated using the dimensions of the blank plate 1 and the electrode 2, then f=10.OMth.

かかるエネルギー閉じ込め形水晶共振子の製造に際して
共振周波数の調整の会費性を先づ説明し、続いて従来に
於ける周波数調整法とその欠点を以下に説明する。
The cost of adjusting the resonant frequency in manufacturing such an energy-trapped crystal resonator will be explained first, and then the conventional frequency adjusting method and its drawbacks will be explained below.

一般に水晶共振子の代表的な製造工程では前記(9)式
の()内第2項の電極蒸着の負荷効果にょる周波数戻り
童を見込んで設計された水晶素板1の厚み(tl)に対
して、例えば1.005trの水晶素板厚みに表る様に
機械的研磨で水晶素板は精度±Q、1596(0,25
μ)に仕上げられる。次に(10005ts。
In general, in a typical manufacturing process of a crystal resonator, the thickness (tl) of the crystal base plate 1 is designed taking into account the frequency return due to the load effect of electrode deposition in the second term in parentheses of equation (9). On the other hand, as shown in the thickness of the crystal plate of 1.005 tr, the accuracy of the crystal plate by mechanical polishing is ±Q, 1596 (0,25
μ). Next (10005ts.

化学的研磨をする過程でtlは士o、 o s’s c
α08μ)の偏差内に仕上げられる。しかる後に厚み(
tm)の電極が装着される。この場合電極(tl)の厚
みが希望通りの厚みであっても50 ppmの偏差を既
にもっているが、この(tm)の偏差や(9)式の内に
含めなかった水晶素板の表面荒さ及び平行度、支持機構
等による若干の影響がここでは見逃せないのでこれ等を
加えねばならず、従って・総計すると周波数偏差は±1
00 pI)mはあるものと見做さねばならない。この
様な100 PPn1の周波数偏差のものを所望の周波
数偏差(例えば±2 ppmに調整する。)にしなけれ
ばならないが、その方法として■電気化学研磨、■電気
化学メッキ、[F]蒸着法の375法が一般的には行表
われている。これ等従来方式で共通している事は電極2
の厚み(tりを調整すみ事である。
In the process of chemical polishing, tl is
Finished within the deviation of α08μ). After that, the thickness (
tm) electrodes are attached. In this case, even if the thickness of the electrode (tl) is as desired, it already has a deviation of 50 ppm, but this deviation of (tm) and the surface roughness of the crystal plate, which was not included in equation (9), The slight influence of parallelism, support mechanism, etc. cannot be overlooked here, so these must be added. Therefore, in total, the frequency deviation is ±1
00 pI)m must be considered as being. Such a frequency deviation of 100 PPn1 must be adjusted to a desired frequency deviation (for example, adjusted to ±2 ppm), but methods for doing so include ■electrochemical polishing, ■electrochemical plating, and [F] vapor deposition. 375 law is generally expressed in rows. What these conventional methods have in common is that the electrode 2
The thickness (t) must be adjusted.

例えば0法に於ては厚み(tl)を減少させる時、■法
に於ては厚み(1雪)を増大させる時のみ有効であるが
、これ等■■に於ては共通的に電解液の成分濃度と温度
管理1通電電荷量(特に時間的な事)の管理が容易でな
い為±20p−以下の調整には高度の熟練を要する。し
かも電解液を除去するのに時間を費するし電解液の微量
残渣による電極の経年変化、即ち共振周波数fの変化の
恐れが多分にある。これ等の欠点に加えて周波数の調整
操作を電解液中で行うので、水晶共振子を発振子又は共
振子として電気回路中で動作させてその調整度合を直視
し乍ら実行する事ができない。特に問題となるのは、例
えば第3図に示す様に4対の厚み辷り共振子でその一対
の共振周波数を調整する場合、調整を必要としない他の
対の電極も電解液に浸さざるを得なく、これ等通電され
ない部分の電極の厚みも変化する為に希望する対電極の
独立的な調整が困難になることである。
For example, in the 0 method, it is effective only when decreasing the thickness (tl), and in the ■ method, it is effective only when increasing the thickness (1 snow), but in these ■■ methods, the electrolyte solution is Component concentration and temperature control 1. Since it is not easy to control the amount of electrical charge (especially in terms of time), a high degree of skill is required to adjust it to within ±20p. Moreover, it takes time to remove the electrolytic solution, and there is a great possibility that the minute amount of residual electrolytic solution may cause the electrode to deteriorate over time, that is, the resonance frequency f may change. In addition to these drawbacks, since the frequency adjustment operation is performed in the electrolyte, it is not possible to operate the crystal resonator as an oscillator or resonator in an electric circuit and directly observe the degree of adjustment. A particular problem is that, for example, when adjusting the resonant frequency of a pair of four pairs of thickness-stretching resonators as shown in Figure 3, the other pairs of electrodes that do not require adjustment must also be immersed in the electrolyte. Unfortunately, the thickness of the electrode in these non-energized parts also changes, making it difficult to independently adjust the counter electrode as desired.

一方、他の■に示す蒸着法に於ては電極の厚み(tl)
を増大させる時に有効でこの蒸着法では前述した■■の
欠点を有しない、しかし周波数調整を真空中で行なわね
ばならぬ事は当然としても調整電極部のコーテング・マ
スクの殴定は容易ではなく、更に微少厚みのコーテング
即ち少量の金属蒸着を希望の設定値に制御する事も容易
ではない。
On the other hand, in the other vapor deposition method shown in (1), the electrode thickness (tl)
This vapor deposition method is effective in increasing the frequency, and does not have the disadvantages mentioned above. However, although it is natural that frequency adjustment must be performed in a vacuum, it is not easy to punch the coating mask of the adjustment electrode part. Furthermore, it is not easy to control the minute thickness of the coating, that is, the small amount of metal vapor deposition, to a desired setting value.

これらを解決するには高価な装置を必要とするし、しか
も周波数の微調整(a ppm)では周波数の測定時間
と電極を形成する銀の蒸着をしめきるシャッターの速度
限界から、例えば蒸発源の温度を蒸発ぎ9ぎり布下けて
弱いエネルギーしか持たない微量の蒸発金属粒子流を用
いるので、その付着状態は悪(共振周波数fの経年変化
等の問題がある。
Solving these problems requires expensive equipment, and fine adjustment of the frequency (a ppm) is limited by the frequency measurement time and the speed limit of the shutter that stops the deposition of silver forming the electrodes. Since the temperature is lowered to evaporate and a minute amount of evaporated metal particle flow having only weak energy is used, the adhesion state thereof is poor (there are problems such as aging of the resonance frequency f, etc.).

以上の点をjIまえて本発明に係る音蕃結合多対電極共
振子について、従来ではどのようにして共振周波数を調
整していたかを具体酌に説明する。
With the above points in mind, we will specifically explain how the resonant frequency was conventionally adjusted in the acoustically coupled multi-pair electrode resonator according to the present invention.

wJ3図に示す4対電極の厚み辷り水晶共振子を例にと
ると、振動子葉板上に電極2,2′及び2I。
Taking as an example a thickness-stretching crystal resonator with four pairs of electrodes shown in figure wJ3, electrodes 2, 2' and 2I are placed on the vibrating cotyledon plate.

21Iが夫々装着してあって、図示しないメ二円形の水
晶素板上に2対、3対の丸みを持った矩形の電極対を有
するものについても同様である。このよう力4対電極の
水晶共振子を例えば第4図の様に接続してx、T′、l
、l/の4端子回路を構成すればモノリシック水晶フィ
ルターとなる。このフィルター仕様特性が満足される様
に第3図に於ては、電極の水晶素板の結晶軸に対する並
び力(この場合光軸2から約s ’: i s’傾けら
れた軸 T)、電極の面積(L 、 wi)、電極間隔
(gi j )並びに電極厚み(tm)等が水晶素板の
厚み(tl)に対して定まっているが、ここで問題とす
るのは着目すべき相隣り合う電極対間の音響結合係数を
、対応する電気等価回路で設計された電気結合係数に合
致する様に調整する場合である。−例として相隣り合う
電極2及び21を第5図(a)の様に接続すると直列共
振周波数(fl)が、一方案5図(blの様に接続する
と共振周波J!!(fm)とが夫々測定でき、これ等共
振周波数の振動モードに対応する弾性75程式に境界条
件を入れて解(と得られる。例えば前述した如く超越方
程式の解を求めた後に寸法構造的に書き直してFとの関
係を定めると次の様に近似できる。即ちこの(ロ)式で
定数klは伝播する波の速さの比、即ち水晶のスチツフ
ネスに関する項で、ここではATカット水水晶板板上2
′力向に電極が並べであるの夫々o力式の右辺を代数式
に近似した時の補正定数で、良く用いられる範囲のW+
 g Hil 、△に対してkm =a78及D’ k
s =2.88テ与L ラレル。
The same applies to the case where the electrodes 21I are respectively mounted and have two or three pairs of rounded rectangular electrode pairs on a mezzanine crystal plate (not shown). For example, by connecting the crystal resonator with four pairs of force electrodes as shown in Fig. 4, x, T', l
, l/ constitutes a 4-terminal circuit to form a monolithic crystal filter. In order to satisfy this filter specification characteristic, in Fig. 3, the alignment force of the electrode with respect to the crystal axis of the crystal plate (in this case, the axis T tilted approximately s': i s' from the optical axis 2), The electrode area (L, wi), electrode spacing (gij), electrode thickness (tm), etc. are determined with respect to the thickness of the crystal plate (tl), but the issue here is the phase to be focused on. This is a case where the acoustic coupling coefficient between adjacent pairs of electrodes is adjusted to match the electrical coupling coefficient designed by the corresponding electrical equivalent circuit. - For example, if the adjacent electrodes 2 and 21 are connected as shown in Figure 5(a), the series resonance frequency (fl) will be the same, and if they are connected as shown in Figure 5(bl), the resonance frequency J!!(fm) will be can be measured respectively, and the boundary conditions are inserted into the elasticity equation 75 corresponding to the vibration mode of these resonant frequencies, and the solution is obtained.For example, after finding the solution to the transcendental equation as mentioned above, rewriting it dimensionally and structurally gives F. By determining the relationship, it can be approximated as follows.That is, in this equation (b), the constant kl is the ratio of the speed of the propagating wave, that is, the term related to the stiffness of the crystal.
'The electrodes are lined up in the force direction.'This is a correction constant when the right side of the force equation is approximated to an algebraic equation, and W + in the commonly used range.
g Hil , km for △ = a78 and D' k
s = 2.88 degrees L larel.

このようにして求められる結合係数Fを調整する場合、
09式から明らかな様にw、g+tt+t*の製造上の
誤差から一般に上述の方法で実測されるrは設計された
Fから隔たるのが常であるので、!。
When adjusting the coupling coefficient F obtained in this way,
As is clear from Equation 09, r actually measured using the above method usually deviates from the designed F due to manufacturing errors of w, g+tt+t*, so! .

g + hを調整すれば所望のFK修正する事が可能で
ある。ここで水晶素板厚み(tl)は前述した様に±0
.05%の高精度に仕上げられており、しかも電極装着
後には修正不能につき除外した。さて電極厚みtlの増
減によって結合係数Fはα9式のべに関連して明らかに
調整可能であるが、しかし電極対2.2′夫々の固有周
波数も電極の厚み(t3)に応じて大きく変化するので
好ましく力い。従って電極2.2′の幅−の寸法調整が
先ず考えられる。これには電極2.2′の幅長の外側と
内側〔第5図(atのg側〕とが考えられるが、例えば
内側(g側)の寸法調整に際してはal式の右辺1項目
を参照して判る様に、−の内側(g側)寸法の調整が従
属的に相隣り合う電極対間2,2′の空隙億)の寸法も
変化するので効果がない。
By adjusting g + h, it is possible to make the desired FK correction. Here, the crystal base plate thickness (tl) is ±0 as mentioned above.
.. It was excluded because it was finished with a high accuracy of 0.5% and could not be corrected after the electrode was attached. Now, by increasing or decreasing the electrode thickness tl, the coupling coefficient F can obviously be adjusted in relation to the expression α9, but the natural frequency of each electrode pair 2.2' also changes greatly depending on the electrode thickness (t3). Therefore, it is preferable and powerful. Therefore, the first consideration is to adjust the width of the electrode 2.2'. For this, the outside and inside of the width of the electrode 2.2' can be considered [Fig. 5 (g side of at)]. For example, when adjusting the inside (g side) dimension, refer to item 1 on the right side of the al formula. As can be seen, adjusting the inner dimension (g side) has no effect because the dimension of the gap between the adjacent electrode pairs 2, 2' changes accordingly.

従って従来寸法では上、下電極2,2′のそれぞれの厚
み(tm)の合計寸法2 t、を一定にして、上部電極
及び下部電極の夫々の厚み(tm’)を増減する方法が
採られている(2 tl = t*’+tm’ )。こ
の方法としては例えに第6図(a)の様に相隣り合う下
部電極対間の空@ (A’ −B’ )を上部電極対間
の空隙に対して小さめにして行うか、或いはwI6図(
b)の様に下部電極を一体くして共通電極として行うか
、−力これ等方法と異なり第6図(clの様に相隣シ合
う下部電極対間の空隙に新らしい電極2を設けて、この
電極2の厚みを加減して音響結合係数(r)を調整して
いる。
Therefore, in conventional dimensions, the total dimension 2t of the respective thicknesses (tm) of the upper and lower electrodes 2 and 2' is kept constant, and the thickness (tm') of each of the upper and lower electrodes is increased or decreased. (2 tl = t*'+tm'). As an example of this method, as shown in FIG. 6(a), the space between the adjacent lower electrode pairs @ (A'-B') is made smaller than the space between the upper electrode pair, or wI6 figure(
Either the lower electrodes are integrated as a common electrode as shown in b), or, unlike these methods, a new electrode 2 is provided in the gap between the adjacent pairs of lower electrodes as shown in Figure 6 (cl). , the acoustic coupling coefficient (r) is adjusted by adjusting the thickness of this electrode 2.

これら方法で共通することは、前述した如く電極2,2
′夫々の対電極の固有周波数も電極の厚み(tl)に応
じて大きく変化するばかυでな(、cl1式を濡足させ
る手段として結合係数(7’)を大きくする為に第6図
(al (b)に夫々示す様に1上部電極の厚みCM’
)を増大する時に、下部電極の厚み(11つを減少させ
る補正作業が伴い結果的に2度の操作が会費となる事で
ある。なおこれ等従来方法とは異なシ例えばYAGレー
ザーにて電極2,2′の幅−或いは相隣り合う電極対間
の空H(g)寸法を調整する方法が提案されている。か
かる万@にあっては、寸法調整をレーザーで行うので装
置自体か非常に高価になることである。
What these methods have in common is that the electrodes 2, 2
'The natural frequency of each counter electrode also varies greatly depending on the thickness (tl) of the electrode. al As shown in (b), the thickness of one upper electrode CM'
), the thickness of the lower electrode (11) is required to be corrected, resulting in two operations being required.Note that this method is different from the conventional method. A method has been proposed to adjust the width of 2, 2' or the space H (g) dimension between adjacent electrode pairs. This means that it becomes expensive.

本発明はこの点に鑑みて発明されたものであって、多対
の電極構造であれば相lliり合う電極対間に面する電
極の面積(電極幅×電極長さ)等の寸法を夫々低電圧ア
ーク放電加工によって任意にトリミングする事によって
、相lIり合う電極対間の音響結合係数の調整を可能と
し、装置自体は簡単で安価な厚み辷り水晶共振子の周波
数調整法を提供する事にある。
The present invention was invented in view of this point, and in the case of a multi-pair electrode structure, dimensions such as the area (electrode width x electrode length) of the electrodes facing between pairs of electrodes that are compatible with each other are The acoustic coupling coefficient between opposing pairs of electrodes can be adjusted by arbitrarily trimming using low-voltage arc discharge machining, and the device itself provides a simple and inexpensive frequency adjustment method for a thickness-stretching crystal resonator. It is in.

次に本発明の電極の広がり方向をトリミングする装置の
実施例を第7図、第8図にまたそれを用いた低電圧子−
り放電加工の動作を第9図で詳述する。
Next, an embodiment of the device for trimming the spreading direction of the electrode according to the present invention is shown in FIG. 7 and FIG.
The operation of electrical discharge machining will be explained in detail with reference to FIG.

第7図は蓄勢式による低電圧放電装置の例を示し、Eは
数(%r1位のバッテリー或いは商用電源を降圧整流し
て得る直流電源である。この電源Eと電解コンデンサC
関に放電加工で消費する電荷を放電に先立ってコンデン
サCにチャージさせる際に閉じる開閉器Sが接続されて
おり、この開閉器Sはチャージが終了すると開路される
。又、コンデンサCは適当な容量のものでよぐ実施例に
於ては20μFを用いており、このコンデンサCの一端
に図示する様に放電を柔らげる為の抵抗rが挿入され、
この抵抗rは一般にはコンデンサCの内部抵抗と接続線
の抵抗との合成抵抗′で、この抵抗rを介して例えば先
端が尖鋭な金属、−例として木綿針10等が接続される
。一方コンデンサCの他端には普通の接続端子11が接
続され、この端子11は例えは前記端子10の形状でも
よい、第8図は他の実施例を示し非蓄勢式装置の例であ
る、この第8図に於てはトランスTを介して商用電源1
00(V)を絶縁し、且つ適当な放電電圧Mに降圧した
事を特徴とする回路構成でr及び10゜11は夫々第7
図に説明したものと同一である。
Fig. 7 shows an example of a storage type low voltage discharge device.
A switch S is connected to the capacitor C, which is closed when the capacitor C is charged with electric charge consumed in electrical discharge machining prior to discharge, and this switch S is opened when charging is completed. In addition, in the embodiment where the capacitor C has an appropriate capacity, 20 μF is used, and a resistor r is inserted at one end of the capacitor C to soften the discharge, as shown in the figure.
This resistance r is generally a composite resistance of the internal resistance of the capacitor C and the resistance of the connection line, and a metal with a sharp tip, for example a cotton needle 10, etc., is connected via this resistance r. On the other hand, an ordinary connection terminal 11 is connected to the other end of the capacitor C, and this terminal 11 may have the shape of the terminal 10, for example. FIG. 8 shows another embodiment, which is an example of a non-storage type device. , in this Figure 8, the commercial power supply 1 is connected via the transformer T.
The circuit configuration is characterized by insulating 00 (V) and lowering the voltage to an appropriate discharge voltage M, where r and 10°11 are respectively
It is the same as that explained in the figure.

図示していないが放電電圧間をより微細に調節する為に
トランスTの二次側にタップを設けたり、或いは一次側
に通常よく使用されるスライダックを挿入してもよい。
Although not shown, in order to finely adjust the discharge voltage, a tap may be provided on the secondary side of the transformer T, or a commonly used slider may be inserted on the primary side.

この様にしてなる低電圧放電装置を用いて例えば第1図
に示す様な一対の電極構造の共振周波数を調整する場合
、第9図に示す様に水晶素板1上に装着される電極2の
リード部6に加工用の端子11を接触し、木綿針等の一
方の端子10を電極2の周縁部に接触させると、電極2
が銀であればこの銀電極2が接触抵抗によって加熱され
イオン化して蒸発する。それによって微少ギャップが形
成されてアーク放電現象が見られ蒸発は促進し、電極2
はトリミングされて行(。その後は端子10を漸次電極
20周縁部を移動させこの動作は図示はしないがトリミ
ングの量に応じて検出器を介して周波数が連続的に検出
され、所望の周波数を得る迄アーク放電加工によるトリ
ミングは続行される。なお電極2が鎖の場合に大気中の
最低アーク電圧は12.3(V’lであるが、この前後
の電圧を水晶素板に印加すると実験的には素子1が破壊
されるので電圧を例えに3凹〜5凹近傍に下げるとよい
When adjusting the resonant frequency of a pair of electrode structures as shown in FIG. 1 using the low voltage discharge device constructed in this way, for example, as shown in FIG. When the processing terminal 11 is brought into contact with the lead part 6 of the electrode 2 and one terminal 10 such as a cotton needle is brought into contact with the peripheral edge of the electrode 2, the electrode 2
If silver is silver, the silver electrode 2 is heated by the contact resistance, ionizes, and evaporates. As a result, a minute gap is formed, an arc discharge phenomenon is observed, evaporation is accelerated, and the electrode 2
is trimmed (row). After that, the terminal 10 is gradually moved around the edge of the electrode 20, and although this operation is not shown, the frequency is continuously detected via the detector according to the amount of trimming, and the desired frequency is detected. Trimming by arc discharge machining is continued until the electrode 2 is a chain.If the electrode 2 is a chain, the minimum arc voltage in the atmosphere is 12.3 (V'l), but if a voltage around this value is applied to the crystal blank, the experiment Generally speaking, the element 1 will be destroyed, so it is better to lower the voltage to around 3-5 concavities, for example.

電極のトリミングによる効果の実施例を第10図、第1
1図で説明する。
Examples of the effects of electrode trimming are shown in Figure 10 and Figure 1.
This will be explained using Figure 1.

上記の最適印加電圧で第7図の装置を用いてトリミング
した場合に於ける周波数変化量(d f/f )を辱 
 示したものが第10図で、この纂10図〔横軸にトリ
ミング回数を縦軸に累積化周波数変化量(df/f; 
ppn+)を夫々示す。〕より理解できる様に、トリミ
ング回数に応じて周波数変化量は比較的に増大するので
、本発明に於ては従来方法の様に周波数の微調査、例え
ば±2 ppmの様な調整は至極困難である等の諸欠点
は全て解決され、任意所望のカお以上の説明ではトリミ
ングによる周波数調整は、例えば電極20周縁部を移行
して行う方法を示し九が、本発明に於てはこの方法以外
に例えは第1図の水晶共振子で電極2の内面の任意の個
所を任意の大きさでトリミングして周波数の調整を行う
事が可能である。その効果を明らかにする為に第1図の
B−B’ −B#に沿って同じ大きさく約0、 [12
−)のトリミングを行うと第11図〔横軸にトリミング
の位置を縦軸に周波数変化量(d f/f;p障)を示
す。〕に示す様に1電極2の端CB。
The amount of frequency change (d f/f ) in the case of trimming using the apparatus shown in Figure 7 with the above optimal applied voltage is
What is shown in Fig. 10 is this summary Fig. 10 [The horizontal axis represents the number of trimmings and the vertical axis represents the cumulative frequency change amount (df/f;
ppn+) respectively. ] As can be understood, the amount of frequency change increases relatively depending on the number of trimmings, so in the present invention, it is extremely difficult to finely investigate the frequency, for example, adjust it to ±2 ppm, as in the conventional method. However, in the above description, a method of adjusting the frequency by trimming, for example, by moving the peripheral part of the electrode 20, has been shown, but in the present invention, this method For example, in the crystal resonator shown in FIG. 1, the frequency can be adjusted by trimming any part of the inner surface of the electrode 2 to any size. In order to clarify the effect, the same size of approximately 0, [12
-), FIG. 11 shows the trimming position on the horizontal axis and the amount of frequency change (d f/f; p failure) on the vertical axis. ] As shown, the end CB of 1 electrode 2.

Btt )では周波数変化量は小さく両次電極2の中心
点(B’)K接近するにつれて周波数変化量は漸増し中
心点(B′)で周波数変化量は最大となる。この様に位
置によって変わる周波数変化量(df/f′w)大きさ
は概略共振時の振動変位と同形であシ、B−B’力方向
水晶翼板1の結晶軸とのなす角度によってその形が蜜化
しその絶対値はトリミングの大きさに比例する、従って
所望の調整量に応じてトリミングの位置を選べば同じ大
きさのトリミングで目的が容易に達せ得る。
Btt ), the amount of frequency change is small, and as it approaches the center point (B') of the secondary electrode 2, the amount of frequency change gradually increases, and the amount of frequency change becomes maximum at the center point (B'). The magnitude of the frequency change (df/f'w) that changes depending on the position is approximately the same as the vibration displacement during resonance, and the magnitude changes depending on the angle formed with the crystal axis of the B-B' force direction crystal vane plate 1. The shape is condensed and its absolute value is proportional to the size of trimming. Therefore, if the position of trimming is selected according to the desired amount of adjustment, the objective can be easily achieved with trimming of the same size.

このトリ電ング方法を利用して多対電極の厚み辷シ水晶
共振子の相隣υ合う電極対間の音響結合係数する場合、
例えは第6図(blの2対電極構造のもので下面電極が
共通に表っている場合は、先ず下面電極の対向電極の無
い部分の端点、(A 、 B )の中央部(C)を低電
圧アーク放電化工によって任意にトリミングして、この
中央m口の質量除去を次第に第6図葎)に示す空隙部(
にB’ )迄に拡大して行く。このトリミング過程で第
5図(atの様に結線される対称モードに於ける共振周
波数(fl)の変化及び第5図(b)の様に結線される
斜対称モードに於ける共振周波数(fm)の肇化、並び
にこれ等共振周波II (ft)(f禦)の変化に基づ
(音響結合係数(/’)の変化は、夫々第12図〔横軸
にトリミング比A/ B//ABを、縦軸に音響結合係
数(r)並びに電極2゜2′の共振周波#IQ、7MI
kに対する対称モード、斜対称モードに於ける共振周波
数変化分を夫々示す。〕に示す様になシ、本発明によれ
ば低電圧アーク放電加工によって相隣り合う電極対間の
音響結合係数Cr)の調整が容易に行なえるものである
。なお本発明によれti′WJ6図(C1の様に電極2
を残す事も可能で、一方相隣り合う電極対間の空I!1
部のトリミングで例えば第6図(b)のA A’とBB
’を同寸法に行なわずに、積極的にA A’とB B’
とを異寸法にして電極対2.2′夫々の共振周波数の備
差をなくす事ができる。
When using this triangulation method to calculate the acoustic coupling coefficient between adjacent pairs of electrodes in a crystal resonator by varying the thickness of multiple pairs of electrodes,
For example, if the lower surface electrode is commonly exposed in the two-pair electrode structure shown in FIG. is trimmed arbitrarily by low-voltage arc discharging process, and the mass of this central m opening is gradually removed to form the void shown in Fig. 6 (Fig. 6).
It expands to B'). During this trimming process, changes in the resonant frequency (fl) in the symmetrical mode connected as shown in Figure 5 (at) and changes in the resonant frequency (fm) in the oblique symmetrical mode connected as shown in Figure 5(b) are observed. ), and the change in the acoustic coupling coefficient (/') based on the change in the resonant frequency II (ft) (f) is shown in Figure 12 [The horizontal axis shows the trimming ratio A/B// AB is represented by the acoustic coupling coefficient (r) and the resonance frequency of electrode 2゜2' on the vertical axis #IQ, 7MI
The resonance frequency changes in the symmetric mode and the oblique symmetric mode with respect to k are shown, respectively. ] According to the present invention, the acoustic coupling coefficient Cr) between adjacent pairs of electrodes can be easily adjusted by low-voltage arc discharge machining. In addition, according to the present invention, the electrode 2 is
It is also possible to leave an empty space I! between adjacent pairs of electrodes. 1
For example, A A' and BB in Fig. 6(b) are trimmed.
'A A' and B B' without making them the same size
By making the electrodes 2 and 2' different in size, it is possible to eliminate differences in the resonance frequencies of the electrode pairs 2 and 2'.

以上のように本発明に於ては低電圧アーク放電加工によ
って電極の広がυ方向を、任意にトリミングして所望の
共振周波数或いは相隣り合う電極対間の所望の音響結合
係数を得る様にしたものであるから、以下に示すように
種々の利点を有するものである。
As described above, in the present invention, the spreading υ direction of the electrode is arbitrarily trimmed by low-voltage arc discharge machining to obtain a desired resonance frequency or a desired acoustic coupling coefficient between adjacent pairs of electrodes. Therefore, it has various advantages as shown below.

■ トリミングの操作に熟練を要さずに±lppm等の
微細な周波数調整ができる。
■ Fine frequency adjustments such as ±lppm can be made without requiring any skill in trimming operations.

■ CIメータ等の駆動装置に接続し九ままで所望の周
波数を見守り乍らトリミング調整ができる、 ■ 大気中は勿論の事、任意の雰囲気中でトリミングが
できる。
■ Trimming adjustment can be made while monitoring the desired frequency by connecting to a driving device such as a CI meter. ■ Trimming can be done not only in the atmosphere but also in any atmosphere.

■ 多対電極構造のもので調整しようとする電極以外の
電極に影響を与えないで調整が可能となる。
■ It has a multi-pair electrode structure, which allows adjustment without affecting electrodes other than the one to be adjusted.

■ 簡単で安価な装置で安定にしかも微細な周波数調整
或いは音響結合係数の調整が可能となる。
■ Stable and fine frequency adjustment or acoustic coupling coefficient adjustment is possible with a simple and inexpensive device.

■ トリミングした部分の金属はアーク放電によって蒸
発霧散するので調整後の洗浄操作は通常不要となる。
■ Since the metal in the trimmed area is evaporated and atomized by arc discharge, cleaning operations after adjustment are usually unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)及び(ロ)は夫々一般的なATカット厚め
辷り水晶共振子を示す平面図及び縦断側面図、第2図は
共振周波数を得る一過程に於ける5inj#と対電極厚
み辷シ水晶共振子を示す斜視図及び縦断側面図、第6図
←→はAT板CBT板)として傾けられた光軸(2′)
と電気軸(3)並びに機械軸(Y′)との関係を示す関
係図、凧4図はモノリシックフィルタを示す接続図、第
5図(a)及び偽)は夫々2対電極構造で対称モード及
び斜対称モードに於ける共振周波数を得る接続図、第6
図(1)(b)及び(clは夫々多対電極構造に於ける
音響結合係数を調整する具体的事例、第7図は本発明に
よる具体的な一実施例を示す接続図、第8図は本発明に
よる具体的な他の実施例を示す接続図第9図は本発明に
よる低電圧アーク放電加工に於けるトリミング作業を示
す具体的事例図、第10図は本発明に於けるトリミング
回数と累積化周波数変化量との関係を示す特性図、第1
1図は本発明に於けるトリミングの位置と周波数変化量
との関係を示す特性図、第12図は本発明に於けるトリ
ミング比と音響結合係数、対称モードと斜対称モードの
共振周波数との関係を示す時性図。 (1)は水晶振動子素板、(2) (27’ (2)’
 (2)は夫々電極、(3)及び(4)はそのリード部
、(2)及びαυは夫々加工用の端子、叩及び(C1(
81@)は夫々電圧電源及びコンデンサスイッチ並びに
抵抗。 第2図 ち      Fs(登R) ε 第31!I 第4 図 箆5図 (aン         (1)) 第10国 とリミ/りU3妻( 第1f t!! ) −−□トリミンクφイT1.屓
Figures 1 (a) and (b) are a plan view and a longitudinal side view of a typical AT-cut thick sliding crystal resonator, respectively, and Figure 2 shows the 5inj # and counter electrode thickness in one process of obtaining the resonant frequency. A perspective view and a vertical side view showing a quartz crystal resonator, Fig. 6 ←→ is an optical axis (2') tilted as an AT plate and a CBT plate)
Figure 4 is a connection diagram showing a monolithic filter, and Figure 5 (a) and false) are two-pair electrode structures and symmetrical modes, respectively. and connection diagram for obtaining the resonant frequency in obliquely symmetrical mode, No. 6
Figures (1) (b) and (cl) are specific examples of adjusting the acoustic coupling coefficient in a multi-pair electrode structure, respectively. Figure 7 is a connection diagram showing a specific embodiment of the present invention. Figure 8. 9 is a connection diagram showing another specific embodiment of the present invention. FIG. 9 is a specific example diagram showing trimming work in low voltage arc discharge machining according to the present invention. FIG. 10 is a diagram showing the number of times of trimming in the present invention. Characteristic diagram showing the relationship between and the cumulative frequency change amount, 1st
Fig. 1 is a characteristic diagram showing the relationship between the trimming position and the amount of frequency change in the present invention, and Fig. 12 is a characteristic diagram showing the relationship between the trimming ratio and the acoustic coupling coefficient, and the resonant frequency of the symmetric mode and the oblique symmetric mode in the present invention. A temporal diagram showing the relationship. (1) is a crystal resonator element plate, (2) (27'(2)'
(2) are electrodes, (3) and (4) are their leads, (2) and αυ are processing terminals, and (C1(
81@) are the voltage power supply, capacitor switch, and resistor, respectively. Figure 2 Fs (Tori R) ε 31st! I Figure 4 Figure 5 (a (1)) 10th country and Rimi/ri U3 wife (1st f t!!) --□ Trimming φi T1.屓

Claims (2)

【特許請求の範囲】[Claims] (1)  ムチカット或はBTカット等の厚み辷勤水墨
共振子のjll[をフリー状態とはせずに、多対の電極
を共振子素板に直接蒸着して、電極が共振子の一部とし
て振動する共振子の周波数を調整するようKしたものに
於て、前記電極群で着目し九一対O電極に対して相隣り
合わない電極の任意の広が動方向を、低電圧アーク放電
加工で任意にトリミングして電極対間の音響結合係数を
調整し、以って共振子の共振周波数を調整したことを特
徴とする厚み辷り水晶共振子の周波数調整方法。
(1) Many pairs of electrodes are deposited directly on the resonator base plate without leaving the JLL of a thick ink resonator such as a whip cut or BT cut in a free state, so that the electrodes become part of the resonator. In order to adjust the frequency of the resonator that vibrates as a A method for adjusting the frequency of a thickness-stretching crystal resonator, characterized in that the acoustic coupling coefficient between a pair of electrodes is adjusted by arbitrarily trimming during processing, thereby adjusting the resonant frequency of the resonator.
(2)  41許請求の範■I11項に於て、電極群で
着目した一対の電極面上の内部の孤立した広がシ部分を
、任意の大きさと箇所について低電圧アーク鎗電加工で
任意にトリミングして電極対間の音響結合係数を■整し
、以ってl&繻子の共振周波数を調整し大ことを特徴と
する厚み辷)水晶共振子の周波数調整方法。
(2) In Section 11 of Claim 41, an isolated internal widening portion on a pair of electrode surfaces focused on in an electrode group can be arbitrarily processed by low-voltage arc machining to any size and location. A method for adjusting the frequency of a thick crystal resonator, characterized in that the acoustic coupling coefficient between the pair of electrodes is adjusted by trimming the resonator to adjust the resonant frequency of the l&satin.
JP18034782A 1982-10-14 1982-10-14 Frequency adjusting method of thickness-slipping crystal resonator Pending JPS58116810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18034782A JPS58116810A (en) 1982-10-14 1982-10-14 Frequency adjusting method of thickness-slipping crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18034782A JPS58116810A (en) 1982-10-14 1982-10-14 Frequency adjusting method of thickness-slipping crystal resonator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1176973A Division JPS4999494A (en) 1973-01-29 1973-01-29

Publications (1)

Publication Number Publication Date
JPS58116810A true JPS58116810A (en) 1983-07-12

Family

ID=16081636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18034782A Pending JPS58116810A (en) 1982-10-14 1982-10-14 Frequency adjusting method of thickness-slipping crystal resonator

Country Status (1)

Country Link
JP (1) JPS58116810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236140B1 (en) * 1996-07-31 2001-05-22 Daishinku Corporation Piezoelectric vibration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236140B1 (en) * 1996-07-31 2001-05-22 Daishinku Corporation Piezoelectric vibration device

Similar Documents

Publication Publication Date Title
US4379244A (en) Method of detection of the asymmetry of piezo-electric crystal resonators in the form of tuning forks and resonators for carrying it out
Jacobson et al. Infrared dielectric response and lattice vibrations of calcium and strontium oxides
US7310029B2 (en) Bulk acoustic resonator with matched resonance frequency and fabrication process
US4454444A (en) LiTaO3 Piezoelectric resonator
US3569750A (en) Monolithic multifrequency resonator
US4130771A (en) Method of adjusting the frequency of a crystal resonator and reducing ageing effects
GB1583843A (en) Piezoelectric microresonators
US3128397A (en) Fork-shaped quartz oscillator for audible frequency
US4445066A (en) Electrode structure for a zinc oxide thin film transducer
JPS58116810A (en) Frequency adjusting method of thickness-slipping crystal resonator
KR910001647B1 (en) A trapped energy resonator
JP2005269628A (en) Quartz resonator and manufacturing method of electrode film thereof
JP3010922B2 (en) Crystal resonator for temperature detection and method of manufacturing the same
US3465177A (en) Thin film piezoelectric transducer
JPS5840849B2 (en) Frequency adjustment method for surface acoustic wave transducer
JPH10190388A (en) Manufacture of piezoelectric ceramic resonator
JPS55115710A (en) Frequency adjustment method for thickness slide vibrator
JPH0233389Y2 (en)
JPS6118372B2 (en)
JPS5818810B2 (en) Onsagata Atsuddenkuyokushindoushi
JPS58117714A (en) Construction of crystal plate head
JPS59182615A (en) Rectangular at-cut quartz oscillator
JPH04124907A (en) Surface acoustic wave device
JP2930857B2 (en) Adjustment method of resonance frequency of ceramic resonator
JPH08340230A (en) Crystal oscillator