JPS58115851A - Active matrix substrate - Google Patents

Active matrix substrate

Info

Publication number
JPS58115851A
JPS58115851A JP21329281A JP21329281A JPS58115851A JP S58115851 A JPS58115851 A JP S58115851A JP 21329281 A JP21329281 A JP 21329281A JP 21329281 A JP21329281 A JP 21329281A JP S58115851 A JPS58115851 A JP S58115851A
Authority
JP
Japan
Prior art keywords
layer
source
gate electrode
active matrix
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21329281A
Other languages
Japanese (ja)
Other versions
JPH0338751B2 (en
Inventor
Shinji Morozumi
両角 伸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP21329281A priority Critical patent/JPS58115851A/en
Publication of JPS58115851A publication Critical patent/JPS58115851A/en
Publication of JPH0338751B2 publication Critical patent/JPH0338751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

PURPOSE:To enable to manufacture the substrate for an active matrix panel at a low temperature and moreover by a simple process by a method wherein an Al layer or an Al alloy layer to be used as a low temperature impurity diffusion source is used for a wiring layer, and moreover for up to the gate electrode material. CONSTITUTION:A silicon thin film 21 is formed on the transparent substrate 20, and moreover after a gate insulating film 22 is formed and the gate electrode material 23 is deposited, the gate electrode 25 is formed by patterning, and a gate insulating film 24 is formed using the gate electrode thereof as the mask. Then the Al layer or the Al alloy layer 26 of Al-Si, etc., to be used both as the diffusion source and as the wiring layer is formed according to the evaporation method or the sputtering method, and after then by performing annealing at 300-450 deg.C for about 5-20min, Al diffuses in the Si film as impurities at a comparatively low temperature. As a result, source and drain diffusion layers 27, 28 and a channel 29 are formed, and after then the Al layer or the Al alloy layer used as the diffusion source is patterned to be utilized as it is as the wiring material for lead wires 30, 31 from the source and the drain, etc. Because the diffusion source is used as the wiring layer as it is, simplification of the process can be attained.

Description

【発明の詳細な説明】 本発明は液晶等の大容量ディスプレイ略に応用されるア
クティブ・マトリックスを用いたディスプレイパネルの
基板、即ちアクティブ・マトリックス基板に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a display panel substrate using an active matrix, which is applied to large-capacity displays such as liquid crystal displays, that is, an active matrix substrate.

従来、液晶等のディスプレイパネルにおいては時分割駆
動が行なわれてきた。しかしこの方法は時分割のデユー
ティ比は1/16〜1/32が限界である。一方情報機
器の発達に伴ない、ディスプレイパネルには増々高解像
度の表示性能の要求が強ぐなってきつつある。このよう
な高解像度ディスプレイは少なくとも横に100ライン
を必要とし、従って駆動デユーティ比は1/100より
大きなデユーティ比が必要となるが、従来の時分割駆動
方式では表現は不可能である。例えばテレビ画像表示に
は少なくとも240ライン×200ラインの解像度が必
要であるが、従来の時分割駆動法では、かなりむずかし
い領域である。従ってこの改善のために、アクティブ・
マトリックス駆動という方法が考えられてきた。この方
式は各画素に電荷を保持させておき、極く短時間に画素
に表示データを書き込み、次に97レツシエされるまで
記憶させ、同時に液晶を駆動するものであり、この方式
は原理的には11500以上のデユーティ比も可能にな
る。
Conventionally, time division driving has been performed in display panels such as liquid crystals. However, in this method, the time division duty ratio is limited to 1/16 to 1/32. On the other hand, with the development of information equipment, demand for display panels with increasingly high resolution display performance is becoming stronger. Such a high-resolution display requires at least 100 horizontal lines, and therefore requires a drive duty ratio greater than 1/100, but this cannot be achieved using the conventional time-division drive method. For example, television image display requires a resolution of at least 240 lines x 200 lines, which is an area that is quite difficult to achieve with conventional time-division driving methods. Therefore, for this improvement, active
A method called matrix drive has been considered. In this method, each pixel retains a charge, and display data is written to the pixel in a very short time, stored until the next 97 retrieval, and the liquid crystal is driven at the same time. A duty ratio of 11,500 or more is also possible.

嫡1図はMOS)ランジスタ4を用いたアクティブ・マ
トリックスの−w系のセ/I/1を示すものであり、タ
イミング4!!3によりトランジスタ4のON、0IF
Fがコントルールされ、ONしている時にデータ@2に
よりデータが容量性の液晶体5に書き込まれ、oyFし
てから保持されるという動作をする。従来このMOS)
ランジスタ4は単結晶81基板上に形成されてきたが、
大面積化がむずかしい、コストが高い、コントラストが
低い等の理由により、アモルファスシリコンや多結晶シ
リコンを用いた薄膜トランジスタ(TUFT)を用いる
ことが提案されてきた。しかしこの方式はソーダガラス
等の低融点基板を用いる関係上、プロセス温度が低く、
従来の如くソース・ドレインの拡散層としてリン(P)
やボロン(B)等の不、    鈍物拡散が、従来の熱
拡散法では不可能である。
The first diagram shows an active matrix -w system SE/I/1 using MOS transistor 4, and timing 4! ! 3 turns transistor 4 ON, 0IF
When F is controlled and turned ON, data is written into the capacitive liquid crystal 5 by data@2, and is held after oyF. Conventionally this MOS)
Although the transistor 4 has been formed on a single crystal 81 substrate,
For reasons such as difficulty in increasing the area, high cost, and low contrast, it has been proposed to use thin film transistors (TUFT) using amorphous silicon or polycrystalline silicon. However, since this method uses a low melting point substrate such as soda glass, the process temperature is low;
As in the past, phosphorus (P) was used as the source/drain diffusion layer.
Diffusion of non-blunt substances such as carbon dioxide and boron (B) is impossible using conventional thermal diffusion methods.

又イオン打込法は装置コストが高く、又高温アニールを
しないと拡散層の抵抗が下げられないという欠点があっ
た。 このようにシリコン薄膜を用いたトランジスタの
構造、或いは製造方法は従来の単結晶シリコンにおける
MOS)ランジスタの形成法と同じでは実現ができない
工程があったり、又複雑すぎる面があった。
Further, the ion implantation method has the disadvantage that the equipment cost is high and the resistance of the diffusion layer cannot be lowered unless high temperature annealing is performed. As described above, the structure or manufacturing method of a transistor using a silicon thin film involves processes that cannot be realized using the same method as the conventional method of forming a MOS (MOS) transistor using single crystal silicon, and is also too complicated.

従って本発明の目的はシリコン薄膜を用いて、工程の簡
単なTIFT及び、このTNTを用いたアクティブ・マ
トリックス基板を提供することにある。
Therefore, an object of the present invention is to provide a TIFT using a silicon thin film with a simple process and an active matrix substrate using the TNT.

本発明は低温にて不純物拡散層を形成する方法として不
純愉源にAt又はAt合金を用い、更に工程の簡略化の
ために、不純物拡散源のこのAt又はAt合金を更にそ
のまま一線層に用いるものである。
The present invention uses At or At alloy as an impurity source as a method for forming an impurity diffusion layer at a low temperature, and further uses this At or At alloy as an impurity diffusion source as it is in a line layer in order to simplify the process. It is something.

第2図は本発明の実施例である。透明基板2゜上にシリ
コン薄膜21を形成し、更にゲート絶縁M22、ケート
電極材料25をデボジク)する。
FIG. 2 shows an embodiment of the invention. A silicon thin film 21 is formed on a transparent substrate 2°, and a gate insulator M22 and a gate electrode material 25 are further deposited.

(イ)この後ゲート電極25をパターン形成し、更にこ
のゲート電極25をマスクにゲート絶縁膜24を形成す
る。(ロ)この後に拡散源及び配線層を兼用するA4又
はAj−8i等のムを合金層26を蒸着やスパッタ法に
より形成し、この後300℃〜450℃にて、5分〜2
0分程度アニールすることにより、Atが不純物として
S1膜中を比較的低温で拡散してゆく。これはAL自体
が低融点金属であり、Slとの共晶湿度も低いため、従
来のPやBに比し比較的低温でktが拡散する原理を用
いる。但しS1膜の厚さに比し、At又はAt合金層の
厚さが大きいと逆に81がAt中に拡散することもある
ので通常安定に用いるためには少なくともAt層の厚み
を、S1膜と同等かもしくは薄くする必要がある。この
結果ソース・ドレイン拡散層27.28とチャネル29
が形成される。
(a) After this, a gate electrode 25 is patterned, and a gate insulating film 24 is further formed using this gate electrode 25 as a mask. (b) After this, an alloy layer 26 of A4 or Aj-8i, which serves as a diffusion source and a wiring layer, is formed by vapor deposition or sputtering, and then heated at 300°C to 450°C for 5 minutes to 2 minutes.
By annealing for about 0 minutes, At diffuses as an impurity into the S1 film at a relatively low temperature. This uses the principle that kt diffuses at a relatively low temperature compared to conventional P and B because AL itself is a low melting point metal and has a low eutectic humidity with Sl. However, if the thickness of the At or At alloy layer is large compared to the thickness of the S1 film, 81 may diffuse into the At. It needs to be equal to or thinner. As a result, source/drain diffusion layers 27, 28 and channel 29
is formed.

(ハ)この後拡散源に用いたkl又はAt合金層をパタ
ーニングしてソース・ドレインからの引出し線30.3
1等の配線材料としてそのまま利用する。
(c) After this, the kl or At alloy layer used as the diffusion source is patterned to form lead lines 30.3 from the source/drain.
It can be used as is as a first class wiring material.

に)この結果拡散源がそのまま配線層として用いれるの
で、工程の簡略化が可能となる。
(b) As a result, the diffusion source can be used as it is as a wiring layer, making it possible to simplify the process.

第3図は本発明の他の実施例である。透明基板35上に
シリコン薄膜36をデポジットしパターニングした後、
ゲート絶縁膜をなる絶縁膜をつけてパターニングし、ゲ
ート膜57を形成する。(イ)この後At又はAt合金
層37をっけてがらやはり300℃〜450℃にて5分
〜2o分程度アニールすると、ムtの低温拡散によりソ
ース・ドレイン拡散層39.40が形成される。この時
S1膜の厚みは例えば3oooX〜1μ常、At層は2
000裏〜s 、、o o o lである。(ロ)この
後At層をパターニングして、ソース・ドレインがらの
引き出しl1i142,43等の配線層と同時にゲート
電極41が同時に形成される。(ハ)その後に層間絶縁
膜、例えば810□ 45をつけて、コンタタト・ホー
ル47を開孔後、液晶駆動電極となるネサや工To等の
透明導電性膜46を形成する。に)この方式の利点はム
t’pkt合金層が不純物拡散源(P型)と配線層とな
るのみでなく、第2図の方式に比し、ゲート電極をも兼
ねることができ、更に製造工程を簡略化することが可能
となる。
FIG. 3 shows another embodiment of the invention. After depositing and patterning the silicon thin film 36 on the transparent substrate 35,
An insulating film serving as a gate insulating film is applied and patterned to form a gate film 57. (b) After this, annealing is performed at 300° C. to 450° C. for about 5 minutes to 20 minutes while the At or At alloy layer 37 is placed, and source/drain diffusion layers 39 and 40 are formed by low-temperature diffusion of Mut. Ru. At this time, the thickness of the S1 film is usually 300X to 1μ, and the thickness of the At layer is 2μ.
000 back ~s,, o o o l. (b) After this, the At layer is patterned, and the gate electrode 41 is formed at the same time as the wiring layers such as the source/drain leads 142 and 43. (c) After that, an interlayer insulating film, for example 810□ 45, is applied, and after contact holes 47 are opened, a transparent conductive film 46 such as Nesa, To, etc., which will become a liquid crystal drive electrode is formed. ) The advantage of this method is that the Mut'pkt alloy layer not only serves as an impurity diffusion source (P-type) and wiring layer, but can also serve as a gate electrode, compared to the method shown in Figure 2. It becomes possible to simplify the process.

第4v!Jは第3図の方一式で形成されたアクティブマ
トリックスのセルパターン5oの一例を示す。
4th v! J shows an example of an active matrix cell pattern 5o formed by the method shown in FIG.

シリコン薄膜53上に、絶縁、膜をデポジットしてバタ
ーニングの後、ゲー)!1155を形成し、その& A
 を又はAt合金を全面にデポジットして、不純物拡散
をした後にパターニングをしてゲート電極54、データ
11151、ソース−ドレインの引き出し&[56,5
7を形成する。この後に層間絶縁膜をつけてコンククト
ホール58.59を開孔して、この上に透明導電材料を
デポジットして、タイング1152と液晶駆動電極60
を形成する。
After depositing an insulating film on the silicon thin film 53 and buttering it, game)! Form 1155 and its &A
or At alloy is deposited on the entire surface, and after impurity diffusion, patterning is performed to form gate electrode 54, data 11151, source-drain extraction &[56,5
form 7. After this, an interlayer insulating film is applied, contact holes 58 and 59 are opened, and a transparent conductive material is deposited thereon to form the tings 1152 and the liquid crystal drive electrodes 60.
form.

本発明は以上に述べたようにAtと81の共晶温度が低
いことに着目して、低温不純物拡散源として用い、更に
このためにつけられたAt又はAt合金層を配線層、更
にはゲート電極材料にまで用いることにより、低温かつ
、簡単な工程にて、アクティブ・マトリックスパネル用
の基板を製造することが可能となり、TIFTを用いた
大容量の液晶ディスプレイパネルの実現に効果を発揮す
るもつ のである。
As described above, the present invention focuses on the low eutectic temperature of At and 81, and uses it as a low-temperature impurity diffusion source, and furthermore, the At or At alloy layer provided for this purpose is used as a wiring layer, and furthermore, as a gate electrode. By using it as a material, it will be possible to manufacture substrates for active matrix panels at low temperatures and in a simple process, and it will be effective in realizing large-capacity liquid crystal display panels using TIFT. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアクティブ・マトリックスにおける、第2図、
第3図は本発明によるTPTを含むアクティブ・マトリ
ックス基板の製造工程の一例を示す。 第4図は第3図の工程による画素セルのパターン例であ
る。 4・・・TIFT      5・・・液晶20 、!
55・・・透明基板 21.56.55・・・s1膜 22.37.55山ゲート膜 25.54・・・ゲート電極 26.58・・・ムを又はAt合金 27.28.39.40・・・不純物拡散層45・・・
層間絶縁膜 46.52.60・・・透明導電材料 以  上 出願人  株式会社諏訪精工舎 代理人  弁理士 最上  務 (ニ) 第2図 (A) (偶 1;13図 第4図
Figure 1 is an active matrix, Figure 2 is
FIG. 3 shows an example of the manufacturing process of an active matrix substrate including TPT according to the present invention. FIG. 4 shows an example of a pixel cell pattern obtained by the process shown in FIG. 4...TIFT 5...LCD 20,!
55...Transparent substrate 21.56.55...S1 film 22.37.55 Mountain gate film 25.54...Gate electrode 26.58...Member or At alloy 27.28.39.40 ...Impurity diffusion layer 45...
Interlayer insulating film 46.52.60... Transparent conductive material or above Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami (d) Figure 2 (A) (Even 1; Figure 13 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)  薄膜トランジスタ(TNT)のゲートに接続
されたタイミング線により、データ線から表示データを
マトリックス状に配列された画素に書き込み又は保持を
制御するアクティブ−マトリックス基板において、前記
TIPTのソースドレインを形成する拡散層の不純物源
としてAtもしくはk1合金を用い、更に前記ムを又は
ムを合金層が同時に配線層を形成することを特徴とする
アクティブ・マトリックス基板。
(1) Forming the source and drain of the TIPT in an active matrix substrate that controls writing or holding of display data from a data line to pixels arranged in a matrix by a timing line connected to the gate of a thin film transistor (TNT). 1. An active matrix substrate characterized in that At or k1 alloy is used as an impurity source for a diffusion layer in which a wiring layer is formed.
JP21329281A 1981-12-28 1981-12-28 Active matrix substrate Granted JPS58115851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21329281A JPS58115851A (en) 1981-12-28 1981-12-28 Active matrix substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21329281A JPS58115851A (en) 1981-12-28 1981-12-28 Active matrix substrate

Publications (2)

Publication Number Publication Date
JPS58115851A true JPS58115851A (en) 1983-07-09
JPH0338751B2 JPH0338751B2 (en) 1991-06-11

Family

ID=16636698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21329281A Granted JPS58115851A (en) 1981-12-28 1981-12-28 Active matrix substrate

Country Status (1)

Country Link
JP (1) JPS58115851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158875A (en) * 1986-12-22 1988-07-01 Nec Corp Manufacture of thin-film transistor
JPS63168052A (en) * 1986-12-29 1988-07-12 Nec Corp Thin film transistor and manufacture thereof
US5077233A (en) * 1984-10-09 1991-12-31 Fujitsu Limited Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210779U (en) * 1975-07-10 1977-01-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210779B2 (en) * 1974-01-08 1977-03-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210779U (en) * 1975-07-10 1977-01-25

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077233A (en) * 1984-10-09 1991-12-31 Fujitsu Limited Method for recrystallizing specified portions of a non-crystalline semiconductor material to fabricate a semiconductor device therein
JPS63158875A (en) * 1986-12-22 1988-07-01 Nec Corp Manufacture of thin-film transistor
JPS63168052A (en) * 1986-12-29 1988-07-12 Nec Corp Thin film transistor and manufacture thereof

Also Published As

Publication number Publication date
JPH0338751B2 (en) 1991-06-11

Similar Documents

Publication Publication Date Title
CN100437907C (en) Semiconductor device and method for manufacturing the same
EP0372821A2 (en) Liquid crystal display panel with reduced pixel defects
JPS6252970A (en) Manufacture of control transistor for panel display screen and control element manufactured based thereon
US6566179B2 (en) Method of manufacturing a transistor
JPS58115851A (en) Active matrix substrate
JPH0611729A (en) Liquid crystal display device and its production
JPS6230379A (en) Thin film transistor
JPH0667203A (en) Liquid crystal display device
JPH0332231B2 (en)
JP2001358212A (en) Method for manufacturing electrode substrate as well as electrode substrate manufactured by this method and liquid crystal device using the same
JPH06230421A (en) Production of thin-film transistor matrix
JPH0425700B2 (en)
JPH05235353A (en) Active matrix substrate and manufacture thereof
JP3109650B2 (en) Method for manufacturing thin film transistor
JP2001284600A (en) Thin-film transistor and manufacturing method thereof
JPS58190063A (en) Thin film transistor for transmission type liquid crystal display panel
JPS59195682A (en) Liquid crystal display unit
JP2808132B2 (en) Complementary thin film transistor formation method
JPS6190193A (en) Active matrix liquid crystal display unit
JP2514166B2 (en) Method for manufacturing active matrix liquid crystal display device
JPS59126673A (en) Thin film transistor
JPH0462174B2 (en)
JPS6073666A (en) Drive circuit-built-in active matrix panel
JP3362022B2 (en) display
JPS639977A (en) Thin-film transistor