JPS5811555B2 - Groove lining structure of a groove-type induction furnace for metal melting - Google Patents

Groove lining structure of a groove-type induction furnace for metal melting

Info

Publication number
JPS5811555B2
JPS5811555B2 JP14223078A JP14223078A JPS5811555B2 JP S5811555 B2 JPS5811555 B2 JP S5811555B2 JP 14223078 A JP14223078 A JP 14223078A JP 14223078 A JP14223078 A JP 14223078A JP S5811555 B2 JPS5811555 B2 JP S5811555B2
Authority
JP
Japan
Prior art keywords
groove
refractory
induction furnace
type induction
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14223078A
Other languages
Japanese (ja)
Other versions
JPS5568579A (en
Inventor
宮本明
渡辺敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP14223078A priority Critical patent/JPS5811555B2/en
Publication of JPS5568579A publication Critical patent/JPS5568579A/en
Publication of JPS5811555B2 publication Critical patent/JPS5811555B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は金属溶解用溝型誘導炉における溝内張り構造の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the groove lining structure of a groove-type induction furnace for metal melting.

連続亜鉛メツキラインなどに配設されている亜鉛メッキ
槽には一般にワーキングポットが付設され、このワーキ
ングポットにおいて亜鉛インゴットが溶解されることは
よく知られている。
It is well known that a working pot is generally attached to a galvanizing tank installed in a continuous galvanizing line or the like, and that zinc ingots are melted in this working pot.

かかるワーキングポットはその下端部にいわゆる溝型誘
導炉が設けられ、その誘導炉に取付けられたインダクタ
ーコイルの交流電流の二次誘導作用による電気的エネル
ギーによって亜鉛が溶融化し、この溶融亜鉛はインダク
ターコイルの周りにある溝型湯道内で循環しながら前記
ワーキングポットに移動するようになっている。
Such a working pot is equipped with a so-called groove-type induction furnace at its lower end, and zinc is melted by electrical energy caused by the secondary induction action of an alternating current of an inductor coil attached to the induction furnace, and this molten zinc is injected. The ductor coil is moved to the working pot while being circulated in a groove-shaped runner around the ductor coil.

こうした溝型誘導炉にあっては溝部に発熱部が集中する
ため、溝部の溶湯温度はワーキングポットに比らべ50
〜200℃高くなり、溝部の耐火物はその分だけ厳しい
条件が要求される。
In such a groove-type induction furnace, the heat generating part is concentrated in the groove, so the temperature of the molten metal in the groove is 50% higher than that in the working pot.
The temperature rises by ~200°C, and the refractories in the grooves are required to meet correspondingly stricter conditions.

即ち、かかる耐火物としては一般的に、 1)耐食性に優れ、亜鉛との漏れ性が低いこと。That is, such refractories generally include: 1) Excellent corrosion resistance and low leakage with zinc.

2)組織の結合組織(結合状態、強度)が優れ、構成鉱
物の分布(均一性、介在物質)状態も良好で、結晶粒の
大きさや形状がそろっていること。
2) The connective tissue (bonding state, strength) of the structure is excellent, the distribution of constituent minerals (uniformity, intervening substances) is also good, and the size and shape of crystal grains are uniform.

3)気孔率、通気率共に低いこと。3) Low porosity and air permeability.

4)低膨張率であり、しかも機械的強度(圧縮強さ、曲
げ強さ)が大きく、耐振動強度が高いこと。
4) Low expansion coefficient, high mechanical strength (compressive strength, bending strength), and high vibration resistance.

5)熱的劣化による熱的スポーリングに強く、溶融亜鉛
との化学変化や分解ガスによる亀裂を生じないこと。
5) It is resistant to thermal spalling due to thermal deterioration and does not cause cracks due to chemical changes with molten zinc or decomposition gas.

6)耐熱性(耐火度)に優れ、熱伝導率が低く絶縁性に
優れていること。
6) Excellent heat resistance (fire resistance), low thermal conductivity, and excellent insulation properties.

7)成形し易いこと。7) Easy to mold.

等の条件を満足する必要がある。It is necessary to satisfy the following conditions.

ところで、このような亜鉛溶解用溝型孔誘導炉のインダ
クターを耐火物でブロック化するにあたっては従来スタ
ンプ工法や流し込み方法などが広く採られている。
By the way, in order to block the inductor of such a slotted hole induction furnace for melting zinc with a refractory material, conventional stamping methods, pouring methods, etc. are widely used.

即ちスタンプ工法は第1図乃至第3図に示すごとく炉殻
1の中に亜鉛溶解用湯道を形成する中子(木枠)4を四
角状に組み、その中にインダクターコイル2を組み込ん
だ後、炉殻1内にスタンプ材(高アルミナ質A12O3
78,2%、5iO213%)3をランマーにてスタン
プ打ちし、成形後中子2を脱枠して図示するような湯道
を形成する方法である(なお、図中5は亜鉛抜きプラグ
である)。
That is, in the stamp method, as shown in Figs. 1 to 3, a core (wooden frame) 4 forming a runner for dissolving zinc is assembled in a rectangular shape inside a furnace shell 1, and an inductor coil 2 is installed inside it. After that, stamp material (high alumina A12O3
78.2%, 5iO2 (13%) 3 with a rammer, and after molding, the core 2 is removed from the frame to form a runner as shown in the figure (note that 5 in the figure is a zinc-free plug). be).

しかしながら、この方法は、スタンプ材を層状にランマ
ー施工してゆくので亜鉛溶解用湯道に対して耐火物の結
合組織は層状組織となり易すく、またつき固め方法にも
問題がありランマー圧、ランマー形状、熟練者の施工度
合に容易に左右される為十分な施工管理が必要になり、
これらの施工管理を誤ると耐火物表面にラミネーシヨン
の発生も生じ、施工時の充填不足によるクランクの発生
が生じて乾燥中にクラックが成長し耐火物への亜鉛の浸
入が余儀なくされるという問題がある。
However, in this method, the stamp material is applied with a rammer in layers, so the connective tissue of the refractory tends to form a layered structure compared to the runner for zinc dissolution, and there are also problems with the tamping method, such as the rammer pressure and the rammer pressure. As it is easily affected by the shape and the degree of construction by experts, sufficient construction management is required.
If construction management is incorrect, lamination may occur on the surface of the refractory, cracks may occur due to insufficient filling during construction, and cracks will grow during drying, forcing zinc to seep into the refractory. There is.

一方前記した流し込み工法は、上記と同様にして炉殻1
の中にキャスタブル(シャモツト質、A12O348%
、5iO242%)を水で混練して流し込み、乾燥後中
子4を脱枠する方法であるが、この方法は簡単に所定の
形状に施工できるのでスタンプ工法に比らべ施工は簡単
であるものの、レンガに比らべ成形圧は低く、水分量が
多いため気孔率も大きくなり、溶融亜鉛が低温域あるい
は高温域に於いて耐火物の気孔(密閉気孔、開孔気孔)
に浸入し易く、融液などの浸食に対する抵抗性が劣る。
On the other hand, in the pouring method described above, the furnace shell 1 is
Castable (chamots quality, A12O348%) inside
, 5iO2 42%) with water and pour it in, and after drying, the core 4 is removed from the frame. Although this method is easier to construct than the stamp method, as it can be easily constructed into a predetermined shape. Compared to bricks, the molding pressure is lower and the moisture content is higher, so the porosity is larger, and molten zinc forms pores (closed pores, open pores) in the refractory at low or high temperatures.
It easily penetrates into the liquid, and has poor resistance to erosion by melt.

又ボンド部は骨材より低耐火性、低耐食性であるので、
マトリックスを浸食し助長する傾向にある為溶融亜鉛に
対する耐火物の漏れ性及び耐食性が劣るために構造的ス
ポーリング(亀裂、剥離)を生じ易く均一な組織が得ら
れず、また粉粒体の混合物であるキャスタブルは製造工
程に於いて粒の分離、バインダーのかたよりが生じる為
、施工体のバラツキが生じ易く、施工構造体に於ける施
工むらが発生し易いという難点がある。
In addition, the bonded part has lower fire resistance and corrosion resistance than aggregate, so
Because the refractory tends to erode and promote the matrix, it tends to cause structural spalling (cracks and peeling) due to its poor leakage and corrosion resistance against molten zinc, making it difficult to obtain a uniform structure. Castable has the disadvantage that grain separation and binder bias occur during the manufacturing process, which tends to cause variations in the constructed structure and uneven construction in the constructed structure.

さらに、施工方法についても、これらの要因に於けるラ
ミネーションが発生しやすく、又ケミカルボンドについ
ては施工後の自然乾燥、昇熱乾燥中に於けるバインダー
の移動により均一な組織が得られないという欠点がある
Furthermore, regarding the construction method, lamination is likely to occur due to these factors, and chemical bonding has the disadvantage that a uniform structure cannot be obtained due to movement of the binder during natural drying or heating drying after construction. There is.

このように従来の方法はいずれにしても耐火物の施工不
良や乾燥不良等により亀裂や構造的スポーリングを生じ
やすく、耐火物中への亜鉛の浸入によるインダクターコ
イルの短絡腐食等のトラブルを招きやすいという不利欠
点があった。
In any case, conventional methods tend to cause cracks and structural spalling due to poor installation or drying of the refractories, and problems such as short-circuit corrosion of inductor coils due to penetration of zinc into the refractories. It had the disadvantage of being easy to invite.

本発明はかかる現状に鑑みて種々の検討を重ねた結果、
従来にはみられない新たな金属溶解用溝型誘導炉の溝内
張り構造を創案したものであり、その基本的特徴はイン
ダクターコイルの周りを湯道と受口とを一体化した定形
耐火物で構成すると共に、その定形耐火物の周りを不定
形耐火物で固めたことにある。
The present invention was developed as a result of various studies in view of the current situation.
This is a new groove lining structure for metal melting induction furnaces that has not been seen before, and its basic feature is a shaped refractory that integrates the runner and socket around the inductor coil. It consists of a fixed refractory and is surrounded by an unshaped refractory.

次に本発明の一実施例を第4図ないし第7図によって説
明すると、まず図中10に示すものは炉殻であり、この
炉殻の炉床には断熱レンガ15が敷設され、側壁にはイ
ンダクターコイル挿通孔16a、16bが開孔されると
共にその内面には断熱ボード16が張られている。
Next, one embodiment of the present invention will be explained with reference to FIGS. 4 to 7. First, what is shown at 10 in the figure is a furnace shell, and insulating bricks 15 are laid on the hearth of this furnace shell, and on the side walls. Inductor coil insertion holes 16a and 16b are formed, and a heat insulating board 16 is placed on the inner surface of the inductor coil insertion holes 16a and 16b.

また前記断熱レンガ15には低膨張性の固定レンガ17
が設けられ、その上方に第7図に示すような受口18と
湯道19が一体となった定形耐火物14が支持固定され
る。
Further, the heat insulating brick 15 has a low expansion fixed brick 17.
A shaped refractory 14 having an integrated socket 18 and runner 19 as shown in FIG. 7 is supported and fixed above it.

即ちこの定形耐火物14は全体的に把手状をなし、その
上面部14aには受口18が形成され、下端部14bは
コ字状となって、その中に湯道19が形成されており、
この湯道19の両端はそれぞれ前記受口18に通じてい
るものである。
That is, this shaped refractory 14 has a handle shape as a whole, and a socket 18 is formed on its upper surface portion 14a, and a U-shaped lower end portion 14b has a runner 19 formed therein. ,
Both ends of this runner 19 communicate with the socket 18, respectively.

一方、前記側壁の一側挿通孔16aからは外周を絶縁し
たインダクターコイル12が挿入され、そのインダクタ
ーコイル12は定形耐火物14の開口部20を貫通して
他側挿通孔16bに至っている。
On the other hand, an inductor coil 12 whose outer periphery is insulated is inserted through the insertion hole 16a on one side of the side wall, and the inductor coil 12 passes through the opening 20 of the shaped refractory 14 and reaches the insertion hole 16b on the other side. .

こうした炉殻10内には不定形耐火物13が充填され、
前記定形耐火物14の周りが固められるものであるが、
この場合、定形耐火物14における不定形耐火物13と
の接触面にセラミックファイバーのペーパー等適当な膨
張代を設けると乾燥(昇温)不良による不定形耐火物1
3の膨張やそれによる定形耐火物14への熱応力、亀裂
の発生を適切に防止することができる。
A monolithic refractory 13 is filled in the furnace shell 10,
The area around the shaped refractory 14 is hardened,
In this case, if an appropriate expansion allowance such as ceramic fiber paper is provided on the contact surface of the shaped refractory 14 with the monolithic refractory 13, the monolithic refractory 1
3, thermal stress on the shaped refractory 14 due to the expansion, and generation of cracks can be appropriately prevented.

かかる定形耐火物14や不定形耐火物13の材質として
は溶融石英質や窒化ケイ素質、黒鉛質などが用いられる
が、この場合定形耐火物14と不定形耐火物13とは同
質とすることが望ましい。
The materials used for the shaped refractories 14 and the monolithic refractories 13 include fused silica, silicon nitride, graphite, etc. In this case, the shaped refractories 14 and the monolithic refractories 13 may be made of the same material. desirable.

これらの耐火物は緻密で低膨張性があり、耐火性や耐食
性にもすぐれ、施工も容易であるなど、上記した耐火物
としての条件を十分満足しているものである。
These refractories are dense, have low expansion properties, have excellent fire resistance and corrosion resistance, and are easy to construct, which fully satisfy the above-mentioned conditions for refractories.

次に本発明の施工プロセスについて説明すると、まず炉
殻10の炉床に断熱レンガ15を、また側壁に断熱ボー
ド16をライニングした後断熱レンガ15上に固定レン
ガ17をセットし、次いであらかじめ振動成形法で受口
18と湯道19が一体となるごとく成形され、焼成され
た定形耐火物14を前記固定レンガ17上にセットし固
定する。
Next, to explain the construction process of the present invention, first, the hearth of the furnace shell 10 is lined with insulating bricks 15, and the side walls are lined with insulating boards 16, and then fixed bricks 17 are set on the insulating bricks 15, and then vibration molding is performed in advance. The socket 18 and the runner 19 are formed into one body by a method, and the fired shaped refractory 14 is set and fixed on the fixed brick 17.

この際定形耐火物14はその上端部14aが炉殻10の
上端部と同一水平面上に並ぶようにセットする必要があ
る。
At this time, the shaped refractory 14 must be set so that its upper end 14a is aligned with the upper end of the furnace shell 10 on the same horizontal plane.

こうして定形耐火物14をセットした後、側壁挿通孔1
6aからインダクターコイル12を挿入し、定形耐火物
14の開口部20を通して他側挿通孔16bまで貫通さ
せ固定する。
After setting the shaped refractory 14 in this way, the side wall insertion hole 1
The inductor coil 12 is inserted from 6a, passed through the opening 20 of the shaped refractory 14 to the other side insertion hole 16b, and fixed.

その後、炉殻10内に、よく混練された不定形耐人物1
3を流し込み、バイブレータ−または突き棒にてその不
定形耐火物13を固定する。
Thereafter, a well-kneaded unshaped figure 1 is placed inside the furnace shell 10.
3 is poured in, and the monolithic refractory 13 is fixed using a vibrator or a push rod.

加工後自然養生及び温風乾燥を行ない、さらに定形耐火
物14の湯道19内にてニクロム線乾燥をし不定形耐火
物13内の水分除去及び硬化を早めるものである。
After processing, natural curing and hot air drying are performed, and further, nichrome wire drying is performed in the runner 19 of the shaped refractory 14 to speed up moisture removal and hardening in the monolithic refractory 13.

なお、乾燥を終えた後は不定形耐火物13の上面部即ち
ワーキングポット本体との接合面に、溶融金属との漏れ
性が低く、また接着強度の高い例えば溶融石英質等のモ
ルタルを塗布し、本体接合部からの溶融金属の浸入を防
ぐものである。
After drying, apply mortar such as fused silica, which has low leakage with molten metal and high adhesive strength, to the upper surface of the monolithic refractory 13, that is, the joint surface with the working pot body. , which prevents molten metal from entering from the joints of the main body.

上記したような構成からなる本発明は従来と同様にして
ワーキングポットの下端部に取付けられることになるが
、本発明によるとワーキングポットで徐々に溶かされた
亜鉛等の金属は定形耐火物14の受口18から湯道19
に入り、その湯道19を循環する間、インダクターコイ
ル12の二次誘導作用による電気的エネルギーで溶融亜
鉛となり、再び受口18からワーキングポットに帰還す
るものである。
The present invention having the above-mentioned configuration is attached to the lower end of the working pot in the same manner as in the past, but according to the present invention, metal such as zinc that is gradually melted in the working pot is attached to the shaped refractory 14. From the socket 18 to the runner 19
While circulating through the runner 19, the molten zinc becomes molten zinc due to the electrical energy generated by the secondary induction action of the inductor coil 12, and returns to the working pot through the socket 18.

なお、本発明で対象となる金属は上記した亜鉛に限られ
ず、Al、Pb、Cu等比較的融点の低い金属を溶解す
る場合にも適用し得ることはいうまでもない。
Note that the metal targeted by the present invention is not limited to the above-mentioned zinc, and it goes without saying that the present invention can also be applied to the case of melting metals with relatively low melting points such as Al, Pb, and Cu.

以上説明したように、本発明によれば、特にインダクタ
ーコイルの周りを、湯道と受口とを一体化した定形耐火
物で構成すると共に、その定形耐火物の周りを不定形耐
火物で固めたことにより、次のような効果が得られる。
As explained above, according to the present invention, in particular, the area around the inductor coil is constructed of a shaped refractory that integrates a runner and a socket, and the area around the shaped refractory is made of an unshaped refractory. By hardening, the following effects can be obtained.

イ)従来のスタンプ工法や流し込み工法と比較し、耐火
物の施工不良や乾燥不良による亀裂や構造的スポーリン
グを防止することができる。
b) Compared to conventional stamping and pouring methods, cracks and structural spalling caused by poor refractory construction or drying can be prevented.

口)溶融亜鉛の浸入によるインダクターコイルの短絡腐
食等のトラブルを防止することができる。
1) Problems such as short-circuit corrosion of the inductor coil due to penetration of molten zinc can be prevented.

ハ)ニクロム線等による湯道内からの乾燥が容易にでき
乾燥時間が短縮される。
c) Drying from within the runner using a nichrome wire or the like can be easily done and the drying time can be shortened.

ニ)施工管理が簡略化される。D) Construction management is simplified.

ホ)耐火物に起因するトラブルがほとんどなくなるため
インダクターコイルの耐用寿命が向上する。
e) Troubles caused by refractories are almost eliminated, which improves the service life of the inductor coil.

このように本発明によれば従来にはみられない種々のす
ぐれた効果が得られ、産業上有用な発明である。
As described above, the present invention provides various excellent effects that have not been seen in the past, and is an industrially useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は従来の溝型誘導炉構造を示し、第
1図はその平面図、第2図は第1図のA−A線に沿う断
面図、第3図は第2図のB−B線に沿う断面図である。 また第4図ないし第6図は本発明の一実施例を示す溝型
誘導炉であり、第4図はその平面図、第5図は第4図に
おけるC−C線に沿う断面図、第6図は第5図における
D−D線に沿う断面図である。 さらに第7図は本発明における定形耐火物の斜視図であ
る。 図中10は炉殻、12はインダクターコイル、13は不
定形耐火物、14は定形耐火物、15は断熱レンガ、1
6は断熱ボード、17は固定レンガ、18は受口、19
は湯道、20は開口部を各示す。
Figures 1 to 3 show the conventional trench type induction furnace structure, with Figure 1 being a plan view thereof, Figure 2 being a sectional view taken along line A-A in Figure 1, and Figure 3 being the same as in Figure 2. FIG. 2 is a sectional view taken along line BB of FIG. 4 to 6 show a groove-type induction furnace showing an embodiment of the present invention, FIG. 4 is a plan view thereof, FIG. 5 is a cross-sectional view taken along line C-C in FIG. FIG. 6 is a sectional view taken along line DD in FIG. 5. Further, FIG. 7 is a perspective view of the shaped refractory according to the present invention. In the figure, 10 is a furnace shell, 12 is an inductor coil, 13 is an unshaped refractory, 14 is a regular refractory, 15 is an insulating brick, 1
6 is a heat insulation board, 17 is a fixed brick, 18 is a socket, 19
2 indicates a runner, and 20 indicates an opening.

Claims (1)

【特許請求の範囲】[Claims] 1 金属溶解用溝型誘導炉において、インダクターコイ
ルの周りを湯道と受口とを一体化した定形耐火物で構成
すると共にその定形耐火物の周りを不定形耐火物で固め
たことを特徴とする金属溶解用溝型誘導炉の溝内張り構
造。
1. A groove-type induction furnace for metal melting, characterized in that the inductor coil is surrounded by a shaped refractory that integrates a runner and a socket, and the shaped refractory is surrounded by a monolithic refractory. Groove lining structure of a groove-type induction furnace for metal melting.
JP14223078A 1978-11-20 1978-11-20 Groove lining structure of a groove-type induction furnace for metal melting Expired JPS5811555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223078A JPS5811555B2 (en) 1978-11-20 1978-11-20 Groove lining structure of a groove-type induction furnace for metal melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223078A JPS5811555B2 (en) 1978-11-20 1978-11-20 Groove lining structure of a groove-type induction furnace for metal melting

Publications (2)

Publication Number Publication Date
JPS5568579A JPS5568579A (en) 1980-05-23
JPS5811555B2 true JPS5811555B2 (en) 1983-03-03

Family

ID=15310440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223078A Expired JPS5811555B2 (en) 1978-11-20 1978-11-20 Groove lining structure of a groove-type induction furnace for metal melting

Country Status (1)

Country Link
JP (1) JPS5811555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180014251A (en) * 2010-03-29 2018-02-07 블루스코프 스틸 리미티드 Ceramic lined channel inductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102208382B1 (en) * 2013-03-07 2021-01-29 블루스코프 스틸 리미티드 Channel inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180014251A (en) * 2010-03-29 2018-02-07 블루스코프 스틸 리미티드 Ceramic lined channel inductor

Also Published As

Publication number Publication date
JPS5568579A (en) 1980-05-23

Similar Documents

Publication Publication Date Title
US4012029A (en) Tundishes
US3492383A (en) Process of manufacturing a crack resistant multi-layer furnace lining
US4324943A (en) DC Arc furnace hearth construction
US8535581B2 (en) Induction furnace for melting of metals, lining for an induction furnace and method for production of such lining
SU927103A3 (en) Method for making prefabricated structure of metal production furnace wall
JP5544790B2 (en) Refractory construction method
JPS5811555B2 (en) Groove lining structure of a groove-type induction furnace for metal melting
NO872592L (en) ELECTRICAL HEATING DEVICE.
JP3016124B2 (en) Molten container and aluminum holding furnace
JPH0743221B2 (en) Induction furnace
JPH08219659A (en) Construction method for induction furnace lining refractory
US4335064A (en) Process for packing electrolysis cells for the production of aluminum
US3914527A (en) Lining for zinc pot induction heater
JP2020125861A (en) Crucible unit for induction furnace and crucible type induction furnace
JPS6049834B2 (en) composite cooler
JPH086230Y2 (en) Crucible induction furnace for melting cast iron and special steel
JPH0711394B2 (en) Refractory lining
CN115612770A (en) Method for prolonging service life of blast furnace hearth
SU578548A1 (en) Method of making lining of induction furnaces
JPS62263915A (en) Gas blowing lance for treating molten metal
JPH01148452A (en) Production of cylindrical complex body of ceramic and metal
JPS5845174A (en) Refractories and protection of heating furnace material therewith
RU2057617C1 (en) Method to manufacture metallurgical ladle using dry sintered masses
JPH10128505A (en) Refractory lining structure for embedding antenna wire for detecting molten metal
JPH10267554A (en) Lining material for induction furnace