JPS58115363A - Temperature controlling method - Google Patents
Temperature controlling methodInfo
- Publication number
- JPS58115363A JPS58115363A JP21509081A JP21509081A JPS58115363A JP S58115363 A JPS58115363 A JP S58115363A JP 21509081 A JP21509081 A JP 21509081A JP 21509081 A JP21509081 A JP 21509081A JP S58115363 A JPS58115363 A JP S58115363A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat
- plate
- generator
- hollow block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/30—Control of physical parameters of the fluid carrier of temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/30—Control of physical parameters of the fluid carrier of temperature
- G01N2030/3084—Control of physical parameters of the fluid carrier of temperature ovens
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、IIIIKI1体クロマトグラり用検出器
などの温度調節に好適な温度変動の極めて少ないam調
節方法に閤する。DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an am adjustment method which causes very little temperature fluctuation and is suitable for temperature adjustment of a detector for IIIKI single-body chromatography.
液体クロマトグラフ検出器は、液体クロマトグラフ分−
カラムから溜出される溶液の柴外徴収度、屈折率、誘電
率、電導変などの物理量の変化を電気信号に変換する装
置である。ところで、これら物理量は、いずれも温度依
存性があるので安定性\再現性の優れたりaマドグラム
を得るには精密な温度調節が必要となる。特に、液体ク
ロマトグラフ検出器は示差方式で検出されるようになっ
ているので、調節温度の絶対値の精度も勿論、調節温度
の変−が結果に大きな影響を与えるため、a直の変−は
極力小さい’ ”/1000 ”C以下)事が望ましい
。このような要求を満たす@*i*節装置としては、第
1図に示したものがある。この温度調節 “装置は草
体クロマトグラフの溜出液の物理量を検出する検出器1
を内蔵し、アルミニウム合金鋳物などの比較的熱容量の
大きい材料で形成され友中空ブロック2に発熱体3およ
び測温体4を暇りつけ、これら発熱体3および測温体4
を直流連続比例方式あるいはサイリスタ位相制御方式の
温度調節器5Kil続して温度調節を行うものである。A liquid chromatograph detector is a liquid chromatograph detector.
This device converts changes in physical quantities such as the Shibagai coefficient, refractive index, dielectric constant, and conductivity of the solution distilled from the column into electrical signals. By the way, since all of these physical quantities are temperature dependent, precise temperature control is required to obtain excellent stability/reproducibility or an a madogram. In particular, since liquid chromatography detectors use a differential method for detection, not only the accuracy of the absolute value of the regulated temperature but also changes in the regulated temperature have a large impact on the results. It is desirable that the value be as small as possible (less than 1000 C). An @*i* clause device that satisfies these requirements is shown in FIG. This temperature control device is a detector 1 that detects the physical quantity of the distillate of the grass chromatograph.
A heating element 3 and a temperature sensing element 4 are attached to the hollow block 2, which is made of a material with a relatively large heat capacity such as aluminum alloy casting.
Temperature control is performed by continuously using a DC continuous proportional type or thyristor phase control type temperature controller.
しかし、この種の温fil1節装置では、温度調節の際
設定温度に対してブロック2内の温度が一旦オーバーシ
ニートシ、ブロック2の熱容量が大きい丸め設定温度に
達するまでむだ時間が長く、温度整定時間が長いと言う
不都合があった。また、温度調節器5が複雑、大型化し
、価格が高いものになる欠点もあつ九。However, in this type of heat filter 1 section device, when adjusting the temperature, the temperature in block 2 once exceeds the set temperature, and the dead time is long until the heat capacity of block 2 reaches the set temperature. The problem was that it took a long time. Furthermore, the temperature controller 5 is complicated, large-sized, and expensive.
この発明は上記事情に鑑みてなされたもので、温度の変
動を極めて少さくすることができるにもかかわらず、構
造が簡単で且つ小製で、しかも設定温度に達するまでの
整定時間を短縮することのできる@変調節方法を提供す
ることを目的とし、温度調節される対象物に断熱層を介
して均熱発熱板からの一定amに制御され良熱を伝える
ことを特徴とするものである。This invention was made in view of the above circumstances, and although temperature fluctuations can be minimized, the structure is simple and small, and the settling time until the set temperature is reached is shortened. The purpose of this method is to provide a variable adjustment method that allows temperature adjustment, and is characterized by transmitting good heat controlled at a constant am from a heat equalizing plate to the object whose temperature is being adjusted through a heat insulating layer. .
以下図面を参照して、この発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.
第2図はこの発明の1変調節方法を適用した温度調節装
置の一例を示すもので、図中符号11は@FltA節の
対象となる中空ブロックである。この中空ブロック11
は、アルばニウム合金鋳物などで形成されてシシ、その
内部には例えば液体クロマトグラフの示差屈折計などの
検出器12が設けられている。そして、瓦中空プaツ月
1は0、2 Kcal / ’0 以上の比較的大き
な熱容量を有している。この中空ブロック11の底面に
は、この底面とほぼ同じ大きさの断熱板13が密着して
設けられている。この断熱板13は、弾性材料で、且つ
0.5 m=”/ h 程度O熱拡散率を有す材料で
厚み1鶴程に形成されたシートが用いられ、例えばシリ
コーンゴムシートなどが好適である。FIG. 2 shows an example of a temperature control device to which the one-variation control method of the present invention is applied, and reference numeral 11 in the figure is a hollow block to which the @FltA clause is applied. This hollow block 11
is made of aluminum alloy casting or the like, and a detector 12 such as a differential refractometer of a liquid chromatograph is provided inside the detector. The hollow tiles have a relatively large heat capacity of 0.2 Kcal/'0 or more. A heat insulating plate 13 of approximately the same size as the bottom surface is provided in close contact with the bottom surface of the hollow block 11. The heat insulating plate 13 is made of an elastic material and has a thermal diffusivity of about 0.5 m=''/h, and is made of a sheet with a thickness of approximately one crane. For example, a silicone rubber sheet is preferably used. be.
この断熱板13には、断熱板13とほぼ同じ大きさの均
熱発熱板14が密着して設けられている。A uniform heating plate 14 having substantially the same size as the heat insulating plate 13 is provided in close contact with the heat insulating plate 13.
この均熱発熱板14は、発熱体15と金属板16と測温
体17とからなっている。発熱体15は中空ブロック1
1を加熱するもので、断熱板13の大きさにできるだけ
近い大きさの面状発熱シートなどが用いられる。金属板
16は、発熱体15の熱を均一に断熱板13に伝導する
ためのもので、断熱板13とほぼ同じ大きさのアルミニ
ウム板や銅板などの熱伝導の良い金属材料で形成され、
例えばアルきニウム板では厚みsus度のものが用いら
れる。tた、測温体17は、金属板16に喉り付けられ
、金属板16の@度を測定するもので一高感度の抵抗測
温体やサーミスタなどが用いられる。そして、発熱体1
5シよび測温体17は、温度調節器18KIl続されて
−る。この場合の温度調節器18には、オン/オフ周期
5〜10秒、比例帯1℃程度の時間比別置温度調節器が
用いられる。This uniform heating plate 14 includes a heating element 15, a metal plate 16, and a temperature measuring element 17. The heating element 15 is a hollow block 1
A planar heat generating sheet or the like having a size as close as possible to the size of the heat insulating plate 13 is used. The metal plate 16 is for uniformly conducting the heat of the heating element 15 to the heat insulating plate 13, and is made of a metal material with good thermal conductivity, such as an aluminum plate or a copper plate, and is approximately the same size as the heat insulating plate 13.
For example, an aluminum plate with a thickness of sass degree is used. The temperature measuring element 17 is attached to the metal plate 16 and measures the temperature of the metal plate 16, and is a highly sensitive resistance temperature measuring element, thermistor, or the like. And heating element 1
5 and the temperature measuring element 17 are connected to a temperature controller 18KI1. In this case, the temperature regulator 18 is a time ratio separate temperature regulator with an on/off cycle of 5 to 10 seconds and a proportional band of about 1°C.
そして、中空ブロック11、断熱板13シよび均熱発熱
板14全体は断熱材19で包み込まれ、十分な断熱が施
され、熱tpJ外乱O防止が行われている。The hollow block 11, the heat insulating plate 13, and the equalizing heat generating plate 14 are all wrapped in a heat insulating material 19 to provide sufficient heat insulation and prevent thermal disturbance O.
つぎに、このように構成された温度調節装置の作用につ
いて説明する。Next, the operation of the temperature control device configured in this way will be explained.
まず、@度関節器18を所望の温1t(To)に設定す
る。金属板16011mが設定温[(Tol よシ低
い場合には、温度調節器18によって発熱体15が発熱
し、金属板16が加熱堪れ、金属板16の温度は設定温
度(Tolに近づいてゆく。発熱体150発熱は、熱伝
導性がよくかつ熱容量が小さく、シかも中空ブロック1
1と断熱板13によって直接熱的に結合していない金属
板16の温度で温度制御されているので、金属板16の
温度は速みやかに設定温f(To)に達する。そして、
金属板16の温度は、設定温[(Tol を中心とし
、温度調節器1Bによって定まる変動値を上下限として
変動する。ついで、設定温f(TO)に達した金属板1
6の熱は、断熱板13を介して中空ブロック11に伝導
されるが、断熱板13の熱抵抗および熱容量の効果によ
り、金属板16の上記温度変動は十分減衰されて中空ブ
ロック11に伝導される。こうして、中空ブロック11
の温度は、WF度の変動を伴わすに徐々に設定温[(T
o)に近づいてゆき、やがて設定温f (Tolに達す
るが、温度変動は極めて微かなものになる。ま九、設定
温f (To)に保もたれた金属板16によって中空ブ
ロック11を加熱するようにしているので、中空ブロッ
ク11の温度は、設定温度を越えるオーバーシュート現
象がなく、結果的に、中空ブロック11の設定温度に至
るまでの整定時間が短縮される。First, the temperature joint device 18 is set to a desired temperature 1t (To). When the temperature of the metal plate 16011m is very low, the heating element 15 generates heat by the temperature regulator 18, the metal plate 16 is heated, and the temperature of the metal plate 16 approaches the set temperature (Tol). The heating element 150 generates heat using a hollow block 1 that has good thermal conductivity and a small heat capacity.
Since the temperature of the metal plate 16, which is not directly thermally connected to the metal plate 1 and the heat insulating plate 13, is controlled, the temperature of the metal plate 16 quickly reaches the set temperature f(To). and,
The temperature of the metal plate 16 fluctuates around the set temperature [(Tol) with the fluctuation value determined by the temperature controller 1B as the upper and lower limits.
6 is conducted to the hollow block 11 via the heat insulating plate 13, but due to the effect of the thermal resistance and heat capacity of the heat insulating plate 13, the temperature fluctuation of the metal plate 16 is sufficiently attenuated and conducted to the hollow block 11. Ru. In this way, the hollow block 11
The temperature gradually changes to the set temperature [(T
o), and eventually reaches the set temperature f (Tol), but the temperature fluctuation becomes extremely slight. Finally, the hollow block 11 is heated by the metal plate 16 maintained at the set temperature f (To). Therefore, the temperature of the hollow block 11 does not have an overshoot phenomenon exceeding the set temperature, and as a result, the settling time until the temperature of the hollow block 11 reaches the set temperature is shortened.
IN3図に上述の温tiii節装置の各部位のam変化
を示した。図中曲線人は金属板16の、曲線Bは中空ブ
ロック11の設定温度までの昇温状態を示すものである
。なお、−線Cは第1図に示し九従来のilf調節lI
@による中空ブロック2の昇温状態を示すものである。Figure IN3 shows the am change of each part of the above-mentioned warm node apparatus. In the figure, the curved line B shows the state of temperature rise of the metal plate 16 to the set temperature, and the curve B shows the state of temperature rise of the hollow block 11 to the set temperature. Note that - line C is shown in FIG.
It shows the temperature increase state of the hollow block 2 due to @.
第2図に示した装置にシいて、断熱板13に厚み0.5
1E11のシリコーンゴムシー)t、金属積重6に厚み
3鴎のアル2ニウム板を用い九時、発熱体15の温度変
動がどの程度減衰されて中空ブロック11に伝えられる
か求めてみ九ところ、温度変動を正弦波的変動と見做し
た場合、約1/3 に載置されることがわかった。ま
た、第1図に示した従来の装置にかける温度変動のおく
れ時間と、第2図に示した装置の温度変動のおくれ時間
とを比較したところ、この発明の装置の金属板16の温
度は、従来の装置の中空ブロック2の温度よりも約しへ
□むだ時間が少が〈設定温度に達することがわかつ九。In the apparatus shown in FIG. 2, the heat insulating plate 13 has a thickness of 0.5 mm.
1E11 silicone rubber seam) Using an aluminum plate with a thickness of 3 mm as the metal stack 6, find out how much the temperature fluctuation of the heating element 15 is attenuated and transmitted to the hollow block 11. It was found that when temperature fluctuations are considered to be sinusoidal fluctuations, the difference is approximately 1/3. Furthermore, when comparing the delay time for temperature fluctuations in the conventional device shown in FIG. 1 with the delay time in temperature fluctuations in the device shown in FIG. 2, it was found that the temperature of the metal plate 16 in the device of the present invention It can be seen that the temperature of the hollow block 2 of the conventional device is lower than that of the conventional device.
したがって、この発明の@変調節方法では、むだ時間の
少ない制御が可能となり、温度整定時間が短縮されるこ
とが裏づけられた。Therefore, it was confirmed that the @variable adjustment method of the present invention enables control with less dead time and shortens the temperature settling time.
なお、以上の例では均熱発熱板14に金属板16と発熱
体17とからなるものを用いたがこれに限らず、厚内の
金属板16の中に発熱体17を埋め込んだものを用い、
厚肉の金属板16に測温体17を覗シ付けた構造のもの
を用いてもよい。In the above example, the soaking heat generating plate 14 is made up of the metal plate 16 and the heating element 17, but the invention is not limited to this. ,
A structure in which the temperature measuring element 17 is attached to a thick metal plate 16 may also be used.
以上説明した工うに、この発明の温t11節方法は、温
度関節される対象物に断熱板を介して均熱発熱体からの
一定a度に制御された熱を伝えるようにしたものである
ので、発熱体の温度変動が十分減衰されて対象物に伝熱
する丸め、通常の回路構5!途簡単で小型の時間比例型
の温fv4節器を用いても、af変動が十分に抑えられ
た温度調節が可能となり、ii[全体を小型で安価に構
成できる。As explained above, the temperature control method of the present invention is such that heat controlled at a constant a degree from a uniform heating element is transmitted to an object to be temperature-controlled via a heat insulating plate. , a rounded, normal circuit structure in which temperature fluctuations in the heating element are sufficiently attenuated and heat is transferred to the object 5! Even by using a simple and compact time-proportional temperature fv4 regulator, temperature control with sufficiently suppressed AF fluctuations is possible, and ii [the entire system can be constructed in a small size and at low cost.
また、オーバシュート現象が防止され、整定時間が短縮
される。したがって、この発明の温度調節装置は、液体
クロマトグラフ検出器用温度調節装置をはじめ、他の分
析機器などの高精度の温I11節を必要とする機器に好
適に用いられる。Moreover, overshoot phenomenon is prevented and settling time is shortened. Therefore, the temperature control device of the present invention is suitably used in devices that require highly accurate temperature I11 clauses, such as temperature control devices for liquid chromatograph detectors and other analytical instruments.
第1図は従来の温度調節装置を示す概略構成図、第2図
はこの発明の温f詞節方法を適用し九温度調節装置の一
例を示す概略構成図、纂3wJはこの謔
発明 置調節装置の中空ブロックおよび金属板と従来
の温度関節装置の中空ブロックの上昇状態を示すグラフ
である。
11・・・・・・中空ブロック、13・・・・・・断熱
板、14・・・・・・均熱発熱板、ll5−・−発熱体
、16・・・・・・金属板、17−・・・・・測温体、
111−・・一温度調節器。
蛎 t 1(1
ζ′72図
第11図
□98i−藺Fig. 1 is a schematic block diagram showing a conventional temperature control device; Fig. 2 is a schematic block diagram showing an example of a temperature control device to which the temperature adjustment method of the present invention is applied; It is a graph showing the hollow block and metal plate of the device and the rising state of the hollow block of the conventional temperature joint device. 11...Hollow block, 13...Insulating board, 14...Soaking heating plate, ll5--Heating element, 16...Metal plate, 17 −・・・Temperature measuring body,
111---Temperature controller. Chrysanthemum t 1 (1 ζ'72 Figure 11 □98i-藺
Claims (1)
着させて設けるとともに均熱発熱板に測温体を設け、均
熱発熱板からの温度制御された熱を上記対象物に伝熱さ
せることを特徴とする温度調節方法。At the same time, a heat insulating plate and a heat-equalizing plate are placed in close contact with the object to be adjusted, and a temperature measuring element is provided on the heat-equalizing plate, and the temperature-controlled heat from the temperature-controlled plate is applied to the object. A temperature control method characterized by heat transfer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21509081A JPS58115363A (en) | 1981-12-28 | 1981-12-28 | Temperature controlling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21509081A JPS58115363A (en) | 1981-12-28 | 1981-12-28 | Temperature controlling method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58115363A true JPS58115363A (en) | 1983-07-09 |
Family
ID=16666580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21509081A Pending JPS58115363A (en) | 1981-12-28 | 1981-12-28 | Temperature controlling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58115363A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219665A (en) * | 1988-02-29 | 1989-09-01 | Gasukuro Kogyo Kk | Constant temperature bath for liquid chromatograph |
JPH01135357U (en) * | 1988-02-29 | 1989-09-18 |
-
1981
- 1981-12-28 JP JP21509081A patent/JPS58115363A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219665A (en) * | 1988-02-29 | 1989-09-01 | Gasukuro Kogyo Kk | Constant temperature bath for liquid chromatograph |
JPH01135357U (en) * | 1988-02-29 | 1989-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4630938A (en) | Method of determination of thermal conduction coefficient and heat capacity of materials and the apparatus for measurements of thermal conduction coefficient and heat capacity of material | |
JPS6347927Y2 (en) | ||
Mueller et al. | Thermal expansion coefficient, scaling, and universality near the superfluid transition of He 4 under pressure | |
US20030061867A1 (en) | Apparatus for conducting high-temperature liquid chromotography analysis | |
US3062037A (en) | Temperature regulator for chromatographs | |
US4312224A (en) | Absorbed dose water calorimeter | |
US3552185A (en) | Thermal conductivity apparatus | |
US6530686B1 (en) | Differential scanning calorimeter having low drift and high response characteristics | |
Sarid et al. | A±15 microdegree temperature controller | |
SE8801546L (en) | DEVICE FOR CONTROL OF THE HEAT EFFECT OF A COOKER'S HEATING ELEMENT | |
US4825383A (en) | Process and device for measuring the level of the free surface of a liquid | |
Schawe et al. | Influence of the heat conductivity of the sample on DSC curves and its correction | |
JPS58115363A (en) | Temperature controlling method | |
US4563098A (en) | Gradient compensated temperature probe and gradient compensation method | |
US3937059A (en) | Device for measuring the condensation temperature of a gas or a vapor | |
US3022664A (en) | Differential calorimeter | |
Sakurai et al. | Effect of subcooling on film boiling heat transfer from horizontal cylinder in a pool of water | |
US3413446A (en) | Proportional and integrating temperature controller | |
Ogasawara | Method of precision temperature control using flowing water | |
Widdis | The indirectly heated thermistor as a precise ac-dc transfer device | |
Plumb et al. | An Absolute Temperature Scale From 4° K to 20° K Determined From Measurements With an Acoustical Thermometer | |
JPH0339717Y2 (en) | ||
JPH01169346A (en) | Measurement of heat conductivity by planar plate direct method | |
Trowbridge | Thermal conductivity of air at low pressures | |
JPS5464998A (en) | Liquid crystal display unit |