JPS58114827A - Manufacture of hollow flow section form - Google Patents

Manufacture of hollow flow section form

Info

Publication number
JPS58114827A
JPS58114827A JP21207482A JP21207482A JPS58114827A JP S58114827 A JPS58114827 A JP S58114827A JP 21207482 A JP21207482 A JP 21207482A JP 21207482 A JP21207482 A JP 21207482A JP S58114827 A JPS58114827 A JP S58114827A
Authority
JP
Japan
Prior art keywords
cross
section
tube
sectional shape
flow cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21207482A
Other languages
Japanese (ja)
Inventor
クラウス・ハ−ゲマイスタ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of JPS58114827A publication Critical patent/JPS58114827A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/02Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Abstract

In order to simplify the manufacture of flow sections, e.g. for use in the matrix of a heat exchanger or as vanes or blades in turbomachines the following steps are performed during manufacture: a) thickenings (2', 3) are formed at preselected points over the circumference of a tube (1) having a substantially circular, square or polygonal cross-section; b) the tube is deformed so that the thickenings (3) are situated adjacent leading and trailing edges of the flow section (8) and other thickenings (2') form opposed separating webs; c) the opposed webs are then joined, e.g. by welding or brazing, to form at least two separate air ducts (9, 10) in the flow section. <IMAGE>

Description

【発明の詳細な説明】 本発明は中空の、その相違に応じて空気力学的に最適に
形成され九流れ断面形であって、その外胸部には運転中
にふ・いて処1の動作媒体(亀ガス)が流れ、且つ、流
れ断面形の内協に存在する管路に第2の動作媒体(圧動
空気)が真流する流れ一面形の製作法に関すな。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hollow, aerodynamically optimally formed nine-flow cross-section, the outer thorax of which is designed to contain the working medium of the body during operation. This article relates to a method for manufacturing a one-sided flow system in which a second operating medium (pressurized air) flows straight through a pipe line existing in a flow cross-sectional shape.

上記のような中空な流れ断面形はドイツ特許公開公報第
2907810号により周知なように飼えば熱交換器の
場合に設けられる。この−知の熱交換器の場合、集合管
が設けられており、その集合管は2つの互いに分離され
九圧紬空気案内部を1する。一方の圧縮空気案内部を通
して供給され九圧縮空気はへら状の流れ−(向彫内に導
びかれ、その流れ断I11[i形内で熱ガスにより加熱
され、その恢予熱された状態で他方の圧り空気案内部に
達し、その他方の圧縮空気案内部をとおって予熱され九
空気は次いで消費部、即ち、例えばガスタービン駆動装
置の燃焼−に送られる。−知の熱交換器の場合、へら状
の流れ断面形により形成された熱交換器−ff)’Jク
スは集合管から横KU字形に突き出走形を形造っている
A hollow flow cross-section of the type described above is provided in the case of a heat exchanger as is known from DE 29 07 810 A1. In the case of this known heat exchanger, a collecting pipe is provided, which collects into two mutually separated nine-pressure air guide sections. The compressed air supplied through one of the compressed air guides is guided into the spatula-shaped flow section I11, where it is heated by hot gas, and in its preheated state, the other The preheated air passes through the other compressed air guide and is then sent to the consumer, i.e. combustion, for example in a gas turbine drive. , a heat exchanger formed by a spatula-shaped flow cross-section-ff)'J box has a horizontal KU-shape projecting from the collecting pipe.

又、上記のような流れ断面形は例えばターボ機械、例え
ばガスタービン駆動装置の♂清ψ?腎設けられ、例えば
機械の作業中、タービンの場合、翼の一シに熱ガスが流
れている関翼はその内部に存在する冷却用管路によって
圧縮機から出た高圧空気により冷却される。
Also, the flow cross-sectional shape as described above is used for example in a turbo machine, such as a gas turbine drive device. During operation of a machine, for example, in the case of a turbine, the rotor blade, in which hot gas flows through one of the blades, is cooled by the high-pressure air exiting the compressor by means of cooling pipes located inside it.

高熱安定性を有し、且つ、高度の使用に耐えるように必
要な強度、%に静的な強度を有する流れ断面形をつくる
ことができる、上記の流れ断面形の製作に適した方法を
創作するには依然としてかなり大きな困難がある。次に
、上記流れ断面形についてはできる陰)空気力学的に妨
害をひきおこさないなめらかな外蝋が要求される。
Created a method suitable for manufacturing the above-mentioned flow cross-section that can create a flow cross-section that has high thermal stability and has the necessary strength and static strength to withstand high-level use. There are still considerable difficulties in doing so. Second, the flow profile described above requires a smooth outer wax that does not cause aerodynamic interference.

試験的にすでにこのような流れ断面形は、いわゆる半断
面形からつくられている。半断面体の背同志が相互に合
せられ、且つ重接又ははん友による長手継目によって結
合される5、この場合、生じる製造技術上の困難は着し
く為い。
Experimentally, such flow cross-sections have already been produced from so-called half-sections. The backs of the half-sections are aligned with each other and are joined by longitudinal joints, either by overlap or by means of joints.5 In this case, the difficulties arising in terms of manufacturing technology are considerable.

即ち、半へら状の断面形は非対称であり、それ故、引き
抜嚢でつくるのが極端に困難である。
That is, the half-spatula-like cross-sectional shape is asymmetric and therefore extremely difficult to create with a pull-out bladder.

又、外側輪郭に継目又はかどが存在し、それが無視でき
ない空気力学的な妨Wをする限り、半へら状の断面形の
背と背の結合には間亀がある。
Also, there is a gap in the spine-to-spine connection of the semi-spiral cross-section, insofar as there are seams or corners in the outer profile that pose a non-negligible aerodynamic disturbance.

又、上記のように緘麩釣に作られ九断面形の豐合におい
て侍られる長手継目、即ち浴接又ははんだ継目はたえず
作用する熱ガスの腐蝕作用にさらされる。
Moreover, the longitudinal joints, ie bath welding or soldering joints, which are made in the above-mentioned manner and are met in a nine-section joint, are exposed to the corrosive action of the constantly acting hot gases.

更に、上記のように作られた複断面形の端部を必要に応
じた所望の円形状の接続部に形成し、例えは前記熱交換
器の場合、IthI]形を中央の集合管IIC接続する
ことができるようにすることは上記のように試験的に作
られた流れ断面形の場合できない。
Furthermore, the ends of the double cross-sectional shape made as described above are formed into a desired circular connection part as required, for example, in the case of the heat exchanger, the IthI] shape is connected to the central collecting pipe IIC. This is not possible with the experimentally created flow cross-sections as described above.

本発明の課題は、比較的藺卑に破切に−じ九問題点の範
畦で、必要な強度設置to考慝のもとて^〈且つ場合に
よっては変動する圧力及び熱応力に最も良く耐えること
ができる空気力学的に有利に形成され九流れ断面形、即
ち中空断面形を作ることである。
The problem of the present invention is to address the following nine problems in a relatively simple way, considering the necessary strength requirements and, in some cases, how best to cope with varying pressure and thermal stresses. The objective is to create a nine-flow cross-section, ie a hollow cross-section, which is aerodynamically advantageous in its ability to withstand.

更に、製作する中空断面体は腐蝕され易さが低い条件下
でかなり長い使用期間を保証されなければならない。
Furthermore, the hollow sections produced must be able to guarantee a fairly long service life under conditions of low corrosion susceptibility.

更に、発明に係る製作法は、例えば所望の接続等の丸め
に、局部、特に流れ断面形の端部を変形することを、流
れ断面形のすでに完成した基礎構造をそこなうことなく
行なうことができるものでなけれはならない。
Furthermore, the manufacturing method according to the invention makes it possible to locally deform, in particular the ends of the flow profile, for example to round off the desired connections, without damaging the already completed basic structure of the flow profile. It has to be something.

上配線題は本質的に円形横断面を廟する管、正方形横断
面を有する管、又は多角形横断面を有する管に適幽な加
工方法で予め決められた位置、特に管のまわりの一様に
分配され九位置に材料集積部を形成し、次いで管を引っ
張り又は圧延によって一方の材料集積部が流れ断面形の
流入側及び流出側の末端かど部領域に注人情及び流出側
の壁補強部を形成し、且つ、他方の材料集積部が溶接、
ろう付などにより子午(3)において−緒に固定できこ
とにより特に解決される。
The wiring problem is essentially a pipe with a circular cross section, a pipe with a square cross section, or a pipe with a polygonal cross section. Then, by pulling or rolling the pipe, one of the material accumulation parts is poured into the end corner areas of the inflow and outflow sides of the flow cross section and the wall reinforcement on the outflow side. , and the other material accumulation part is welded,
This is particularly achieved by the fact that it can be fixed together at the meridian (3) by brazing or the like.

卸ち本発明の安上は中空の、その用途にえ、じて空気力
学的に164に形成された流れ#T(3)形であって、
その外@部には運転中において第1の動作媒体(熱ガス
)が流れ、且つ、体れl!f1面形の内部に存在する管
路に第2の製作媒体(圧動空気)かに流する流れ断面形
の製作法において、(IL)本誓的に円形横断面を南す
る営、正方形−断面を有する管又は多角形横断面を有す
る管に過当なカロエ方法で予め天められた位置、特に管
のまわりの一様に分配された位置に拐料楽積部を形成す
ること、(b)次いで管を引つ虫り又は圧ししζよって
一方の材料集積部が流入側及び流出側の壁補強部を訛れ
断(3)形の流入側及び流出−jの末端かど部憤域に形
成し、杜つ、他方の材料集積部が浴接、りう付などによ
り子午面9゛ごふ・いて−暢に1ml定できる、少tく
とも2つの相互に分離された圧縮空気案内f路用の分線
用突起を形成するように変形させることを特徴とする中
空流れ断面形の製作法であう、発明の峰題の別の有利な
形成は特許請求の範囲ts2項ないし第11項に記載し
た通りである。
The upper part of the present invention is hollow, and according to its use, has a flow #T (3) shape that is aerodynamically formed,
During operation, the first working medium (hot gas) flows through the outside part, and the first working medium (hot gas) flows through the outside part during operation. In the manufacturing method of the flow cross-sectional shape in which the second manufacturing medium (pressurized air) is passed through the pipe existing inside the f1-plane shape, (IL) the process south of the circular cross-section, the square- forming in a tube with a cross-section or a tube with a polygonal cross-section by means of an exaggerated method a predetermined position, in particular at a uniformly distributed position around the tube, (b) ) Then, by pulling or pressing the pipe, one of the material accumulation parts cuts the wall reinforcement part of the inflow side and the outflow side (3) into the end corner area of the inflow side and the outflow -j. At least two mutually separated compressed air guide channels, each of which has a volume of 1 ml, can be formed and formed, and the other material accumulation part can be defined by bath contact, mounting, etc. Another advantageous formation of the subject matter of the invention, which is a method for manufacturing a hollow flow cross-section, characterized in that it is deformed to form a branch line projection for the purpose of the present invention, is defined in claims TS2 to 11. That's exactly what I did.

本発明の方法の本質的な長所は流れ断面形に要求される
必要条件1%に空気力学2強度、及び熱安定性に関する
必要条件はすでに本発明の方法の出発点(%W!fii
1N求の範囲の(a)項の管)で得られており、原則と
して、鍛終製品は何らの付加的な加工を必要としないこ
とでるり、又、そのようく形成された流れ基礎断面形は
例えばタービンの静翼又は動輿として利用されるが、そ
の際特に必要な翼のねじれのような、必要な真の精密な
成形を行なうことができ、或いは前記(資)知の熱交換
器に用いる場合に必要な案内接続部を例えば断面形の端
部に形成することができることでおる。
The essential advantages of the method of the invention are that the requirements for flow profile 1%, aerodynamics 2 strength, and requirements for thermal stability are already at the starting point of the method of the invention (%W!fii
(a)) in the range of 1N, and in principle, the finished product does not require any additional processing, and the flow base cross section formed in this way is The shape is used, for example, as a stationary vane or a moving pallet of a turbine, in which case it is possible to carry out the necessary true precision shaping, in particular the necessary twist of the blade, or the above-mentioned known heat exchanger. For example, the guide connections necessary for use in containers can be formed at the ends of the cross-section.

本発明の別の本質的な長所は、管(t¥i軒請求の範囲
lの(&)項)が本発明の方法の出発点において実施さ
れた材料集積部の分配及び形成により、且つ、最終的に
、別の変形過程を経て原則的な仕上げ製品として(中空
断面形として)父、その内側構造に関して仕上は成形さ
れ、−且つ熱交換プロセスにおいて加熱される圧縮空気
(熱交換器の場合)又は冷却空気(靜又ii#JJ翼の
場合)をより遅く貫通案内するのに相応の相互に分離さ
れた管路案内部を有することである。
Another essential advantage of the invention is that due to the distribution and formation of the material accumulation, the tube (section (&) in claim 1) is carried out at the starting point of the method according to the invention, and Finally, through another deformation process the finish is shaped with respect to its inner structure (as a hollow cross-section) as a principle finished product - and compressed air (in the case of a heat exchanger) is heated in a heat exchange process. ) or to have corresponding mutually separated duct guides for guiding the cooling air (in the case of the Seimata II #JJ wing) through it more slowly.

円状又は鉤形の電から出発し7て、本発明の方法により
、適当な変形方法(引っ張り、九)・ンマー加工、又は
圧延)によって予めきめられ九位置に待に突起状の材料
集積部が形成される。適当な材料の場合、このように形
つくられた断面は熱プレス又は押出し加工によっても得
られっ。突起は前後に行なわれるプロセスの適機の必要
性に応じて、管の外側又は内−又は両側に形成される。
Starting from a circular or hook-shaped wire, according to the method of the present invention, protruding material accumulations are formed in predetermined positions by a suitable deformation method (pulling, rolling, rolling, etc.). is formed. With suitable materials, cross-sections shaped in this way can also be obtained by hot pressing or extrusion. The protrusions may be formed on the outside or on the inside of the tube or on both sides, depending on the appropriate needs of the process to be carried out before or after.

その後流れ断面形への夾除の変形は引糧り、又は圧延に
よって行なわれる。そのとき、必要性に従っていくつか
の方法の4@が途中で行なtつれる。それによって前に
のべた意味で形成された突起は断面形の二、三の位置に
お−いて必要な材料集積部1例えば、中空断面形の前及
び後輪かど都及び中間突起の材料集積部として用いるこ
とができる。仕上げ成形は又いくつかの過程で、必要に
応じて内側加工用具を用いて行なわれる。断面形の最終
的な成形は内側突起の共圧縮と溶接を例えばいわゆる管
継目濡接機の圧延作用により行なわれる、そのように形
成された断面形は任意の長さに作ることができる。断面
の内側に存在する管路を部分的に提供するかないしは相
互に分離する前記突起は内側を流れる媒体の圧力からの
力を取シ去る静的機能及び熱伝達を改良する機能を果す
The deformation of the ablation to the flow profile is then carried out by drawing or rolling. At that time, several methods are carried out along the way according to the needs. The protrusions thus formed in the sense mentioned above are the necessary material accumulation areas 1 at two or three positions of the cross-section, for example, the material accumulation areas at the front and rear wheel corners and intermediate protrusions of the hollow cross-section. It can be used as Finish forming is also carried out in some steps, optionally using internal processing tools. The final shaping of the cross-section is carried out by co-compression and welding of the inner projections, for example, by the rolling action of a so-called pipe welder; the cross-section thus formed can be made to any desired length. Said protrusions which partially provide or separate the conduits located inside the cross-section serve a static function of removing forces from the pressure of the medium flowing inside and a function of improving heat transfer.

熱伝達を改良するために必要に応じて突起を溶接又はろ
う付けする前に乱流を励起する輪郭の薄板帯片を断面形
の内側に縦方向に通し、f#r接又はろう付けすること
により、突起間に構造物として固定される。
Pass a turbulence-exciting contoured sheet metal strip longitudinally inside the cross-section and weld or braze it before welding or brazing the protrusions as necessary to improve heat transfer. It is fixed as a structure between the protrusions.

例えばタービンの静翼及び動翼用のねじられえ流れ断面
形を作るために、相当の長さに切断後、個々の断面形の
片を相当の凰で鍛造することができる。
For example, to produce torsable flow profiles for turbine vanes and rotor blades, the individual profile pieces can be forged with a corresponding die after cutting to a corresponding length.

はじめにのべ友方法の概念「いくつかの過程」について
は、これらは、材料特性(強度)から変形の度合が制限
され、例えば中間焼書なましが入れられるとき、必要で
ある。又、それにつれて例えば成形の際の材料の流動性
が考慮されなければならない。それはいくつかの中間成
形段階を妊て仕上げ形状を得るのに必要である。時に円
形から大勝くはずれ友仕上げ形状の場合、史に局部的に
高められた一辺部の力(例えば小さな形の半径及びかど
における力)を制限し、いくつかの中間O成形段階を経
て仕上げ形状を得ることが、工具の傘耗を控え目にする
ために必要でおる。
Regarding the concept of "several processes" in the introduction method, these are necessary when the degree of deformation is limited due to material properties (strength) and, for example, intermediate annealing is introduced. Additionally, the fluidity of the material during molding, for example, must be taken into account. It requires several intermediate forming steps to obtain the finished shape. In the case of finished shapes that sometimes deviate from circular, locally increased forces on one side (e.g. forces at radii and corners of small shapes) are limited and the finished shape is obtained through several intermediate O-forming steps. This is necessary to minimize tool wear.

流れ断面形を他の構造物の構成部品へ接続するために、
例えば熱交換器の管を東合管及び分配管の基部に接続す
るために、例えば流れ断面形の円形端部が望ましい。こ
のような丸い接続端部は前記の方法の場合、次のような
中間に行なわれる過程を経て形成される。
To connect flow profiles to other structural components,
For example, circular ends with a flow cross-section are desirable, for example for connecting tubes of heat exchangers to the bases of connecting pipes and distribution pipes. In the case of the method described above, such a rounded connection end is formed through the following intermediate steps.

断面形の中央突起′fr浴接する前に断面型の管の端部
断面を中間段階で1例えば九ノ・/マーによって円形断
面に変形−する。その際、必要に応じて例えばこの接続
部のフレキシビリティを高めるためにこのような形成さ
れる円形管の部分の円筒面に輪状の又はスパイフル状の
みぞを設けることができる。この円形の接続部の代りに
接続端部の筒面を適当な変形方法で、例えば接続゛すべ
き構造への接続に個別的に適し九−形状に周囲を成形す
ることができる。この周形状は例えば正方形、長方形。
Before contacting the central protrusion of the cross-section, the end section of the cross-section tube is transformed in an intermediate step into a circular cross-section, for example by 9 mm. If desired, for example, the cylindrical surface of the circular tube section formed in this way can be provided with ring-shaped or spifle-shaped grooves, for example in order to increase the flexibility of this connection. Instead of this circular connection, the cylindrical surface of the connection end can be circumferentially shaped by suitable deformation methods, for example into a nine-shape that is individually suited to the connection to the structure to be connected. This circumferential shape is, for example, a square or a rectangle.

台形、又は6角形及び8角形の形状で提供することがで
きる。
It can be provided in trapezoidal or hexagonal and octagonal shapes.

このような鍛終の断面形を形成する加工過程の後に上記
方法で断面形の突起の俗接又はろう付けが行なわれるが
しかし、この場合それは端部の変形が行なわれない断、
面形の領域において部分的に行なわれるだけで良い。
After the machining process to form the final forged cross-sectional shape, the protrusions of the cross-sectional shape are joined or brazed using the above method, but in this case, it is a process in which the end portions are not deformed.
It is sufficient that the process is performed only partially in the area of the planar shape.

本発明の実−例につき、図面を一照しながら詳細に説明
する。
Examples of the present invention will be described in detail with reference to the drawings.

図面において、第1図、第2図、及び第3図はI#1次
正方正方形の断面図、及び2つの本質的に円形の管の断
面図であ如、第4図及び第5図は材料集積部が突起状に
形成されている、本質的に円形の管の断面図、第6図は
第1図示の本質的に正方形の管から形成された中空体と
関連付けて示す第1図示の本質的に正方形の管のiI/
′ll1I図、第7図及び第9図は第5図示の雷基本断
(3)形から導びかれる。この管基礎断面形から作られ
る流れ断面形であって、但し、成形過程が中断された中
間の段階にある流れ断(8)形の断面図、第8図及び第
10図は椴終変形に必要なフレス加工其と共に示す第7
図及び第9図丁の流れ断面形の仕上げ成形し友枕格の断
面図である。尚、第9図及び第1O図においては能流動
起用薄板γとりつけた状耀が図示されている。
In the drawings, FIGS. 1, 2, and 3 are cross-sectional views of an I#1 square, and two essentially circular tubes; FIGS. 4 and 5 are cross-sectional views of two essentially circular tubes; 6 is a cross-sectional view of an essentially circular tube in which the material accumulation is shaped like a protrusion; FIG. iI/ of an essentially square tube
Figures 'll1I, Figures 7 and 9 are derived from the lightning basic break (3) shape shown in Figure 5. The flow cross-section formed from this pipe basic cross-section, however, the cross-sectional view of the flow cut (8) shape at the intermediate stage when the forming process is interrupted, Figures 8 and 10 are at the terminal deformation. No. 7 shown along with the necessary fress processing
It is a sectional view of the finished molded tomomakura grate of the flow cross-sectional shape of Fig. 9 and Fig. 9. Incidentally, FIG. 9 and FIG. 1O show the state in which the thin plate γ for active flow is attached.

第11図及び第13図はA−A縁(第11図)矢視の断
面図及びB−B巌(第13図)矢視の断面図(第12図
、第14図)と関連づけて示す異なる位置の同一の流れ
Wr圃面形断面図である。流れ断面形に形成された円状
の接続部は特に第12図及び第14図かられかる。
Figures 11 and 13 are shown in relation to the cross-sectional view taken along the line A-A (Figure 11) and the cross-sectional view taken along the line B-B (Figure 13) (Figures 12 and 14). FIG. 3 is a cross-sectional view of the same flow Wr field shape at different positions. A circular connection formed in the flow cross-section is particularly visible in FIGS. 12 and 14.

第15図は第12図乎の仕上げ断面形の斜視図、第16
図は本発明の方法により得られ九流れ断面形を利用する
熱交換器の斜視図、第17 、18 、19 、及び加
図はタービン翼断面形の仕上げ変形の過程を示す。第I
図示の最終状!IKねじって仕上げられる。
Figure 15 is a perspective view of the finished cross section of Figure 12;
Figure 1 is a perspective view of a heat exchanger that utilizes nine flow profiles obtained by the method of the present invention; Figures 17, 18, 19, and the additional figures show the process of finishing deformation of the turbine blade profile. Chapter I
The final state shown! Finished with IK twist.

又それは第17図示の本発明の方法に工9作られた基礎
断面形から形成される。
It may also be formed from a basic profile produced by the method of the present invention as shown in FIG.

本発明の方法につき実施例をあげて詳細に説明する。The method of the present invention will be explained in detail by giving examples.

本発明の方法は例えば第1図示の正方形の管1又は第2
図示の本質的に円形の管2から出発する。
The method of the invention can be applied, for example, to the square tube 1 shown in the first figure or to the square tube 1 shown in the first
Starting from the essentially circular tube 2 shown.

而して、本発明の方法において、この後で更に詳しく説
明する加工法によって、第1図示の管1には特にかどに
配置された材料集積部2′、3が設けられる。一方、第
2図示の例の場合、円筒状の管内鐘を有するものから出
発することができ、その場合、同様に材料集積部4,5
が一様にはソー辺部に沿って分配されており、その結果
、管2が外周において、そのときどきに一様に相互に位
置ずれして配置され丸丸味をつけたかどを有するはソ正
方形の形状を有するように形成されている。
Thus, in the method of the invention, the tube 1 shown in the first figure is provided with material accumulations 2', 3, which are arranged in particular at the corners, by means of a processing method which will be explained in more detail hereinafter. On the other hand, in the case of the example shown in the second figure, it is possible to start from one having a cylindrical pipe bell; in that case, the material accumulation parts 4, 5
are uniformly distributed along the saw edges, so that the tubes 2 are arranged at the outer periphery uniformly mutually offset from time to time and form a square shape with rounded corners. It is formed to have the shape of

第3図は外−において管3が円筒状に形成されており、
一方、管3の内−は正方形と円形の内壁構造の複合した
形状に形成されている実施例を示す5、第3図において
、一方の相互に対向する材料集積部6は密なりロスハツ
チングで図示され、他方の相互に対向する材料集積部は
斜めハツチングで図示されている。
In FIG. 3, the tube 3 is formed into a cylindrical shape on the outside.
On the other hand, in FIG. 5, which shows an embodiment in which the inside of the tube 3 is formed into a composite shape of a square and circular inner wall structure, one of the mutually opposing material accumulation parts 6 is dense and shown in loss hatching. The other mutually opposing material accumulations are illustrated with diagonal hatching.

第1図示のようにはソ正方形の管lに材料集積部2′、
3を設けたのち、管IFi第6図示の如く、引無伸ばし
や比重によって変形させて、材料1次部3は流入側と流
出側の壁補彊部を流れ断面形8の流入側と流出側の未熾
のかど部の領域に形成し、一方、他の材料集積部2′は
後に完成する流れ断面形の管路9,10間の分離用突起
を形成するように変形する。はじめにのべたようにこの
分離用突起の配置と形成は先ず強固に設計するためと重
要な伝熱特性を鍛造化する丸めである 第6図示の如く
流れ断面形8が原則として仕上げ変形されるが、互に対
向する分離用突起2の端部間のすき間は残され、そのす
き間は例えば流れ#面形′に@〈圧縮し、次いで分離用
突起端部間を11!することにより完全に接合する。
As shown in the first figure, there is a material accumulation part 2' in the square tube
3, the primary part 3 of the material is deformed by stretching and specific gravity as shown in Figure 6 of the pipe IFi. It is formed in the region of the side unfinished corner, while the other material accumulation 2' is deformed to form a separating projection between the conduits 9, 10 of the flow cross-section to be completed later. As mentioned in the introduction, the arrangement and formation of this separation protrusion is firstly designed to be strong, and rounded to forge important heat transfer properties.As shown in Figure 6, the flow cross-sectional shape 8 is basically deformed in the finish. , a gap is left between the ends of the separating protrusions 2 facing each other, and the gap is compressed, for example, in the shape of a flow plane, and then the gaps between the ends of the separating protrusions 2 are compressed into 11! This completes the bond.

第4図及び5図は本質的に円筒状の管断面11及び12
によって、すでに突起状に予め形成され丸材料集積部1
3ないし14の存在を示している。この場合、第4図示
の如く、突起状の材料集積部13は管断面11の内壁−
面からだけでなく、その外壁Ii面からも突出している
。第5図示の実施例は第4図示の実施例と、突起状の材
料集積部14ないし15が管断面12の内壁18面から
のみ突出している点が相違している。材料集積部は例え
ば材料集積部を有する管断面と同様に引っ張り、丸ハン
マー扁工、圧電、熱プレス、又は押出し加工によって形
成することができる。
4 and 5 show essentially cylindrical tube sections 11 and 12.
, the round material accumulation part 1 is already formed in a protrusion shape in advance.
It indicates the presence of numbers 3 to 14. In this case, as shown in FIG.
It protrudes not only from the surface but also from the surface of the outer wall Ii. The embodiment shown in the fifth figure differs from the embodiment shown in the fourth figure in that the protruding material accumulation parts 14 and 15 protrude only from the inner wall 18 of the tube section 12. The material accumulation can be formed, for example, by drawing, round hammering, piezoelectric, hot pressing, or extrusion, as well as the tube section with the material accumulation.

第4図及び第5図示のものは又、そのときどきに1それ
自身中空体ないし流れ断面形の作製のための別の方法の
基礎として利用することができる。
The illustrations in FIGS. 4 and 5 can also be used as a basis for other methods for the production of hollow bodies or flow profiles from time to time.

第4図及び第5g図示のものは、2つの連続するプロセ
ス段階を示すと解釈される。即ち、例えば後に求められ
る内側突起、即ち分離用突起にとって必要な、比較的大
きな材料の必要量はまず管断面形11の外壁及び内壁を
突出する材料集積部13(第4図)に変形することによ
って提供される。これに続く加工段階でこの材料集積部
13は輪郭Is(第5図示の管断面形11)に形成され
る。その後、別の又は最終の断面形成形過程に導びかれ
る。
The illustrations in FIGS. 4 and 5g are to be interpreted as showing two successive process steps. That is, the relatively large amount of material required, for example for the later required inner protrusions, i.e. separation protrusions, must first be transformed into material accumulations 13 (FIG. 4) projecting from the outer and inner walls of the tube profile 11. provided by. In a subsequent processing step, this material accumulation 13 is formed into the contour Is (tube cross-section 11 shown in FIG. 5). This is followed by another or final cross-sectional shaping process.

第7図ないし第10図示の実施例は内壁−面からのみ突
出している材料集積部14ないし15を有する第5図示
の管断面形の基礎体12から出発する。
The embodiment shown in FIGS. 7 to 10 starts from a tube-shaped basic body 12 shown in FIG. 5, which has material accumulations 14 and 15 that project only from the inner wall surface.

第7図示の如く、はY完成した状態に変形される。しか
し、材料集積部15の相互に隣り合った喚起端部同志は
まだ接触しない。それは例えば第S図示の構造と第7図
示の構造の間の製造過程で、管断面形12の変形プロセ
スを、先ず求められる管路内部構造17 、18 (第
7図)に相当する内側加工用具を挿入するために中断す
ることによるものである。内側加工用具の挿入後、断面
形16(第7図)の製造のための次の変形プロセスが行
なわれる。      1[その後、内側加工用具が先
ず除かれ、次いで第8図示の如くタップ19.20によ
って最終の断面形へと断面形16を横方向に変形するこ
とが行なわれる。
As shown in Figure 7, is transformed into the Y-completed state. However, the mutually adjacent excitation ends of the material accumulation section 15 do not yet come into contact with each other. For example, in the manufacturing process between the structure shown in S and the structure shown in FIG. By interrupting to insert . After the insertion of the inner working tool, the next deformation process for the production of the cross-section 16 (FIG. 7) takes place. 1 [Thereafter, the inner processing tool is first removed and then a transverse deformation of the cross-section 16 to the final cross-section is carried out by means of taps 19, 20, as shown in FIG.

その場合、その央起端部同志を接触させる過程の前に短
い突起端部は相互に溶接するか又ははんにづけする。
In that case, the short projecting ends are welded or soldered together before the process of bringing their central ends into contact.

第9図は第7図示の如く変形された中間の段階にある第
5図示のものから得られた流れ断面形16を示す。その
場合最終の圧縮過程の前に第1O図示の如く管路の中間
空間及び相互に隣接する、材料集積部15により形成さ
れ九突起の端部間に乱流薄[21が差込まれる。その乱
流薄板は嬉10図示の最終の変形退場において、流れ断
面形16’  の内側の構造部分を同時に形成し、この
直流薄板は次いで最終的に突起接触面間で流れ断面形と
!ll!接もしくははんだづけされる。
FIG. 9 shows the flow profile 16 obtained from the one shown in FIG. 5 at an intermediate stage of deformation as shown in FIG. In that case, before the final compression process, a turbulent thin film [21] is inserted between the ends of the nine protrusions formed by the material accumulation parts 15 in the intermediate space of the pipe and mutually adjacent ones, as shown in FIG. 1O. The turbulent flow plate simultaneously forms the inner structural part of the flow profile 16' in the final deformation exit shown in Figure 10, and this DC flow plate then finally forms the flow profile between the protrusion contact surfaces! ll! Connected or soldered.

流れ断面形の最終の仕上げ変形は管継目f#i接機によ
る圧延によって共圧縮し、且つ内側突起を溶接するとと
によって行なわれる。
The final finishing deformation of the flow profile is carried out by co-compacting the pipe joint f#i by rolling with a welder and by welding the inner protrusion.

第11図、12図、及び13図、及び14図は同様に例
えば第5図示の管基礎体12から作られた流れ断面形1
6を示す。中央の突起端部は所望の距離をおいて相互に
配置されていることは第11図及び第13図から知るこ
とができる。即ち、第7図及び第9図におけるのと同様
にこの断面形16は完全には変形されていない。完全な
変形及び突起端部に沿つ九溶接又ははんだづけの前に第
11図ないし14図示の実施例の場合、流れ断面形16
には先ず、丸ハンマーによって円状接続部21嘗設けら
れる。この円状接続部を介して断面形は適当な方法で熱
交換器の基部と結合される。この接続部は当然に他の適
幽な方法(引っ張り、圧縮、又は圧延)によって警戒す
ることができ、その場合、当然に、このII@部を多角
形に形成することも可能である。ここにおいて多角形の
意味はとりわけ、正方形、長方形。
11, 12, 13, and 14 similarly show a flow cross-section 1 made from the tube base 12 shown in FIG. 5, for example.
6 is shown. It can be seen from FIGS. 11 and 13 that the central projecting ends are arranged at a desired distance from each other. That is, as in FIGS. 7 and 9, this cross-sectional shape 16 is not completely deformed. In the case of the embodiments shown in FIGS. 11 to 14, the flow profile 16 before complete deformation and welding or soldering along the protrusion ends.
First, a circular connecting portion 21 is provided using a round hammer. Via this circular connection, the cross section is connected in a suitable manner to the base of the heat exchanger. This connection can of course be secured by other suitable methods (pulling, compression or rolling), in which case it is of course also possible to form this part II@ polygonally. Here, polygon means, among other things, square and rectangle.

台形、ないしは6又は8角の管接続部横断面を含むもの
である。
It includes a trapezoidal or six or eight-sided pipe connection cross section.

更に接続部21′にはM15図示の如く更にみぞを設け
ても良い。その場合、残っている突起端部に沿って溶接
又ははんだづけを行なう前文Vi後にみぞnを接続部2
1′に入れることができる。第15図示0如く、みぞn
はみそ状に一定間隔をおいて連続して接続s21′の外
間壁に刻設することができる。又は接続部の一方向にス
パイラル状に刻設しても良い。
Furthermore, a groove may be further provided in the connecting portion 21' as shown in M15. In that case, after welding or soldering along the remaining protrusion ends, the groove n is connected to the connecting part 2.
1'. As shown in Figure 15, groove n
The grooves can be carved continuously at regular intervals in the shape of a diagonal on the outer wall of the connection s21'. Alternatively, it may be carved in a spiral shape in one direction of the connection part.

第16図は本発明Kltって作られた流れ断面形を用い
るのに適した熱交換器を例示している。ここにおいてる
は交差−向流マ) IJクスを示す。このマトリクスを
形成する中空断面体2例えば第8゜10図示の断面形1
6はマ) 17クスの圧縮空気供給り用の第1の固定の
管案内部寓に接続され、且つ第2の固定の管案内部5内
に接続される。マ) IJクスを通して熱ガス(矢印H
)Kより加熱された圧縮空気Uは管案内部6から、適当
な消費部2例えばガスタービン駆動装置の燃焼室に送ら
れる。
FIG. 16 illustrates a heat exchanger suitable for use with a flow profile made by the present invention. This figure shows a cross-countercurrent IJ system. A hollow cross-sectional body 2 forming this matrix, for example, a cross-sectional shape 1 shown in FIG.
6 is connected to the first fixed pipe guide part 5 for supplying compressed air of the box 17, and is connected to the inside of the second fixed pipe guide part 5. M) Heat gas (arrow H) through the IJ gas
) The compressed air U heated by K is sent from the tube guide 6 to a suitable consumer 2, for example a combustion chamber of a gas turbine drive.

第16図示の如く、更に2つの相互に分離された管案内
部ス及び5は共通の集合管局内に一体化されている。熱
交換器−マトリクスはそのときどきに集合管jの片側に
U字形に突出するように走る。
As shown in FIG. 16, two mutually separate pipe guides S and 5 are also integrated into a common collecting station. The heat exchanger matrix runs from time to time in a U-shaped projection on one side of the collecting pipe j.

マトリクスるを通しての相当の圧縮空気の走行は矢印り
によって示す。両管案内部ス及びδ用の共通の集合管の
代りに2つの相互に分離された、本質的に平行な管を有
し、且つ一方の管はマトリクスへの圧縮空気供給用であ
り、他方の管はマ) IJクスから相当の熱交換器への
圧m9!気排出用である熱交換器の構造か考えられる。
The travel of the corresponding compressed air through the matrix is indicated by arrows. Instead of a common collecting pipe for both pipe guides S and δ, it has two mutually separate, essentially parallel pipes, and one pipe is for the compressed air supply to the matrix, the other The pressure from the IJ to the heat exchanger is m9! The structure of the heat exchanger for air exhaust may be considered.

第17図は多角形の管からなる、相互に分−された内側
管路28,29.及び(資)を有する流れ基礎断面形2
7を示す。このような第17図示の基礎断面形は例えば
タービン静翼又は動翼として利用されるので、所望の個
々の翼長さに相応してこの基礎断面形は、空気力学的な
いしは熱力学的な条件に相応して所望の厳適形状となる
ように切断される。次いで第18図下の如く、断面形〃
は本質的に後方へ曲げられ、次いで第19図示の輪郭2
7勢如く主に畏手方向に完成した状態に伸ばされる。S
、終的に第I図示の如く、相当の断面形の輪郭のすすみ
n″′を有する、所望の誠のねじれが形成される その
場合必要に応じて鍛造が行なわれる。その鍛造において
は第19図示の如く相当の断面薄板が相当の形状の鍛造
型によって第I図示のような最終形状に鍛造される。
FIG. 17 shows mutually separated inner conduits 28, 29, made of polygonal tubes. Flow foundation cross section shape 2 with and (capital)
7 is shown. Since the basic cross-sectional shape shown in Figure 17 is used, for example, as a turbine stationary blade or moving blade, this basic cross-sectional shape can be adjusted according to aerodynamic or thermodynamic conditions depending on the desired length of each individual blade. It is then cut to the desired exact shape. Next, as shown in Figure 18 below, the cross-sectional shape
is essentially bent backwards and then the contour 2 shown in FIG. 19
Like the seven forces, it is stretched out to its completed state, mainly in the direction of the hands. S
, the desired true twist is finally formed, as shown in Figure I, with a corresponding cross-sectional contour progression n'''. In that case, forging is carried out as required. As shown, a sheet of corresponding cross-section is forged by a forging die of corresponding shape into the final shape as shown in Figure I.

本発明の方法により製作した流れ断面形を利用するため
に、前記−知の熱交換器の例の場合、流れ断面形に円状
の接続部を形成することは絶対に必要なことではないこ
とは明らかであり、むしろ、へら状に成形され九流れ断
面形を熱交換器の底部に直接に接続させ、次いでそこに
固定することも考えられる。
In order to utilize the flow profile produced by the method of the invention, it is not absolutely necessary to form circular connections in the flow profile in the case of the known heat exchanger example. Rather, it is also conceivable to connect the spatula-shaped nine-flow cross-section directly to the bottom of the heat exchanger and then to fix it there.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、及び第3図は順次正方形の管。 及び2つの本質的に円形の管を示す断面図、第4図及び
第5図は材料集積部が突起状に形成された、本質的に円
形の管の断面図、第6図は第1図示の管から中空体の断
面図、第7図及び第9図は第5図示の断面形から得られ
る流れ断面形であって、但し、成形過程が中間の段階に
ある流れ断面形の断面図、第8図及び第10図は最終変
形に必要なプレス加工具と共に示す第7図及び第9図示
の流れ断面形の仕上げ成形した状態の断面図、第11図
及び第13図は異なる位置の同一の流れ断面形の断面図
、第12図は第11図示のA−A線矢視断面図、第14
図は第13図示のB−B線矢視断面図、第15図は第1
2図示の仕上げ断面形の斜視図、第16図は熱交換器の
斜視図、第17 、18 、19 、及び第加図はター
ビン翼断面形の成形の過程を示す断面図である。 1.2・・・・・・・・・管、2’、3,4.5・・・
・・・・・・材料集積部、9,10・・・・・・・・・
圧縮空気案内電路、13,14゜15・・・・・・・・
・材料集積部、17 、18 、17’ 、 18’・
・・・・・・・・圧縮空気管路内部構造、16・・・・
・・・・・流れ断面形、21・・・・・・・・・薄板、
21′・・・・・・・・接続部、n・・・・・・・・・
みぞ。 代理人弁理士  石 戸   元 手続補正島(自発) 昭 41 58  XH:   l   月  121
11、 ′J1件の大小 昭41i1 ”l  49  ff  Ii+’J4 
第212074 ri2、発明の名称 中空流れ断面形の製作法 〒143′市話03(775)5391(代)61b9
弁理士 石  )−j     元5 袖市のλ・を象 図 面。 6、補正の内容
Figures 1, 2, and 3 are square tubes. and sectional views of two essentially circular tubes; FIGS. 4 and 5 are cross-sectional views of essentially circular tubes with protruding material accumulations; FIG. 6 is a cross-sectional view of two essentially circular tubes; FIGS. 7 and 9 are flow cross-sections obtained from the cross-section shown in FIG. Figures 8 and 10 are cross-sectional views of the flow cross-sectional shapes shown in Figures 7 and 9, shown together with the press tools necessary for final deformation, in a finished state, and Figures 11 and 13 are the same at different positions. FIG. 12 is a sectional view taken along the line A-A shown in FIG. 11, and FIG.
The figure is a sectional view taken along the line B-B shown in Fig. 13, and Fig. 15 is a cross-sectional view of the
FIG. 16 is a perspective view of a heat exchanger, and FIGS. 17, 18, 19, and 19 are cross-sectional views showing the process of forming the turbine blade cross-section. 1.2......tube, 2', 3, 4.5...
・・・・・・Material accumulation department, 9, 10・・・・・・・・・
Compressed air guide line, 13, 14° 15...
・Material accumulation section, 17, 18, 17', 18'・
...... Compressed air pipe internal structure, 16...
...Flow cross section, 21...Thin plate,
21′・・・・・・Connection part, n・・・・・・・・・
Groove. Agent Patent Attorney Ishito Former Procedural Amendment Island (Voluntary) 1977 58 XH: l Month 121
11, 'J1 large and small Showa 41i1 ``l 49 ff Ii+'J4
No. 212074 ri2, Title of invention Method for manufacturing hollow flow cross-sectional shape
Patent Attorney Ishi)-j Gen 5 An elephant drawing of Sodeichi's λ. 6. Contents of amendment

Claims (1)

【特許請求の範囲】 (1)中空の、その用途に応じて空気力学的に最適に形
成された流れ断面形であり、その外側部には運転中にお
いて第1の動作媒体(熱ガス)が流れ、且つ、流れ断面
形の内側に存在する管路に第2の動作媒体(圧縮空気)
が貫流する流れ断面形の製作法において、 a)本質的に円形横断面を有する管2.正方形横断面を
有する管1.又は多角形横断面を有する管に適当な加工
方法で予め決められた位置、特に管のまわりの一様に分
配された位置に材料集積部2′、3又は4,5を形成す
ること、 b)次いで管(例えばl)を引っ張り又は圧延によって
一方の材料集積部3が流れ断面形の流入側及び流出側の
末端かど部類域に流入側及び流出側の壁補強部を形成し
、且つ他方の材料集積部2′が溶接、ろう付などによ)
子午面において一緒に固定できる、少なくとも2つの相
互に分離された圧縮空気案内管路9゜】O用の分離用突
起を形成するように変形すること を特徴とする中空流れ断面形の製作法。 (2)断面形を与える成形過程の前に少なくとも2つの
管のまわシに互いに対向する一様な材料集積部13 、
14又は14 、15を突起状に彫成し、且つ、材料集
積部14 、15は内側の管壁構造部分に、材料集積部
13は内側の管M構造部分及び/又は外側の管壁構造部
分より突出して形成することを特徴とする特詐−求の範
囲第1項記載の中空流れ断面形の製作法。 (3)材料集積部又はそれを有する管断面を引っ張り、
丸ハンマー加工、圧延、熱プレス、又は押出し加工によ
って形成することを特徴とする特許請求の範囲第1項及
び第2項記載の中空流れ断面形の製作法。 (4)断面形を与える成形過程を所望の圧縮空気管路内
部構造17 、18又は最終の圧縮空気管路内部構造1
γ、 18’に適合し九内儒加工用具を用いて行なうこ
とを特徴とする特許請求の範囲第1fj。 第2Jjj、及び第3項記載の中空流れ断面形の製作法
。 (5)仕上げ成形され九流れ断面形160対向する央起
端部関で固定され、且つ最終的に流れ断面形の内側構造
構成部分としての突起端部と共KRれv!ITWI形と
溶接もしくははんだ付けされる、乱流動起用に形成され
友薄板又は薄板帯片4を挿入する丸めに断面形を与える
成形過程を中断することを特徴とする特許請求の範囲第
1項、第2項、及び第3項記載の中空流れ一断面形の製
作法。 (6)最終の仕上げ成形を管継目#!接機の圧延作用に
より、内側突起を共に圧縮し、且つ溶接することによp
行なうことを特徴とする特許請求の範囲第1項ないし第
5項の1Jliljもしくは複数項に記載の中空流れ断
面形の製作法。 (7)  特に、ガスタービン駆動装置のよりなター1
機械の内側から冷却される静翼又は動翼を製作する方法
において、前記した方法で形成し走流れ断面形基礎体を
圧縮して所定の#IjI形に仕上げ、次いでf11接な
いしははんに付けす石過楢を終え九のちに、個々の翼断
面薄板に切断し、次いで翼形状に萬をねじる九めに鍛造
を行ない、JilWfr面形薄板を鍛造型によって最終
形状に成形すること1に特徴とする特許請求の範囲第1
項ないし第6項の1″)ないし多数積に1繊の中空1れ
断面形の製作法。 (8)流れ断面形I6の中央突起t−#績する前に少な
くとも流れwIji面形の端s′に丸ハフq−などによ
って円状又は(%に正方形、長方形2台形、6角又は8
角形を含む)多角形状のI[l521’に錠形すること
t%倣とする特許請求の範囲第1項ないし第6項の1つ
もしくは多Ili項記載の中空流れ断面形oH作蹟。 ( (9)少なくとも接続部21′を残る突起端部に沿って
浴融又ははんだ付けする前又は後ケこ、Iij!絖郁0
内壁及び/又は外壁に共軸なみぞn又はスパイラル状又
はねじ山状に走るみぞを設けることを特徴とする特許請
求の範囲第8fj記載の中空流れ断面形の製作法。 (7)互いにすぐ近くに位置する管11の外壁及び内壁
から突出する材料集積部13から次に行なわれる加工工
程で、内側管壁から突出する突起状の材料集積s15を
形成すゐととを特徴とする特許請求の範囲第1項ないし
第9項の1項又は多数積に1献の中空流れ断面形の製作
法。 α車 へら状中空断面体16は一方において熱交換器の
交差−向流−マトリクス内の圧縮空気供給用の第1の(
6)電管案内部24に接続されていると共に他方におい
てマトリクスを通って加熱され九圧縮空気を消費部に送
る第2−の固定管案内部δに接続されており、2つの分
離された管案内部は共通の集合管j内で一体化されてい
るか又は本質的に平行に走る単一の管によp形成されて
おシ、中空断面体から形成された熱交換器マトリクス内
は集合管jないし単一の管に対して横にU*Wに突出し
て走る、熱交換器の交差−向流−マトリクス用へら状中
空断1体の製作への%軒請求の範囲第1項ないし第6項
、及び嬉8゜第9項記載の製作法の利用。
[Scope of Claims] (1) It is hollow and has a flow cross-sectional shape that is aerodynamically optimally formed according to its use, and the first working medium (hot gas) is kept in the outer part during operation. A second working medium (compressed air) is introduced into the flow and the pipe line that exists inside the flow cross section.
In the method of fabricating a flow cross-section through which a) a) a tube having an essentially circular cross-section; Tube with square cross section1. or forming material accumulations 2', 3 or 4, 5 in a tube with a polygonal cross-section at predetermined positions, in particular at uniformly distributed positions around the tube, by a suitable processing method, b ) Then, by pulling or rolling the tube (for example l), one of the material accumulations 3 forms wall reinforcements on the inflow and outflow sides in the end corner areas of the inflow and outflow sides of the flow profile, and Material accumulation part 2' is welded, brazed, etc.)
A method of fabricating a hollow flow profile, characterized in that it is deformed to form a separating projection for at least two mutually separated compressed air guide conduits 9° which can be fixed together in the meridional plane. (2) uniform material accumulations 13 facing each other in at least two tube turns before the forming process to give the cross-sectional shape;
14 or 14 and 15 are carved into protrusions, and the material accumulation parts 14 and 15 are formed in the inner tube wall structure part, and the material accumulation part 13 is formed in the inner tube M structure part and/or the outer tube wall structure part. A method of manufacturing a hollow flow cross-sectional shape as described in item 1 of the scope of the special request, characterized in that the hollow flow cross-sectional shape is formed to protrude more. (3) Pulling the material accumulation part or the pipe cross section that has it,
A method for manufacturing a hollow flow cross-sectional shape according to claims 1 and 2, characterized in that the hollow flow cross-sectional shape is formed by round hammering, rolling, hot pressing, or extrusion. (4) The desired compressed air pipe internal structure 17, 18 or the final compressed air pipe internal structure 1 through the molding process that gives the cross-sectional shape.
Claim 1fj is characterized in that the processing is carried out using a Kunai-Yu machining tool that is compatible with γ, 18'. 2nd Jjj, and a method for manufacturing a hollow flow cross-sectional shape as described in 3rd item. (5) The final molding of the nine flow cross-section shapes 160 is fixed at the opposing central starting end portions, and finally the KR v! Claim 1, characterized in that the forming process is interrupted to give a cross-sectional shape to the rounding into which the turbulently formed sheet or sheet strip 4, which is welded or soldered to the ITWI type, is inserted; A method for manufacturing a hollow flow cross-sectional shape according to items 2 and 3. (6) Final finishing molding to pipe joint #! The rolling action of the welding machine compresses the inner protrusions together and welds them together.
A method for manufacturing a hollow flow cross-section according to one or more of claims 1 to 5, characterized in that the method is carried out. (7) Especially for gas turbine drive equipment.
In a method of manufacturing a stator blade or rotor blade that is cooled from the inside of a machine, the running cross-sectional base body formed by the above method is compressed to a predetermined #IjI shape, and then attached to f11 contact or solder. 1. After completing the stone cutting process, the blade is cut into individual blade cross-section thin plates, and then forged to twist the blade into the shape of the blade, and the JilWfr surface-shaped thin plate is formed into the final shape using a forging die. 1. Claim No. 1
A method of manufacturing a hollow 1-fold cross-sectional shape of 1" or 1" in sections 1 to 6. ' to round Huff q- etc. to make a circle or (% to square, rectangle 2 trapezoids, hexagons or 8
A hollow flow cross-sectional OH construction according to one or more of claims 1 to 6, wherein the polygonal shape (including a square) is shaped like a lock. (9) Before or after bath melting or soldering at least the connecting portion 21' along the remaining protruding end, Iij!
A method for producing a hollow flow cross-section according to claim 8fj, characterized in that the inner wall and/or the outer wall is provided with coaxial grooves or grooves running in a spiral or thread-like manner. (7) In the next processing step, a protrusion-shaped material accumulation s15 protruding from the inner tube wall is formed from the material accumulation portion 13 protruding from the outer and inner walls of the tube 11 located in close proximity to each other. A method for manufacturing a hollow flow cross-sectional shape according to one of claims 1 to 9 or multiple volumes. α-wheel The spatula-shaped hollow cross-section 16 on the one hand is connected to the first (
6) two separate tubes, connected on the one hand to the tube guide 24 and on the other hand to a second fixed tube guide δ which passes the heated and compressed air through the matrix to the consumer; The guides are integrated in a common collecting pipe or are formed by a single pipe running essentially in parallel; Claims 1 to 1 for the production of a single spatula-shaped hollow section for a cross-counterflow matrix of a heat exchanger, running in a U*W direction projecting transversely to a single tube. Use of the manufacturing method described in Section 6 and Section 9 of 8゜.
JP21207482A 1981-12-02 1982-12-01 Manufacture of hollow flow section form Pending JPS58114827A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE31476473 1981-12-02
DE19813147647 DE3147647C2 (en) 1981-12-02 1981-12-02 Method for producing a matrix hollow profile of a heat exchanger

Publications (1)

Publication Number Publication Date
JPS58114827A true JPS58114827A (en) 1983-07-08

Family

ID=6147676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21207482A Pending JPS58114827A (en) 1981-12-02 1982-12-01 Manufacture of hollow flow section form

Country Status (4)

Country Link
JP (1) JPS58114827A (en)
DE (1) DE3147647C2 (en)
FR (1) FR2517233A1 (en)
GB (1) GB2110964B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117227A (en) * 2011-12-01 2013-06-13 General Electric Co <Ge> Cooled turbine blade and method for cooling turbine blade
CN109707514A (en) * 2018-12-26 2019-05-03 中国人民解放军国防科技大学 Microchannel and precooler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9766098A (en) * 1998-10-20 2000-05-08 Reynolds Aluminium Holland B.V. Method for the production of multi-channel tubes; multi-channel tubes obtained in this way; and an extrusion die and installation for carrying out the method
DE102005013777A1 (en) * 2005-03-22 2006-09-28 Behr Gmbh & Co. Kg Pipe for a heat exchanger
US20110247794A1 (en) * 2010-04-12 2011-10-13 Bradley Arment Flattened tubes for use in heat exchangers and other systems, and associated methods of manufacture and use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1177320A (en) * 1915-06-29 1916-03-28 Robert Grabowsky Production of hollow grate-bars.
US2522100A (en) * 1946-01-24 1950-09-12 Isaac M Diller Method of forming propeller blades
US2699598A (en) * 1952-02-08 1955-01-18 Utica Drop Forge & Tool Corp Method of making turbine blades
FR1059549A (en) * 1952-07-07 1954-03-25 E Dervaux Ets Precise shaping process for thin bodies with tormented design

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117227A (en) * 2011-12-01 2013-06-13 General Electric Co <Ge> Cooled turbine blade and method for cooling turbine blade
CN109707514A (en) * 2018-12-26 2019-05-03 中国人民解放军国防科技大学 Microchannel and precooler

Also Published As

Publication number Publication date
DE3147647A1 (en) 1983-06-16
FR2517233A1 (en) 1983-06-03
DE3147647C2 (en) 1986-09-25
FR2517233B3 (en) 1985-01-11
GB2110964A (en) 1983-06-29
GB2110964B (en) 1985-07-17

Similar Documents

Publication Publication Date Title
JP4173817B2 (en) Exhaust gas heat exchanger
JP3090324B2 (en) Porous structure and method of manufacturing the same
EP1060808B2 (en) Fluid conveying tube as well as method and device for manufacturing the same
CN105436350B (en) Banjo axle manufacturing process
US4663812A (en) Method of manufacture of manifolds
US4512069A (en) Method of manufacturing hollow flow profiles
US3707750A (en) Method for manufacturing a turbine blade
JPH04253532A (en) Manufacture of hollow metal product
JP7134271B2 (en) Double-walled titanium tubing and method of manufacturing the tubing
US3425113A (en) Method of making composite sheet structures with internal passages by roll bonding
JPH0634282A (en) Heat exchanger and manufacture thereof and header tube for heat exchanger and manufacture thereof
CN100448564C (en) Adaptable mandrel for spin forming
US4856824A (en) Method of manufacture of manifolds and manifold provided by such method
JPS58114827A (en) Manufacture of hollow flow section form
JP2008516177A (en) Flat tube for heat exchanger
US2983993A (en) Sheet or plate metal articles having hollow sections and method of making the same
JP2007010199A (en) Multiple-way pipe and method of manufacturing the same
JP2007010261A (en) Tubular heat exchanger, and its manufacturing method
JP2004167601A (en) Semiprocessed flat tube and its manufacturing method, flat tube, heat-exchanger using flat tube and its manufacturing method
JP3649297B2 (en) Hollow metal tube and method for producing hollow metal tube
JP3564219B2 (en) Nozzle manufacturing method having cooling passage
US3688372A (en) The method of making a heat exchanger
JPH0732939B2 (en) METHOD AND APPARATUS FOR MANUFACTURING A RING PLATE COMPONENT FOR FORMING A CYLINDRICAL COLLECTION TUBE STRUCTURE OF HEAT EXCHANGER
JPH10137859A (en) Forming method of gas turbine combustor parts and gas turbine combustor
KR20050055046A (en) Semifinished flat tube, process for producing same, flat tube, heat exchanger comprising the flat tube and process for fabricating the heat exchanger