JPS58114728A - Mercury removing agent and its production - Google Patents

Mercury removing agent and its production

Info

Publication number
JPS58114728A
JPS58114728A JP56209709A JP20970981A JPS58114728A JP S58114728 A JPS58114728 A JP S58114728A JP 56209709 A JP56209709 A JP 56209709A JP 20970981 A JP20970981 A JP 20970981A JP S58114728 A JPS58114728 A JP S58114728A
Authority
JP
Japan
Prior art keywords
mercury
selenium
sulfide
powder
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56209709A
Other languages
Japanese (ja)
Inventor
Shizuo Nojima
野島 静雄
Etsuji Kimura
木村 悦治
Kazumasa Ikeda
池田 一征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56209709A priority Critical patent/JPS58114728A/en
Publication of JPS58114728A publication Critical patent/JPS58114728A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a removing agent for a trace of Hg vapor in gases at a low cost by passing gaseous H2S through an Se-contg. soln. dispersed therein with S powder to coat the surfaces of the S powder with SeS and depositing said powder on the surfaces of inorg. carriers. CONSTITUTION:Powder of S is dispersed at <=200g/lconcn. in an H2SeO3 soln. prepd. by dissolving SeO2 in water or a soln. prepd. by neutralizing an Na2SeO3 soln. dissolved in an NaOH soln. with H2SO4. Gaseous H2S is passed at a proper velocity through said liquid to allow SeS to deposited on the surfaces of the S powder with said powder as nuclei. The composite material of SeS and S is filtered and separated from the liquid and is sprinkled and deposited at 200kg/m<2> ratio on the surfaces of inorg. carriers such as pumice, whereby a mercury removing agent is prepd. The mercury removing agent which removes an extremely trace of Hg vapor contained in gases with good efficiency is produced at a low cost.

Description

【発明の詳細な説明】 本発明はガス中に含まれる微量の水銀蒸気を効率よくか
つきわめて低コストにて除去する水銀除去剤およびその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mercury removal agent that efficiently removes trace amounts of mercury vapor contained in gas at extremely low cost, and a method for producing the same.

従来水銀との反応性がすぐれているため、排ガス中の水
銀の除去剤として使用されている物質は鋼、銀、セレン
など金属間化合物をつくるもの。
Conventionally, the substances used as removers for mercury in exhaust gas are those that create intermetallic compounds such as steel, silver, and selenium because they have excellent reactivity with mercury.

熱濃硫酸、塩化第二水銀溶液、活性イオウ、活性セレン
含有溶液、硫化鉛、′硫化ニッケル、硫化カドミウム、
硫化セレンなどの硫化物、その他活性炭など数多くの物
質が知られている。
Hot concentrated sulfuric acid, mercuric chloride solution, active sulfur, active selenium-containing solution, lead sulfide, nickel sulfide, cadmium sulfide,
Many substances are known, including sulfides such as selenium sulfide and other activated carbons.

これらの物質は製錬ガス中の水銀を除去する頗に、水銀
との反応性をもたないS*質担体に担持させて充填塔形
式で使用したり、またはそのままの形で液中に溶解また
はS濁させて洗浄塔形式で使用している。
These substances are used to remove mercury from smelting gas by supporting them on S* carriers that do not react with mercury and using them in a packed tower format, or by dissolving them in the liquid as they are. Alternatively, it is used in a washing tower format by making it cloudy.

しかしながら、これらの物質はいずれも技術的または経
済的な間喧点を有している。すなわち。
However, all of these materials have technical or economic disadvantages. Namely.

鋼はカセイソーダ電解から出るガス中の水銀を除去する
には適しているが、製錬ガス中では表面酸化がはげしく
水銀除去能力が急漱に低下する。銀は製錬ガスのような
矢量処j!には膨大な費用がかかり、実用的でない。ま
た、セレン粉末もそのままで使用することは高価すぎて
経済的には不適である・一方、熱鍛硫酸は装置の腐食、
吸収能力の点で問題があり、2@の水銀イオンを含む溶
?I[。
Steel is suitable for removing mercury from the gas emitted from caustic soda electrolysis, but its surface oxidation is severe in smelting gas, and its ability to remove mercury rapidly declines. Silver is like smelting gas! is extremely expensive and impractical. Furthermore, using selenium powder as it is is too expensive and economically unsuitable. On the other hand, hot forging sulfuric acid can corrode equipment,
Is there a problem with absorption capacity and a solution containing 2@mercury ions? I[.

たとえば塩化第二水銀1111111!にょる方法は温
度依存性が大きく、常温より高い温度のガスでは急激に
吸収能力が低下することや吸収剤そのものに水銀を含ん
でいることも問題である・また、活性イオウや活性セレ
ンはその活性度を維持する寿命の点で問題がある・さら
に、rII性炭#i製錬ガス中で祉S偽ガスを吸着し、
水銀吸着能力を低下させる・これ(対し、硫化物は水銀
除去剤として特別に刺造しなくても、鉛鉱石やJ41f
、III鉱石などのようにそのままの形で水銀除去剤と
して利用でするものもあり、かつ性能の魔でも他の水銀
除去物質に比べて馬色はない。特に、硫化セレンの水銀
との強い反応性についてはすでに:1G27年に旧rg
er W。
For example, mercuric chloride 1111111! The Nyoru method has a large temperature dependence, and there are problems in that the absorption capacity decreases rapidly with gases at temperatures higher than room temperature, and the absorbent itself contains mercury.In addition, active sulfur and active selenium are There is a problem in terms of the lifespan to maintain the activity.Furthermore, the rII carbon #i adsorbs the S false gas in the smelting gas,
Decrease mercury adsorption capacity (on the other hand, sulfides can be used as mercury removers even if they are not specially embroidered, such as lead ore or J41f).
Some mercury removers, such as , and III ore, can be used in their original form as mercury removers, and even if their performance is poor, they are not as good as other mercury removers. In particular, the strong reactivity of selenium sulfide with mercury has already been reported:
erW.

Nordjand@r Kより、 Latastria
j and ff1qi削−r−jng Chemis
try Vow、 19m 44*ムprig、 19
27. gill−521において指摘されているーす
なわち、硫化セレンを被覆(d曽tム曙)した紙は水銀
漏気に接触すると、黒変する。この晶II!紘硫化セレ
ンと水銀との反応に基づくものであり、かつ黒変変状水
銀蒸気の濃度、接触時間等の函数であるので、とのよう
に硫化セレンを被覆した紙は黒変度の測定によりり、定
量的な水銀検知器としての機能を果たし得るものである
ことが記載されている。従って、*化セレンが水銀除去
物質として利用できるということはすでに公知である。
From Nordjand@r K, Latastria
j and ff1qi 切-r-jng Chemis
try Vow, 19m 44*mprig, 19
27. Gill-521 points out that paper coated with selenium sulfide turns black when it comes into contact with mercury leakage. This Akira II! Black discoloration is based on the reaction between selenium sulfide and mercury, and is a function of the concentration of mercury vapor, contact time, etc. Therefore, the black discoloration of paper coated with selenium sulfide is determined by measuring the black discoloration. It is stated that the device can function as a quantitative mercury detector. Therefore, it is already known that selenium chloride can be used as a mercury removing substance.

また、特公昭55−39364号公報には、気体状水銀
含有ガスのn#1方法として[不活性a1体に硫化セレ
ンまたは二酸化セレンあるいはそれらの混合物を担持し
た精製用物質の塊中な水銀含有ガスを通過させる方法」
(以下、公知発明という)が開示されている。この場合
は硫化セレン溶液または二酸化セレン溶液を不活性担体
に含浸させて硫化セレンまたは二酸化セレンあるいはそ
れら混合物な担持させている。しかしながら、上記公報
には二酸化セレン自体唸水銀除去能力が低いので、使用
前に801ガスで4履して高活性な元素セレンに変える
必要であることがie*されている。        
 「一般に、硫化セレンと水銀との反応は次の(1)式
%式% (1) この反応は、水銀と他の硫化物、たとえば硫化鉛、硫化
亜鉛、硫化ニッケル、硫化カドミウムなどとの反応では
8のみが利用されるのに比べて。
In addition, Japanese Patent Publication No. 55-39364 describes the n#1 method for purification of gaseous mercury-containing gas [mercury contained in a lump of a refining substance in which selenium sulfide, selenium dioxide, or a mixture thereof is supported on an inert a1 body. How to pass gas
(hereinafter referred to as known invention) is disclosed. In this case, an inert carrier is impregnated with a selenium sulfide solution or a selenium dioxide solution to support selenium sulfide, selenium dioxide, or a mixture thereof. However, the above-mentioned publication states that since selenium dioxide itself has a low ability to remove mercury, it is necessary to convert it into highly active elemental selenium by dipping it with 801 gas before use.
``In general, the reaction between selenium sulfide and mercury is expressed by the following formula (1). Compared to , only 8 is utilized.

硫化セレンの場合では8台と8がともに水銀の除去榔貞
として有効であることを示すものである。
In the case of selenium sulfide, both 8 units and 8 units are shown to be effective in removing mercury.

この点で硫化セレンは水銀除去能力において他の硫化物
より著しくすぐれている。
In this respect, selenium sulfide is significantly superior to other sulfides in its ability to remove mercury.

このように、@化セレンは水銀除去能力においてすぐれ
ているが、iA在まで、水銀除去物質として工業的に利
用されなかった壇由は次のごときものと考えられる。
As described above, @Selenium chloride has excellent mercury removal ability, but the reason why it was not used industrially as a mercury removal substance until iA is considered to be as follows.

11)  硫化セレンがきわめて高価であること。11) Selenium sulfide is extremely expensive.

すなわち、硫化セレンは高価なセレンを原料とするので
、他の硫化物、峙に硫化鉛、硫化亜鉛など、鉱石として
天然に存在するものに比べてきわめて高価である。たと
えば、硫化鉛は水銀除去能力では硫化セレンよりはるか
に劣るが、安価であるため、工業的に水銀除去物質とし
て利用されている。これに対し、硫化セレンは高価であ
るため。
That is, since selenium sulfide is made from expensive selenium, it is extremely expensive compared to other sulfides, such as lead sulfide and zinc sulfide, which exist naturally as ores. For example, lead sulfide is far inferior to selenium sulfide in its ability to remove mercury, but because it is inexpensive, it is used industrially as a mercury removal material. On the other hand, selenium sulfide is expensive.

実用化されていない。このように、硫化セレンは原料的
にすでに高価である上に、従来の製造方法においても問
題点があった。すなわち、硫化セレンの製造方法には湿
式法と乾式法があるが、そのいずれにおいてもそれぞれ
問題点があった。
Not put into practical use. As described above, selenium sulfide is already expensive as a raw material, and there are also problems in conventional manufacturing methods. That is, there are wet methods and dry methods for producing selenium sulfide, but each method has its own problems.

まず湿式法では、亜セレン酸溶液に硫化水素を通じて硫
化セレン粒子を析出させるのであるが、析出した硫化セ
レン粒子はS濁し、ろ過の鍬のろ過性が悪く、かつ非常
に微細な硫化セレン粒子はろ過しきれず損失となる。ま
た、ろ過された硫化セレン粒子は乾燥時にカルメラ状に
なり、水銀除去剤として使用するためには比表面積を大
きくしなければならないので、粉砕工種を必要とした。
First, in the wet method, selenium sulfide particles are precipitated by passing hydrogen sulfide into a selenite solution, but the precipitated selenium sulfide particles become cloudy with S, and the filterability of the filtration hoe is poor, and very fine selenium sulfide particles It cannot be completely filtered, resulting in a loss. In addition, the filtered selenium sulfide particles become carmeloid-like when dried, and in order to be used as a mercury remover, the specific surface area must be increased, so a crushing process is required.

次に、乾式法では、硫化セレンはイオウとセレンをその
化学組成比になるように混合し、炉内で溶融反応させて
つくるが、その反応生成物は粘性が大きく炉から連続的
に抜き出すことが難しく、しかも抜き出した反応生成物
は冷却すると、ゴム状となり、粉砕することはできない
。このため、80〜85@Cで30分間機度保持して熟
成させる必要があった。
Next, in the dry method, selenium sulfide is produced by mixing sulfur and selenium to the desired chemical composition and melting the mixture in a furnace, but the reaction product is highly viscous and cannot be extracted continuously from the furnace. However, when the reaction product is cooled, it becomes rubbery and cannot be crushed. For this reason, it was necessary to maintain the temperature at 80 to 85 C for 30 minutes to ripen it.

以上のように、jt化セレンは水銀除去能力においては
すぐれていることば知られているが、水銀除去剤として
工業的に利用されないのはその経済性および製造方法に
それでれ間4があったためである。
As mentioned above, selenium chloride is known to have excellent mercury removal ability, but the reason why it is not used industrially as a mercury removal agent is because of its economic efficiency and production method. be.

本発明社上記の従来技術の欠点を解決し、ガス中に含ま
れる微量の水fIss気を効率よくかつきわめて低コス
トにて除去する水銀除去剤およびその製造方法を提供す
るもので、その要旨とするところは、 (1)  核としてのイオウ粉末と該イオウ粉末表面を
被覆した硫化セレンとからなる硫化セレン・イオウ複合
粒子を無機質担体表aiK担持せしめてなる水銀除去剤
The present invention solves the above-mentioned drawbacks of the prior art and provides a mercury removal agent and a method for producing the same that can efficiently remove trace amounts of water contained in gas at an extremely low cost. (1) A mercury removal agent comprising selenium sulfide/sulfur composite particles, which are composed of sulfur powder as a core and selenium sulfide coating the surface of the sulfur powder, supported on the surface of an inorganic carrier by aiK.

(2)  セレンな含むS液中和イオウ粉末を200f
/を以下の濃度で分散させ、これに硫化水素ガスを通じ
て護イオウ粉末を核として該イオウ粉末表面に硫化セレ
ンな析出せしめて硫化セレン・イオウ複合粒子を形成さ
せ、ろ別して得た該硫化七しン苧イオウ複合粒子を無機
質担体表面に担持せしめることを特徴とする水銀除去剤
の製造方法。
(2) 200f of S liquid containing selenium neutralized sulfur powder
/ is dispersed at the following concentration, and hydrogen sulfide gas is passed through this to cause selenium sulfide to precipitate on the surface of the sulfur powder with the sulfur powder as a nucleus to form selenium sulfide/sulfur composite particles, and the sulfurized selenium sulfide obtained by filtering. 1. A method for producing a mercury remover, which comprises supporting a mercury sulfur composite particle on the surface of an inorganic carrier.

にある。It is in.

本発明の水銀除去剤は、以上のように、核としてのイオ
ウ粉末と該イオウ粉末表面を被覆した値化セレンとから
なる値化セレン・イオウ複合粒子と該硫化セレン・イオ
ウ複合粒子を表面に担持した無機質担体とより構成され
たものであり、二重構造であることを特徴とするもので
ある。その製造方法については、二酸化セレン(Bed
@)を水に溶解した亜セレン酸溶猷、またはカセイノー
ダ溶Illに溶解した亜セレン酸ソーダ#液を硫酸で中
和した液にイオウ粉末を200f/を以下の11111
11(で分散させ、これ[H,8ガスを適当な速度で通
じることにより、イオウ粉末を核としてイオウ粉末表面
に硫化セレンを析出させて硫化セレン・イオウ複合粒子
を形成させる。この硫化セレン・イオウ複合粒子は上記
の従来法におけるごとき非常に徽細な硫化セレン粒子と
は異なり、ろ過性がよく、従ってろ過損失はない。核と
して使用するイオウ粉末4分散性がよく、その添加量は
200t/を以下である。イオウ粉末の添加量が200
 tlt ?越えると。
As described above, the mercury remover of the present invention has valorized selenium/sulfur composite particles consisting of sulfur powder as a core and valorized selenium coated on the surface of the sulfur powder, and selenium sulfide/sulfide composite particles on the surface. It is composed of an inorganic carrier and is characterized by a double structure. Regarding its production method, please refer to selenium dioxide (Bed)
Add 200f/ of sulfur powder to a solution prepared by neutralizing selenite solution (@) in water or sodium selenite solution dissolved in caseinoda solution Ill with sulfuric acid.
By passing this [H, 8 gas at an appropriate speed, selenium sulfide is precipitated on the surface of the sulfur powder using the sulfur powder as a core, and selenium sulfide/sulfur composite particles are formed. Unlike the very fine selenium sulfide particles used in the conventional method mentioned above, the sulfur composite particles have good filterability, so there is no filtration loss.The sulfur powder used as the core has good dispersibility, and the amount added is 200 tons. / is below.The amount of sulfur powder added is 200
tlt? If you cross it.

fII液中でのイオウ粉末の分紋性が騰〈なり、m化セ
レンのイオウ粉末の*tmへの被覆が不均一になり好ま
しくない、またイオウ粉末の粒度は、aイオり粉末が一
鶏することなく、かつd紀複合粒子が俊述のq#値を発
揮するためには、−100メツシユ〜+350メツシ具
であることが好ましい。上記のイオウ粉末1仕散させる
#l液中の七しン量についてはイオウ粉末の5噂が下限
である。七しン量が5慢禾満では値化セレンのイオウ粉
末表面への被覆が不均一となり、所要の値化セレン・イ
オウ複合粒子が得られない。
The sulfur powder in the fII solution increases its streaking property, and the coating of the sulfur powder of selenium mide on *tm becomes uneven, which is undesirable. In order for the d-period composite particles to exhibit the stated q# value without causing any damage, the range is preferably -100 mesh to +350 mesh. The lower limit of the amount of sulfur in the liquid #1 in which 1 sulfur powder is added is 5 sulfur powder. If the amount of selenium is less than 5, the surface of the sulfur powder will not be uniformly coated with valenced selenium, making it impossible to obtain the desired valenced selenium/sulfur composite particles.

このように生成した硫化セレン・イオウ複合粒子ケろ別
して、これケ無機質担体表面にまぶし担持させて本発明
の水銀除去剤が得られる。
The selenium sulfide/sulfur composite particles thus produced are filtered out and then sprinkled on the surface of an inorganic carrier to obtain the mercury removing agent of the present invention.

このようにして得られた本発明の水銀除去能力、上述し
たように、値化セレン・イオウ複合粒子とdm会粒子を
担持する無機質担体とからなる二重構造のものであるが
、その中心ななすのは硫化セレン・イオウ複合粒子であ
り、該複合粒子は仄のごとき特徴を有するう +1)  該複合粒子はイオウ粉末を核とするので、従
来法による微細な硫化セレン粒子とは異なり、ろ過性が
よく、ろ過損失がない。
As mentioned above, the mercury removal ability of the present invention obtained in this way has a double structure consisting of valorized selenium/sulfur composite particles and an inorganic carrier supporting DM particles, but the central feature is The particles are selenium sulfide/sulfur composite particles, and these composite particles have the following characteristics.+1) Since the composite particles have sulfur powder as their core, unlike fine selenium sulfide particles produced by conventional methods, they cannot be filtered. good performance and no filtration loss.

121  該複合粒子は核としてのイオウ粉末表面を硫
化セレンが被覆した構造であるので、高価な硫化セレン
の使用量は大1−に低減する。
121 Since the composite particles have a structure in which the surface of the sulfur powder as a core is coated with selenium sulfide, the amount of expensive selenium sulfide used can be reduced to 1-.

(31該複合粒子はろ別しただけでそのまま無機質担体
にまぶして担持させることができるので、従来法におけ
るごとき乾燥工程や粉砕1鴨を必要としない。
(31) The composite particles can be simply filtered and then sprinkled on an inorganic carrier and supported, so there is no need for a drying step or pulverization as in conventional methods.

(4)  核となるイオウ粉末の粒度な調節することに
より、該複合粒子の粒度の調節ができる。
(4) By adjusting the particle size of the sulfur powder serving as the core, the particle size of the composite particles can be adjusted.

(5)  該複合粒子は、軽いイオウ粉末を核とするの
で、軽量である。
(5) The composite particles are lightweight because they have a core of light sulfur powder.

(6)  イオウとセレンとの酸相性が大であるので。(6) Sulfur and selenium have great acid compatibility.

該複合粒子の核としてのイオウ粉末と被檄鳩である硫化
セレンとの付着性が強固である。
The adhesion between the sulfur powder as the core of the composite particle and the selenium sulfide as the target material is strong.

本発明の水銀除去剤は充填層を形成しその中を含水銀ガ
スを通過させ、#ガス中の水銀除去を行うタイプのもの
であり、その硫化セレン・イオウ複合粒子と無機質担体
粒4とよりなる二重構造によって1次のごとき特徴を有
するものである。
The mercury removing agent of the present invention is of the type that forms a packed layer and allows mercury-containing gas to pass through the filled layer to remove mercury from the gas. It has linear characteristics due to its double structure.

+11  高価な硫化セレンの使い方がきわめて合理的
であり、硫化セレンの使用量は少量であるので。
+11 The use of expensive selenium sulfide is extremely rational, and the amount of selenium sulfide used is small.

コスト的に非常に有利である。Very cost-effective.

(2)  二重構造により、比表面積が大きくなり、七
しン単位量当りの水銀補数能力は前記公知発明における
単に担体表面を硫化セレンで被覆した水銀除去剤より大
である。
(2) Due to the double structure, the specific surface area is increased, and the mercury complement ability per unit amount of silane is greater than that of the mercury removing agent of the known invention, in which the carrier surface is simply coated with selenium sulfide.

(31単位容積当りのセレン担持量が大きいので。(31 Because the amount of selenium carried per unit volume is large.

前記公知発明の水銀除去剤より補数嘘方は大きくかつ寿
命はより長い。
The mercury removal agent of the above-mentioned known invention has a larger complement angle and a longer life.

14)  軽量なイオウな核とする硫化セレン・イオウ
複合粒子を無機質担体表1iK担持せしめたものである
ので、充填塔の重量が軽減される。
14) Since the selenium sulfide/sulfur composite particles having a lightweight sulfur core are supported on an inorganic carrier surface of 1iK, the weight of the packed tower is reduced.

15)  使用済廃剤の処理が容易にできる。すなわち
、担体表面の水銀と反応した上記複合粒子を、たとえば
湿式トロンメルで容易に剥離分層させ、これを公知方法
で処理して高価な水銀、セレンを回収し、かつ水銀によ
る二次公害発生を抑止できるが。
15) Used waste can be easily disposed of. That is, the composite particles that have reacted with mercury on the surface of the carrier are easily peeled off and separated into layers using, for example, a wet trommel, and then treated by a known method to recover expensive mercury and selenium, and to prevent secondary pollution caused by mercury. Although it can be suppressed.

前記公知発明の場合は担体表面の付11吻の剥離分@−
jet容易でない。
In the case of the above-mentioned known invention, the peeled portion of the surface of the carrier @-
jet is not easy.

次に、使用済廃剤の処理について評述する。Next, we will discuss the treatment of used waste agents.

ガス中の水銀を補数した廃剤は無機質担体、たとえば軽
石に担持された硫化セレン・イオウ複合粒子の硫化セレ
ン層がガス中の水銀と反応して、硫化水銀、・セレン化
水銀に変化しており、従って。
The waste agent that complements the mercury in the gas is produced by the selenium sulfide layer of selenium sulfide/sulfur composite particles supported on an inorganic carrier, such as pumice, reacting with the mercury in the gas and converting into mercury sulfide and mercury selenide. Yes, therefore.

該複合粒子は未反応の硫化セレン、核としての元素イオ
ウ、反応生成物である硫化水銀、セレン化水銀からなっ
ている。このように、廃剤は高価なセレン、水fIiを
含んでいるので、これらを有利に回収し、セレンは再利
用するとともに、水11i11は二次公害を起こさない
ように分離回収する必JI!がある。
The composite particles are composed of unreacted selenium sulfide, elemental sulfur as a nucleus, and reaction products mercury sulfide and mercury selenide. As described above, since the waste agent contains expensive selenium and water fIi, it is necessary to collect them advantageously, reuse the selenium, and separate and recover the water 11i11 so as not to cause secondary pollution! There is.

この廃剤は担体な営んでいるので1反応生成物と担体な
あらかじめ分−すれば、処理量がきわめ      1
て少なくなり、セレンおよび水銀の分離回収も有利にで
きるので1本Mi明者らは実験検討を重ねた結果、湿式
トロンメルによる反応生成物の剥離分が効果的であるこ
とを見出したのである。その具体例について述べる。
Since this waste agent acts as a carrier, if the reaction product and carrier are separated in advance, the throughput can be reduced to a very high level.
As a result of repeated experimental studies, the researchers found that removing the reaction product using a wet trommel is effective because selenium and mercury can be separated and recovered advantageously. A specific example will be described below.

すなわち、元素イオウな核とした硫化セレン・イオウ複
合粒子を軽石に200ky/−の割合で担持させた本発
明の水−除去剤を充填塔に充填し、水銀含有製錬ガスを
通じて水銀の除去を行なった。
That is, the water-removal agent of the present invention, in which pumice was supported with selenium sulfide/sulfur composite particles with elemental sulfur cores at a ratio of 200 ky/-, was packed into a packed tower, and mercury was removed through mercury-containing smelting gas. I did it.

この廃剤は担体である軽石を含めて平均6−の水−を保
有していた。この廃剤1 kgを10tの水槽内に設置
した4■目の金網トロンメル(200mOx300mL
)’C入れ、毎分50回転で回転させながら水洗した。
This waste agent, including the carrier pumice, had an average of 6 - parts of water. 1 kg of this waste was placed in a 4th wire mesh trommel (200 mO x 300 mL) in a 10 t aquarium.
)'C and washed with water while rotating at 50 revolutions per minute.

このときの水洗時間と反応生成物(付着物)の剥離およ
び水銀の分m藁との関係をそれぞれ第1図および第2図
に示す。また、縞1図および第2図には比較のために、
*記公知発明の硫化セレン単味を軽石に担持させた水銀
除去剤の廃剤の結果をも併せ示す・ 第1図および第2L)!11が示すように、上記湿式ト
ロンメルによる約30分間の水洗によって1本発明の水
銀除去剤の廃剤の軽石付着物は98慢以上が剥離分離さ
れ、また水銀の分離率も99.7係とほぼ完全に近く、
担体である軽石中の!!4ろの水−紘260ppmであ
った。
The relationship between the water washing time, the peeling of reaction products (adhesives), and the amount of mercury is shown in FIGS. 1 and 2, respectively. Also, for comparison, Fig. 1 and Fig. 2 show
*The results of discarding a mercury remover in which pumice is supported with selenium sulfide alone according to the known invention are also shown (Figures 1 and 2L)! As shown in Figure 11, more than 98% of the pumice deposits on the waste mercury remover of the present invention were peeled off and separated by washing with water for about 30 minutes using the wet trommel, and the mercury separation rate was 99.7%. almost perfect,
In pumice which is a carrier! ! It was 260 ppm in 4-ro water.

一方、前記公知発明の硫化セレン単味を軽石に担持させ
た廃剤の場合は付着粒子が微細で軽石のg!隙中に付着
しているために1本発明の廃剤の場合より軽石付着物の
剥離率も水銀分端本も劣ちてX、%る。
On the other hand, in the case of the waste agent of the known invention in which pumice is supported with selenium sulfide alone, the adhering particles are fine and the g! Because of the adhesion in the crevices, both the removal rate of pumice deposits and the mercury fraction are inferior to those of the waste agent of the present invention by X%.

このように、本発明の水銀除去剤の廃剤の担体から剥離
された付着物は水@13〜16%、セレン12〜151
G、イオウ69〜71%の組成をなしており1重量的に
は全体の3(14!!度に相当するものである。これら
剥離されたものをさらに公知方法で処理して高価な水銀
およびセレンを分離回収する。@石にはなお微量の水銀
が残留しているので硫化セレンの担体として、繰り返し
使用してもよく、また製錬工種へ溶剤の一部として使用
することもできるので、水1ilによる二次公害源とは
ならない。
In this way, the deposits peeled off from the waste carrier of the mercury remover of the present invention contain water @ 13-16%, selenium 12-151%,
G, has a composition of 69 to 71% sulfur, and is equivalent to 3 (14!! degrees) of the total by weight.These peeled products are further processed by a known method to remove expensive mercury and sulfur. Separate and recover selenium. Since there is still a trace amount of mercury remaining in the stone, it can be used repeatedly as a carrier for selenium sulfide, and it can also be used as part of a solvent in smelting processes. 1 il of water does not become a source of secondary pollution.

本発明は、以上のように、分散性のよいイオウ粉末を核
として使用し、ろ過性がよくかつ硫化セv y f) 
使用量の著しく少ない硫化セレン・イオウ複合粒子を形
成させ、これを無機質担体表面に担持サセて二重構造と
することによって、低コストで水銀補数能力のきわめて
高い水銀除去剤およびその製造方法を提供するもので、
ガス中の水銀除去対策上きわめて有用である。
As described above, the present invention uses a sulfur powder with good dispersibility as a core, has good filterability, and has a sulfuric acid powder.
By forming selenium sulfide/sulfur composite particles, which are used in extremely small amounts, and supporting them on the surface of an inorganic carrier to form a double structure, we provide a low-cost mercury removal agent with an extremely high mercury complement ability, and a method for producing the same. to do,
It is extremely useful for removing mercury from gas.

次に1本発明を実施例によってさらに具体的に説明する
が1本発明はその要旨を越えない限り以下の実施例に限
定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

J!麿例 電解スライムを700’Cで酸化焙焼し1発生した焙焼
ガスをカセイソーダ溶液で洗浄して得た亜セレン酸ソー
ダ溶液を硫酸で中和し、この中和した液なセレン製造工
程から一部抜き取った。抜き取った液をさらに6fPB
e/lの濃度11C@贅し、その液量5GGccK −
200メツシユの工業用イオウ30)を分散させ、その
状態で液やK10°C以下の温度でH38ガスを5QC
C/11111の割合で吹き込み。
J! A sodium selenite solution obtained by oxidizing and roasting the electrolyzed slime at 700'C and washing the generated roasting gas with a caustic soda solution is neutralized with sulfuric acid, and from this neutralized liquid selenium manufacturing process. I took some out. 6 fPB of the extracted liquid
The concentration of e/l is 11C@dead, and the liquid volume is 5GGccK -
Disperse 200 mesh of industrial sulfur 30), and in that state, 5QC H38 gas at a temperature of 10°C or lower.
Blow at the rate of C/11111.

30分titwcaガスの吹込永を止め、生成した沈澱
をろ別して硫化セレン・イオウ複合粒子を得た。
The blowing of titwca gas was stopped for 30 minutes, and the generated precipitate was filtered to obtain selenium sulfide/sulfur composite particles.

この複合粒子はそのままの状態で軽石にまぶして担持さ
せ、本実施例の水銀除去剤とした。
The composite particles were sprinkled as they were on pumice stone to be supported, thereby producing the mercury removing agent of this example.

この本実施例の水銀除去剤と硫化セレン単味を同じく軽
石に担持させた水銀除去剤の水銀補数能力を比較するた
めに、次のような実験を行った。
In order to compare the mercury complement ability of the mercury removing agent of this example and the mercury removing agent in which pumice was similarly supported with selenium sulfide alone, the following experiment was conducted.

すなわち、実験は塔径20關の反応塔内に53の高さに
対象とする水銀除去剤を充填し、この光礪層の中を、ガ
ス組成N、81優、0,9優、 SO,10憾のガスを
3 t/H1の割合で温水中を通して調湿した後1通過
させた。反応塔人口ガスの水smBt#i平均2.5 
q;1/N−で、反応塔出口ガスの水銀濃度が0.1m
9/Nn1K到達するまで実績を続けた。ここで。
That is, in the experiment, the target mercury removing agent was packed at a height of 53 in a reaction column with a column diameter of about 20 mm, and gas compositions of N, 81%, 0.9%, SO, 10 pieces of gas were passed through hot water at a rate of 3 t/H1 to adjust the humidity, and then passed through once. Reaction tower population gas water smBt#i average 2.5
q; 1/N-, and the mercury concentration in the reaction tower outlet gas is 0.1 m
The achievements continued until reaching 9/Nn1K. here.

出口ガスの水銀濃度を0. l Iv/N−としたのは
硫酸中の水銀が0.5ppm以下になるように設定した
ためである。なお、ガス中の水銀S度の分析は試料ガス
の一定量を、KMnO4溶flK&収させ、7レームレ
ス原子吸光法により分析した。
The mercury concentration of the outlet gas is set to 0. The reason for setting l Iv/N- is that the mercury in sulfuric acid was set to be 0.5 ppm or less. Incidentally, the degree of mercury S in the gas was analyzed by collecting a certain amount of the sample gas in KMnO4 solution flK&, and analyzing it by 7 frameless atomic absorption spectrometry.

実験結果は第3図において、硫化セレン単味を軽石に担
持させた水銀除去剤の場合を111141により、また
本実施例の水銀除去剤の場合を曲線夏によりそれぞれ示
した。
The experimental results are shown in FIG. 3 by 111141 for the mercury removal agent in which pumice is supported on selenium sulfide alone, and by the curve 11 for the mercury removal agent of this example.

上記において1反応塔出口ガスの水銀d1度が0.1ダ
/N−に到達するまでの水銀反応量を塔内の硫化セレン
充填量で割った値αを実質的な水銀補数能力とすれば、
硫化セレン単味を担持させた水#1#去剤の場合(曲I
II)と本実施例の水fl!除去剤の場合(曲1厘)の
αは次の表に示すごとくなる。
In the above, if the value α obtained by dividing the amount of mercury reaction until the mercury d1 degree of the gas at the outlet of one reaction column reaches 0.1 Da/N- by the amount of selenium sulfide packed in the column is the actual mercury complement capacity, then ,
In the case of water #1 # remover carrying only selenium sulfide (track I)
II) and the water fl of this example! In the case of a remover (one song), α is as shown in the following table.

上表が示すように1本実施例の水銀除去剤よりなる元項
層中の硫化セレンの水1IjA補収能力は硫化セレン単
味担持の水銀除去剤の場合に比べて、着しく向上してい
ることが確認され、またイオウ粉末を核とした複合粒子
を形成したことにより1反る効果が得られたことも確認
された。
As shown in the above table, the water 1IjA scavenging ability of selenium sulfide in the mercury layer made of the mercury remover of this example was significantly improved compared to the case of the mercury remover carrying only selenium sulfide. It was also confirmed that the formation of composite particles with sulfur powder as the core produced a 1-curve effect.

さらに、別の比較例として、硫化鉛およびイオウと硫化
セレンの物理的混合物をそれぞれ光填した場合の実験結
果を、第3図にそれぞれ曲線厘および曲線■として併せ
示すが、いずれも水ill捕収補数の低いことが判明し
た。
Furthermore, as another comparative example, the experimental results when lead sulfide and a physical mixture of sulfur and selenium sulfide were photofilled are also shown in Figure 3 as curves 历 and ■, respectively. It turned out that the revenue was low.

比較例1 実施例1の中和した亜セレン酸ンーダ#g[上記イオウ
粉末を分散させることな(、Hasガスを吹き込んだ場
合には生成した硫化セレンの微粒子がろ液中に懸濁状態
で残っている。このろ液中のセレンIllは実aSでは
トレースであるが1本比較例では2t/lであった。ま
た、S濁して一部硫化セレン粒子は1ミクロン以下でき
わめて倣細なために、これら全部を回収するためKはろ
過に長時間を要し、実用的でない。
Comparative Example 1 Neutralized selenite powder #g from Example 1 [without dispersing the above sulfur powder (when Has gas was blown in, fine particles of selenium sulfide produced were suspended in the filtrate). The selenium Ill in this filtrate is a trace in the actual aS, but it was 2t/l in one comparative example.Also, the S turbidity and some selenium sulfide particles are extremely fine with a size of less than 1 micron. Therefore, it takes a long time to filter K to recover all of them, which is not practical.

比較例2 実施例1の中和した亜セレン酸ソーダ溶液に上記イオウ
粉末の代りに、硫化鉛や減化亜鉛な生成て液中での分散
性が悪く、ろ液中にlf/Lのセレンが未回収のまま残
留した。
Comparative Example 2 In place of the sulfur powder in the neutralized sodium selenite solution of Example 1, lead sulfide and reduced zinc were formed, which had poor dispersibility in the solution, and lf/L of selenium was added to the filtrate. remained uncollected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水銀除去剤の廃剤と硫化セレン単味を
担体(@石)K担持させた水銀除去剤の廃剤の湿式トロ
ンメルによる水洗時間と反応生成物(付着物)剥離車と
の関係を示すグラフ図、第2図は第1図の2種類の水銀
除去剤の廃剤の同じく湿式トロンメルによる水洗時間と
水銀分離率との関係を示すグラフ図、第31ivは4種
類の軽石に担持せしめてなる水銀除去剤を充填した反応
塔に水銀を含有するガスを通過させた場合の反応時間と
反応塔出口ガス中の水銀―度との関係を示すグラフ図で
1曲線1は硫化セレン単味の場合、1纏璽は本発明の水
銀除去剤の場合1曲巌璽は硫化鉛の場合、*ayaイオ
ウと硫化セレンの物理的混合物の場合をそれぞれ示す。 詩画願人 三菱金属株式会社 代理人 白 川 義直 第1図 21り  邊 時 間   (QILiM、〕%Z図
Figure 1 shows the water washing time and reaction product (deposition) peeling wheel using a wet trommel for the waste of the mercury remover of the present invention and the waste of the mercury remover in which selenium sulfide alone is supported on a carrier (@stone) K. Figure 2 is a graph showing the relationship between the water washing time and mercury separation rate using a wet trommel for the two types of mercury removers shown in Figure 1. Curve 1 is a graph showing the relationship between the reaction time and the degree of mercury in the reaction tower outlet gas when a mercury-containing gas is passed through a reaction tower filled with a mercury removal agent supported on pumice. In the case of single selenium sulfide, one box shows the mercury removal agent of the present invention, one box shows the case of lead sulfide, and *aya shows the case of a physical mixture of sulfur and selenium sulfide. Poetry painter Yoshinao Shirakawa Agent of Mitsubishi Metals Co., Ltd.

Claims (1)

【特許請求の範囲】 [1)  裏としてのイオウ粉末とiイオウ粉末表面を
aaした硫化セレンとからなる硫化セレン・イオウ複合
粒子を無機質担体表面に担持せしめてなる水−除去剤。 (2)セレンを含む溶液中にイオウi末を200f/を
以下の11度で分散させ、これに硫化水素ガスを通じて
該イオウ粉末を核として該イオウ粉末表面に硫化セレン
を析出せしめて硫化セレン・イオウ複合粒子を形成させ
、ろ別して得た該硫化セレン・イオウ複合粒子を無機質
担体表面に担持せしめることを特徴とする水銀除去剤の
製造方法。
[Scope of Claims] [1] A water-removing agent comprising selenium sulfide/sulfide composite particles comprising sulfur powder as a backing and selenium sulfide with aa sulfide on the surface of the i-sulfur powder, supported on the surface of an inorganic carrier. (2) Disperse 200 f/ of sulfur i powder in a solution containing selenium at the following 11 degrees, and pass hydrogen sulfide gas through it to precipitate selenium sulfide on the surface of the sulfur powder using the sulfur powder as a core. A method for producing a mercury removal agent, which comprises forming sulfur composite particles and supporting the selenium sulfide/sulfur composite particles obtained by filtration on the surface of an inorganic carrier.
JP56209709A 1981-12-28 1981-12-28 Mercury removing agent and its production Pending JPS58114728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209709A JPS58114728A (en) 1981-12-28 1981-12-28 Mercury removing agent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209709A JPS58114728A (en) 1981-12-28 1981-12-28 Mercury removing agent and its production

Publications (1)

Publication Number Publication Date
JPS58114728A true JPS58114728A (en) 1983-07-08

Family

ID=16577337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209709A Pending JPS58114728A (en) 1981-12-28 1981-12-28 Mercury removing agent and its production

Country Status (1)

Country Link
JP (1) JPS58114728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366326C (en) * 2000-12-08 2008-02-06 奥托库姆普联合股份公司 Method for removing mercury from gas
US7491335B2 (en) 2005-05-13 2009-02-17 The Board Of Regents Of The University Of Texas System Removal of arsenic from water with oxidized metal coated pumice
CN110681345A (en) * 2019-09-10 2020-01-14 沈阳鑫迪环境技术有限公司 Preparation method of selenium-loaded and sulfur-loaded demercuration material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366326C (en) * 2000-12-08 2008-02-06 奥托库姆普联合股份公司 Method for removing mercury from gas
US7491335B2 (en) 2005-05-13 2009-02-17 The Board Of Regents Of The University Of Texas System Removal of arsenic from water with oxidized metal coated pumice
CN110681345A (en) * 2019-09-10 2020-01-14 沈阳鑫迪环境技术有限公司 Preparation method of selenium-loaded and sulfur-loaded demercuration material

Similar Documents

Publication Publication Date Title
IE44311B1 (en) Method of extracting and recovering mercury from gases
US20070207077A1 (en) Novel catalyst useful for removal of hydrogen sulphide from gas and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst
CA1095877A (en) Process for producing silicon-dioxide-containing waste fines to crystalline zeolitic type-a molecular sieves
JPS6215252B2 (en)
EP1347818B1 (en) Method for removing mercury from gas
US7396522B2 (en) Catalyst useful for removal of hydrogen sulphide from gas stream and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst
AU2002217170A1 (en) Method for removing mercury from gas
GB1567964A (en) Process for working up waste fly dusts into zeolites
JPS58114728A (en) Mercury removing agent and its production
US6964755B2 (en) Method for producing high activity photocatalyst, photoactivity catalyst, and method for treating hydrogen sulfide for recovering hydrogen gas under low energy by using high activity photocatalyst
JPH0889757A (en) Treatment of waste gas from refuse incineration furnace
Shareef et al. Recovery of Sulfur from the Residues of the Chemical Method for the Purification of Sulfur from the Farsch Mine in the Al-Mishraq Mine
CA2548071C (en) A catalyst useful for h2s removal from gas stream preparation thereof and use thereof
US1921564A (en) Process for recovery of iodine and/or bromine from solutions containing same
CN1331733C (en) Method of recovering iodine from palygorskite ore
US1941623A (en) Recovery of sulphur
JPS6354641B2 (en)
CN115180752B (en) Desalination method for SRG washing wastewater by catalyzing sulfur-containing activated carbon
EP0011484B1 (en) Removal of metals from solution
JPS6345102A (en) Production of chlorine
US5009870A (en) Method for removing sulphur and nitrogen compounds from gas
CA1099489A (en) Method of removing mercury-containing contaminations in gases
SU1280045A1 (en) Method of processing used solution for pickling copper
CN110713284A (en) Sulfate radical removal process for circulating zero-emission brine system
JP2009050784A (en) Treatment method of arsenic-containing solution