JPS58114511A - Feedback amplifier circuit - Google Patents

Feedback amplifier circuit

Info

Publication number
JPS58114511A
JPS58114511A JP20953481A JP20953481A JPS58114511A JP S58114511 A JPS58114511 A JP S58114511A JP 20953481 A JP20953481 A JP 20953481A JP 20953481 A JP20953481 A JP 20953481A JP S58114511 A JPS58114511 A JP S58114511A
Authority
JP
Japan
Prior art keywords
resistor
temperature
load
inductance
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20953481A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yasutake
安武 信幸
Masataka Tokita
時田 正隆
Hisayasu Nishino
西野 久泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20953481A priority Critical patent/JPS58114511A/en
Publication of JPS58114511A publication Critical patent/JPS58114511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To decrease the temperature dependance of an amplifier circuit, by connecting a temperature compensating resistor having a temperature characteristic inverse to that of a monitor resistor, to the monitor resistor. CONSTITUTION:An output voltage V0 of an operayional amplifier 1 is fed back via a resistor (r). A load comprising a load inductance LL and a load resistor RL acts like an electromagnetic deflection coil. A temperature compensation circuit 3 comprising a temperature compensation inductance LX and a temperature compensation resistor RX is connected to the monitor resistor RM. The resistor RX compensates the temperature characteristics of the resistor RM, and the inductance LX cancells the inductance LL for the improvement of the frequency versus gain characteristics.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は電子ビーム装置の電磁偏向用駆動回路等に用い
られる帰還増幅回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a feedback amplifier circuit used in an electromagnetic deflection drive circuit or the like of an electron beam device.

(2)技術の背景 電磁偏向用駆動回路においては、負荷としてのインダク
タンスに入力電圧または電流に応じた電流を供給し、こ
れによシ、インダクタンスが磁場を発生して荷電粒子を
所望角度だけ偏向させる。
(2) Background of the technology In an electromagnetic deflection drive circuit, a current corresponding to the input voltage or current is supplied to an inductance as a load, and the inductance generates a magnetic field to deflect charged particles by a desired angle. let

このような電磁偏向用駆動回路として演算増幅器を用い
た帰還増幅回路が用いられている。
A feedback amplifier circuit using an operational amplifier is used as such an electromagnetic deflection drive circuit.

(3)従来技術と問題点 従来の帰還増幅回路は、負帰還ループを有する演算増幅
器より構成されている。そして、電磁偏向用インダクタ
ンスを含む負荷は、負帰還ループ内にあって演算増幅器
の出力に接続され、さらに、負荷と接地端子間にモニタ
抵抗が接続されている。
(3) Prior Art and Problems A conventional feedback amplifier circuit is composed of an operational amplifier having a negative feedback loop. A load including an electromagnetic deflection inductance is in a negative feedback loop and connected to the output of the operational amplifier, and a monitor resistor is connected between the load and a ground terminal.

従って、演算増幅器の入力信号レベルに応じて一定の電
圧がモニタ抵抗に発生し、この結果、負荷のインダクタ
ンスに一定の偏向電流が流れて電磁偏向が行われること
になる。
Therefore, a constant voltage is generated in the monitor resistor depending on the input signal level of the operational amplifier, and as a result, a constant deflection current flows through the inductance of the load to perform electromagnetic deflection.

しかしながら、上述の従来形においては、モニタ抵抗は
抵抗温度変化率を有しておシ、電磁偏向のためにモニタ
抵抗には大電流が流れる。この結果、モニタ抵抗はモニ
タ抵抗自身の発熱および出力段の他の要素の発熱により
温度上昇を招き、従って、偏向電流は温度に依存して適
正な電磁偏向動作が期待できないという問題点があった
However, in the conventional type described above, the monitor resistor has a resistance temperature change rate, and a large current flows through the monitor resistor due to electromagnetic deflection. As a result, the temperature of the monitor resistor increases due to the heat generated by the monitor resistor itself and the heat generated by other elements in the output stage.Therefore, the deflection current is dependent on the temperature and there is a problem that proper electromagnetic deflection operation cannot be expected. .

(4)発明の目的 本発明の目的は、モニタ抵抗に、該抵抗の抵抗温度特性
と反対の抵抗温度特性を有する抵抗温度特性を有する温
度補償用抵抗を接続するという構想にもとづき、帰還増
幅回路の温度依存性を低減し、従って、適正な電磁偏向
動作を行えるようにし、前述の従来形における問題点全
解決することにある。
(4) Object of the Invention The object of the present invention is to create a feedback amplifier circuit based on the concept of connecting a monitor resistor with a temperature compensation resistor having a resistance temperature characteristic opposite to that of the resistor. The object of the present invention is to reduce the temperature dependence of the electromagnetic deflector, thereby making it possible to perform proper electromagnetic deflection, thereby solving all of the problems in the conventional type described above.

(5)発明の構成 本発明によれば、負帰還ループを有する演算増幅器と、
前記負帰還ループ内にあって該演算増幅器の出力に接続
された負荷と、該負荷と接地端子との間に接続された抵
抗と、を具備する帰還増幅回路において、前記抵抗に、
該抵抗の抵抗温度特性と反対の抵抗温度特性を有する温
度補償抵抗を直列接続したことを特徴とする帰還増幅回
路が提供される。
(5) Configuration of the Invention According to the present invention, an operational amplifier having a negative feedback loop;
In the feedback amplifier circuit, the feedback amplifier circuit includes a load connected to the output of the operational amplifier in the negative feedback loop, and a resistor connected between the load and a ground terminal.
A feedback amplifier circuit is provided, characterized in that a temperature compensation resistor having a resistance temperature characteristic opposite to that of the resistor is connected in series.

(6)発明の実施例 以下、図面によυ本発明の詳細な説明する。(6) Examples of the invention Hereinafter, the present invention will be explained in detail with reference to the drawings.

添付図は本発明の一実施例としての帰還増幅回路の回路
図である。図において、1は演算増幅器であって、その
出力電圧V。は抵抗rを介して(−)入力にフィードバ
ックされている。2は負荷インダクタンスLLおよび負
荷抵抗RLより構成される負荷であって、電磁−向コイ
ルとして作用する。3は本発明により付加された温度補
償用回路であって、温度補償インダクタンスLXおよび
温度補償抵抗RXよりなる。RMはモニタ抵抗である。
The attached figure is a circuit diagram of a feedback amplifier circuit as an embodiment of the present invention. In the figure, 1 is an operational amplifier and its output voltage V. is fed back to the (-) input via the resistor r. 2 is a load composed of a load inductance LL and a load resistance RL, which acts as an electromagnetic coil. Reference numeral 3 denotes a temperature compensation circuit added according to the present invention, which includes a temperature compensation inductance LX and a temperature compensation resistor RX. RM is a monitor resistance.

入力電流l1n(抵抗を介して電圧を与えてもよい)は
、演算増幅器1が高入力インピーダンスを有するので、
抵抗rを介して出力側に流れる。この結果、出力電圧V
。は入力電流11nに応じた一定レベルとなる。従って
、電流が温度補償回路3およびモニタ抵抗RMに流れる
と共に、電磁偏向コイル駆動電源+Vからも電流が負荷
2、温度補償回路3、モニタ抵抗RMを介して流れる。
Since the operational amplifier 1 has a high input impedance, the input current l1n (which may be applied as a voltage through a resistor) is
It flows to the output side via the resistor r. As a result, the output voltage V
. is at a constant level depending on the input current 11n. Therefore, a current flows through the temperature compensation circuit 3 and the monitor resistor RM, and a current also flows from the electromagnetic deflection coil drive power supply +V via the load 2, the temperature compensation circuit 3, and the monitor resistor RM.

このようにして、負荷インダクタンスLLは磁場を発生
して電磁偏向が行われることになる。
In this way, the load inductance LL generates a magnetic field and electromagnetic deflection is performed.

上述の状態においては、モニタ抵抗R,は周囲の温度上
昇あるいは自身の発熱により温度上昇を招き、その抵抗
値も変化する。たとえば、モニタ抵抗RMが一100p
prrV″Cの負の抵抗温度変化率を有する窒化タンタ
ルにより構成されていれば、10℃の温度上昇に伴い、
0.1%の抵抗変化を招く。この結果、モニタ抵抗RM
を流れる電流は変化し、負荷インダクタンスLLに流れ
る電流も変化して適正な電磁偏向が行われなくなる恐れ
があるが、本発明によれば、温度補償回路3の温度補償
抵抗Rxを設けてこれを防止している。すなわち、この
場合、温度補償抵抗RXは、正の抵抗温度変化率を有す
るものにより構成されている。たとえは、+4.3 X
 10−’/’Cの正の抵抗温度変化率を有する銅線に
より構成すれば、10℃の温度上昇に伴ない4.3チの
抵抗変化を招く。従って、なる関係を満足する銅線によ
シ温度補償抵抗RXを構成すれば、温度変化に伴う電流
変化は減少する。
In the above-mentioned state, the temperature of the monitor resistor R increases due to an increase in ambient temperature or its own heat generation, and its resistance value also changes. For example, if the monitor resistance RM is 1100p
If it is made of tantalum nitride with a negative resistance temperature change rate of prrV''C, with a temperature rise of 10°C,
This results in a resistance change of 0.1%. As a result, the monitor resistance RM
The current flowing through the load inductance LL changes, and the current flowing through the load inductance LL also changes, which may prevent proper electromagnetic deflection from being performed. However, according to the present invention, the temperature compensation resistor Rx of the temperature compensation circuit 3 is provided to prevent this. It is prevented. That is, in this case, the temperature compensation resistor RX is configured with a positive resistance temperature change rate. The analogy is +4.3
If it is constructed from a copper wire having a positive temperature change rate of resistance of 10-'/'C, a temperature rise of 10C will result in a resistance change of 4.3C. Therefore, if the temperature compensation resistor RX is constructed of a copper wire that satisfies the following relationship, the current change due to temperature change will be reduced.

また、上述の式を満足する銅線は長いためにデビン等に
巻回して構成するが、この場合、図に示す温度補償イン
ダクタンスLXを発生する。しかしながら、このインダ
クタンス分は負荷インダクタンスLLの成分を打消すよ
うに作用するので、周波数利得特性を改善することにな
シ、応答速度が上昇する。
Further, since the copper wire satisfying the above formula is long, it is constructed by winding it around a Devin or the like, but in this case, a temperature compensation inductance LX shown in the figure is generated. However, since this inductance acts to cancel the load inductance LL component, the response speed increases without improving the frequency gain characteristics.

(7)発明の詳細 な説明したように本発明によれば、帰還増幅回路の温度
依存性を低減させることができ、電磁偏向に用いた場合
には正確な偏向動作が保証されるという効果を奏する。
(7) As described in detail, according to the present invention, the temperature dependence of the feedback amplifier circuit can be reduced, and when used for electromagnetic deflection, accurate deflection operation is guaranteed. play.

【図面の簡単な説明】 添付図は本発明の一実施例としての帰還増幅回路の回路
図である。 1・・・演算増幅器、2・・・負荷、3・・・温度補償
回路、Rh(・・・モニタ抵抗、LL・・・負荷インダ
クタンス、RL・・・負荷抵抗、LX・・・温度補償イ
ンダクタン入Rx・・・温度補償抵抗。 特許出願人 富士通株式会社 特許出願代理人 弁理士  賞 木   朗 弁理士 西舘和之 弁理士 内田幸男 弁理士  山 口 昭 之 (7)
BRIEF DESCRIPTION OF THE DRAWINGS The attached drawing is a circuit diagram of a feedback amplifier circuit as an embodiment of the present invention. 1... Operational amplifier, 2... Load, 3... Temperature compensation circuit, Rh (... Monitor resistance, LL... Load inductance, RL... Load resistance, LX... Temperature compensation inductor Input Rx...Temperature compensation resistor. Patent applicant: Fujitsu Limited Patent application agent Patent attorney Award: Patent attorney Akira Ki, Patent attorney Kazuyuki Nishidate, Patent attorney Yukio Uchida, Akira Yamaguchi (7)

Claims (1)

【特許請求の範囲】 ■、 負帰還ループを有する演算増幅器と、前記負帰還
ループ内にあって該演算増幅器の出力に接続された負荷
と、該負荷と接地端子との間に接続゛された抵抗と、を
具備する帰還増幅回路において、前記抵抗に、該抵抗の
抵抗温度特性と反対の抵抗温度特性を有する温度補償抵
抗を直列接続したことを特徴とする帰還増幅回路。 2、前記温度補償抵抗が前記負荷のインダクタンス成分
に対応するインダクタンス成分を有する特許請求の範囲
第1項に記載の帰還増幅回路。
[Claims] (1) An operational amplifier having a negative feedback loop, a load located within the negative feedback loop and connected to the output of the operational amplifier, and an operational amplifier connected between the load and a ground terminal. 1. A feedback amplifier circuit comprising a resistor, wherein a temperature compensation resistor having a resistance-temperature characteristic opposite to that of the resistor is connected in series with the resistor. 2. The feedback amplifier circuit according to claim 1, wherein the temperature compensation resistor has an inductance component corresponding to an inductance component of the load.
JP20953481A 1981-12-26 1981-12-26 Feedback amplifier circuit Pending JPS58114511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20953481A JPS58114511A (en) 1981-12-26 1981-12-26 Feedback amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20953481A JPS58114511A (en) 1981-12-26 1981-12-26 Feedback amplifier circuit

Publications (1)

Publication Number Publication Date
JPS58114511A true JPS58114511A (en) 1983-07-07

Family

ID=16574384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20953481A Pending JPS58114511A (en) 1981-12-26 1981-12-26 Feedback amplifier circuit

Country Status (1)

Country Link
JP (1) JPS58114511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109781B2 (en) * 1998-11-12 2006-09-19 Broadcom Corporation Temperature compensation for internal inductor resistance
JP2013012512A (en) * 2011-06-28 2013-01-17 Nuflare Technology Inc Charged particle beam drawing device and stabilization method for dac amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109781B2 (en) * 1998-11-12 2006-09-19 Broadcom Corporation Temperature compensation for internal inductor resistance
JP2013012512A (en) * 2011-06-28 2013-01-17 Nuflare Technology Inc Charged particle beam drawing device and stabilization method for dac amplifier

Similar Documents

Publication Publication Date Title
US7545212B2 (en) Class ad audio amplifier
JPS5827561B2 (en) Electromagnetic transducer bias circuit
US3426241A (en) Magnetic deflection system for cathode ray tubes
JPS58114511A (en) Feedback amplifier circuit
JPH0522046A (en) Amplifier circuit for audio
US7388955B2 (en) Combine audio and ringing mode
US4107620A (en) Regulated power supply with auto-transformer output and direct current feedback
JP4083573B2 (en) High frequency amplifier
JPH0353645B2 (en)
JPS6247384B2 (en)
JPH0580843B2 (en)
JPH0137885B2 (en)
US3254160A (en) Regulated gain telephone handset receiver amplifier
CN113721698A (en) High-voltage stabilizing circuit of relative power supply
JPH0722247B2 (en) Feedback amplifier
CS252818B2 (en) Broad-band driver amplifier for cathode-ray tubes
US2803712A (en) Transistor amplifier
JP3633891B2 (en) Power supply dummy circuit
JPH01303805A (en) Temperature compensating circuit for driving device
JPH0454458A (en) Current detector
JPH0227622Y2 (en)
JPS5979669A (en) Loop current supply device for signal converter
US3668510A (en) Thermistor control circuit
JPH0376405A (en) Transistor power amplifier circuit
JP2510481B2 (en) Constant voltage circuit