JPS581142B2 - Styrenic resin composition - Google Patents

Styrenic resin composition

Info

Publication number
JPS581142B2
JPS581142B2 JP14320379A JP14320379A JPS581142B2 JP S581142 B2 JPS581142 B2 JP S581142B2 JP 14320379 A JP14320379 A JP 14320379A JP 14320379 A JP14320379 A JP 14320379A JP S581142 B2 JPS581142 B2 JP S581142B2
Authority
JP
Japan
Prior art keywords
temperature
resin
polymerization
styrene
ditertiary butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14320379A
Other languages
Japanese (ja)
Other versions
JPS5667352A (en
Inventor
保利 柿沢
克美 高橋
順治 南部
京太郎 島津
篤 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP14320379A priority Critical patent/JPS581142B2/en
Publication of JPS5667352A publication Critical patent/JPS5667352A/en
Publication of JPS581142B2 publication Critical patent/JPS581142B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は機械的強度特に耐疲労特性、耐クリープ特性に
著しく優れるスチレン系樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a styrenic resin composition that has excellent mechanical strength, particularly fatigue resistance and creep resistance.

従来、一般用ポリスチレン樹脂は、高度な成形加工性能
、透明性及び低価格の故に汎用樹脂として広く知られ且
つ用いられているが、他方において射出成形された成形
品の衝撃強度や耐疲労特性が他のプラスチックスに比べ
て著しく劣ると云う欠点があるため例えば高級家庭用品
、耐久消費材、工業用資材及び産業用資料と云った耐久
強度を必要する分野ではその使用が大幅に制限されてい
るのが現状である。
Conventionally, general-purpose polystyrene resin has been widely known and used as a general-purpose resin due to its advanced molding performance, transparency, and low price.However, on the other hand, the impact strength and fatigue resistance of injection molded products are poor. Because it has the disadvantage of being significantly inferior to other plastics, its use is severely restricted in fields that require durable strength, such as high-end household goods, durable consumer goods, industrial materials, and industrial materials. is the current situation.

このような一般用ポリスチレン樹脂の欠点を改良した樹
脂として例えばスチレン−ブタジエン共重合体(HIP
S)、スチレン−アクリロニトリル共重合体(AS樹脂
)、スチレン−ブタジエン−アクリロニトリル共重合体
(ABS樹脂)等のスチレン系共重合体が代表的例とし
て知られている。
Examples of resins that improve the drawbacks of general polystyrene resins include styrene-butadiene copolymer (HIP).
Styrenic copolymers such as S), styrene-acrylonitrile copolymer (AS resin), and styrene-butadiene-acrylonitrile copolymer (ABS resin) are known as representative examples.

しかしながら、このような共重合体では、一般用ボリス
チレン樹脂が元来有する硬度、透明性、成形加工性更に
は経済性等の特徴点を一部犠性にして強度を改良するた
め該ポリスチレン樹脂ほどの汎用性を持ち得ない。
However, in order to improve the strength of such copolymers, some of the inherent characteristics of general-use polystyrene resins such as hardness, transparency, moldability, and economic efficiency are sacrificed. cannot have the versatility of

また、意外にもこの種のスチレン系共重合体に於いては
、繰り返し負荷に対する耐久性能(耐疲労特性)や静的
負荷に対する耐久性能(耐クリープ特性)等の動力学的
性質が一般用ポリスチレン樹脂と比べてさほど改良され
ておらず、やはり前記した分野での使用に多くの問題を
抱えている。
Surprisingly, this type of styrene-based copolymer has dynamic properties such as durability against repeated loads (fatigue resistance) and durability against static loads (creep resistance) that are superior to those of general-use polystyrene. They are not much improved compared to resins and still have many problems in their use in the fields mentioned above.

そこで、これらの問題を解決するためスチレン系樹脂の
分子量を高分子量化することが試みられているが製造上
、安全衛生上、品質上等で多くの欠点が未解決のままで
あった。
In order to solve these problems, attempts have been made to increase the molecular weight of styrenic resins, but many drawbacks in terms of manufacturing, safety and hygiene, quality, etc. remain unresolved.

例えば、懸濁重合法によるスチレン系樹脂の製造は一般
的に特公昭29−5644号公報記載の如き過酸化ベン
ヅイルと過安息香酸第三級ブチル、或いは過酸化ベンヅ
イルと過酢酸第三級ブチルの組み合わせからなる重合開
始剤のもとで製造されるが、かかる重合開始剤で高分子
量化を図ろうとすると開始剤濃度を下げる必要があるの
で反応に長時間を要して生産効率の低下をきたすばかり
か得られた重合体には未反応の単量体がかなり残存して
安全衛生上の問題があり、又成形物の耐熱性、成形時の
発泡或いはシルバーストリークの発生等、品質上も欠点
があることから実用的でなかった。
For example, styrenic resins are generally produced by suspension polymerization using benzyl peroxide and tertiary butyl perbenzoate, or benzyl peroxide and tertiary butyl peracetate as described in Japanese Patent Publication No. 29-5644. It is produced using a combination of polymerization initiators, but if you try to increase the molecular weight with such a polymerization initiator, it is necessary to lower the initiator concentration, which takes a long time for the reaction and reduces production efficiency. Not only that, the obtained polymer has a considerable amount of unreacted monomer remaining, which poses health and safety problems, and it also has quality defects such as the heat resistance of molded products, foaming during molding, and the occurrence of silver streaks. It was not practical because of the

また、高温活性型二官能性有機過酸化物であるベルオキ
シイソフタル酸ジ第三級ブチル、ベルオキシコハク酸ジ
第三級ブチル、ベルオキシフタル酸ジ第三級ブチル等を
用いた場合には100℃以上の高温で反応させる必要が
あるが、このような高温では懸濁重合系中での分散が不
安定となるので重合中に於ける分散粒子の凝集による塊
状化を防止するために分散安定剤を多量添加する等の処
置を講ずる必要がある。
In addition, when using ditertiary butyl peroxyisophthalate, ditertiary butyl peroxysuccinate, ditertiary butyl peroxyphthalate, etc., which are high temperature active difunctional organic peroxides, It is necessary to carry out the reaction at a high temperature of 100°C or higher, but since dispersion in the suspension polymerization system becomes unstable at such high temperatures, dispersion is carried out to prevent agglomeration due to agglomeration of dispersed particles during polymerization. It is necessary to take measures such as adding a large amount of stabilizer.

しかもかかる方法により得られた重合体ではその粒度分
布が広範にわたるので脱水、乾燥、排水等の製造上の問
題、更には重合体が透明性に欠ける或いは未反応の単量
体がかなり製品中に残存する等の問題があり、やはり満
足すべき性能を持つものは得られなかった。
Moreover, the polymer obtained by this method has a wide particle size distribution, which causes manufacturing problems such as dehydration, drying, and drainage, and furthermore, the polymer may lack transparency or a large amount of unreacted monomer may be contained in the product. There were problems such as the presence of residual particles, and it was not possible to obtain a product with satisfactory performance.

本発明者等は前記した如き欠点を解決したスチレン系樹
透を得るべく種々検討していたところ、重合時の開始剤
としてある種の低温活性型二官能性有機過酸化物を高温
活性型二官能性有機過酸化物に組み合わせて重合して得
た重合体を更に窒素気流中にて熔融、造粒したスチレン
系樹脂とある種の酸とから得られる樹脂組成物では機械
的強度特に耐疲労特性、耐クリープ特性に優れた効果を
発揮することを見い出し、本発明を完成するに到った。
The present inventors conducted various studies to obtain a styrenic resin that solved the above-mentioned drawbacks, and found that a certain type of low-temperature-activated difunctional organic peroxide was used as an initiator during polymerization. A resin composition obtained from a styrenic resin obtained by polymerizing a polymer in combination with a functional organic peroxide, which is further melted and granulated in a nitrogen stream, and a certain type of acid has excellent mechanical strength, especially fatigue resistance. The present inventors have discovered that this material exhibits excellent effects on properties and creep resistance, and have completed the present invention.

即ち、本発明は、スチレン系単量体単独或いは必要によ
り該単量体と共重合可能な他のビニル単量体及び/又は
ゴム状物質を加えてなる組成物を、ラジカル重合開始剤
として(1)ベルオキシヘキサヒドロフタル酸ジ第三級
ブチル、ベルオキシヘキサヒドロイソフタル酸ジ第三級
ブチル、ベルオキシへキサヒドロテレフタル酸ジ第三級
ブチルのうちの少くとも1種と(2)高温活性型有機過
酸化物とを使用して重合した後、窒素気流中で熔融、造
粒して得たスチレン系樹脂(A)とベヘン酸(B)とか
らなるスチレン系樹脂組成物に関するものである。
That is, the present invention uses a composition consisting of a styrenic monomer alone or, if necessary, another vinyl monomer copolymerizable with the monomer and/or a rubbery substance, as a radical polymerization initiator ( 1) at least one of ditertiary butyl beroxyhexahydrophthalate, ditertiary butyl bereoxyhexahydroisophthalate, and ditertiary butyl bereoxyhexahydroterephthalate; and (2) high temperature activity. The present invention relates to a styrenic resin composition consisting of a styrene resin (A) and behenic acid (B) obtained by polymerizing using a type organic peroxide, followed by melting and granulation in a nitrogen stream. .

重合後に熔融、造粒して得られる本発明のスチレン系樹
脂は重量平均分子量が40万〜80万と超高分子量であ
り、かかる分子量は、成形加工中における加熱によって
もほとんど低下することなく安定に保持されるものであ
る。
The styrenic resin of the present invention obtained by melting and granulating after polymerization has an ultra-high weight average molecular weight of 400,000 to 800,000, and this molecular weight is stable with almost no decrease even when heated during molding. It is held in

本発明のスチレン系樹脂組成物が従来のスチレン系樹脂
と変わらぬ製造時間、製造工程、製造条件で得られるこ
とは勿論のことであるが、驚くべきことには例えば本発
明のポリスチレン樹脂組成物はスチレン系樹脂中では高
強度とされる従来のAS樹脂と比べても遥かに高い耐疲
労特性及び耐クリープ特性を発揮し、一方、成形加工性
、透明性に於いては従来の一般用ポリスチレン樹脂と同
じく良好で剛性、強度に於いては更に該ポリスチレン樹
脂より優れる。
It goes without saying that the styrene resin composition of the present invention can be obtained using the same manufacturing time, manufacturing process, and manufacturing conditions as conventional styrene resins, but surprisingly, for example, the polystyrene resin composition of the present invention Among styrene resins, it exhibits far higher fatigue and creep resistance than conventional AS resins, which are said to have high strength.On the other hand, it has superior moldability and transparency compared to conventional general-use polystyrene. It is as good as resin, and even better than polystyrene resin in terms of rigidity and strength.

又、熱安定性も良好で且つ未反応単量体の含有量の少な
い高品質な製品である。
Furthermore, it is a high-quality product with good thermal stability and low content of unreacted monomers.

本発明に於いで、ベルオキシヘキサヒドロフタル酸ジ第
三級ブチル、ベルオキシヘキサヒドロイソフタル酸ジ第
三級ブチル及びベルオキシヘキサヒドロテレフタル酸ジ
第三級ブチルの少くとも1種(以下、「低温活性型有機
過酸化物」という)と組み合わせて使用するラジカル重
合開始剤は、高温活性型有機過酸化物であり、好ましく
は半減期10時間の分解温度が95℃以上の高温活性型
有機過酸化物である。
In the present invention, at least one of ditertiary butyl beroxyhexahydrophthalate, ditertiary butyl bereoxyhexahydroisophthalate, and ditertiary butyl bereoxyhexahydroterephthalate (hereinafter referred to as " The radical polymerization initiator used in combination with the "low-temperature-activated organic peroxide" is a high-temperature-activated organic peroxide, preferably a high-temperature-activated organic peroxide whose decomposition temperature with a half-life of 10 hours is 95°C or higher. It is an oxide.

このような高温活性型有機過酸化物としては、1,1−
ジ−第三級ベルオキシ−3,3,5−トリメチルシクロ
ヘキサン、2,2−ビス(4,4’−ジ−第三級プチル
ペルオキシシクロヘキシル)プロパン、ペルオキシイソ
フタル酸ジ第三級ブチル、ペルオキシフタル酸ジ第三級
ブチル、1,10−ジ−(第三級プチルペルオキシ)デ
カン、1,3−又は1,4−ジ−(第三級プチルペルオ
キシイソプロピル)ベンゼン、過安息香酸第三級ブチル
、過酢酸第三級ブチル、ペルオキシコハク酸ジ第三級ブ
チル、過酸化ジクミル、過酸化ジ第三級ブチル、ペルオ
キシアジピン酸第三級ブチル、ベルオキシアゼライン酸
ジ第三級ブチル、ビニル−トリス(第三級プチルペルオ
キシ)シラン等が含まれる。
Such high temperature active organic peroxides include 1,1-
Di-tertiary peroxy-3,3,5-trimethylcyclohexane, 2,2-bis(4,4'-di-tertiary butylperoxycyclohexyl)propane, ditertiary butyl peroxyisophthalate, peroxyphthalic acid Di-tertiary butyl, 1,10-di-(tert-butylperoxy)decane, 1,3- or 1,4-di-(tert-butylperoxyisopropyl)benzene, tertiary-butyl perbenzoate, Tertiary butyl peracetate, ditertiary butyl peroxysuccinate, dicumyl peroxide, ditertiary butyl peroxide, tertiary butyl peroxyadipate, ditertiary butyl peroxyazelaate, vinyl tris( These include tertiary butylperoxy)silane and the like.

本発明のスチレン系樹脂を構成する成分としては、スチ
レン;ベンゼン核の水素原子がハロゲン原子、アルキル
基(C1〜C4)によって置換されたスチレン例えば、
O−クロルスチレン、P−クロルスチレン、P−メチル
スチレン、2,4−ジメチルスチレン、第三級プチルス
チレン;及びα−アルキル(C1〜C4)置換スチレン
例えばα−メチルスチレン等のスチレン系単量体の1種
又は2種以上のほか、必要に応じて該単量体と共重合可
能な他のビニル単量体やゴム状物質を加えてもよい。
Components constituting the styrenic resin of the present invention include styrene; styrene in which the hydrogen atom of the benzene nucleus is substituted with a halogen atom or an alkyl group (C1 to C4), for example,
Styrenic monomers such as O-chlorostyrene, P-chlorostyrene, P-methylstyrene, 2,4-dimethylstyrene, tertiary butylstyrene; and α-alkyl (C1 to C4) substituted styrene, such as α-methylstyrene In addition to one or more types of monomers, other vinyl monomers or rubber-like substances copolymerizable with the monomers may be added, if necessary.

スチレン系単量体と共重合可能な他のビニル単量体とし
てはアクリロニトリル、メタアクリロニトリル、α−ク
ロロアクリロニトリル、シアン化ビニリデンなどのアク
リロニトリル系単量体;(メタ)アクリル酸、(メタ)
アクリル酸メチル、(メタ)アクリル酸エチル、(メタ
)アクリル酸ブチル、メタアクリル酸グリシジルなどの
(メタ)アクリル酸及びそのエステル類;酢酸ビニル、
塩化ビニル、塩化ビニリデン、ビニルピロリドン、アク
リルアミド、ジメチルアクリルアミド、(無水)マレイ
ン酸、(無水)イタコン酸、マレイミド、ビニルケトン
類、ビニルエーテル類などの各種のビニル単量体が挙げ
られるし、又、ゴム状物質としてはブタジエン、イソプ
レン、クロロプレンなどの共役1,3−ジエン重合体、
ブタジエン−スチレン共重合体、ブタジエン−アクリロ
ニトリル共重合体、ブタジエン−スチレン−アクリロニ
トリル共重合体、イソブチレン−アクリル酸エステル共
重合体、ブチルゴム、エチレン−プロピレンーターポリ
マー(EPDM)などが使用できる。
Other vinyl monomers that can be copolymerized with styrene monomers include acrylonitrile monomers such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and vinylidene cyanide; (meth)acrylic acid, (meth)
(Meth)acrylic acid and its esters such as methyl acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and glycidyl methacrylate; vinyl acetate,
Examples include various vinyl monomers such as vinyl chloride, vinylidene chloride, vinylpyrrolidone, acrylamide, dimethylacrylamide, (anhydrous) maleic acid, (anhydrous) itaconic acid, maleimide, vinyl ketones, and vinyl ethers; The substances include conjugated 1,3-diene polymers such as butadiene, isoprene, and chloroprene;
Butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-styrene-acrylonitrile copolymer, isobutylene-acrylic acid ester copolymer, butyl rubber, ethylene-propylene terpolymer (EPDM), and the like can be used.

スチレン系単量体に他のビニル単量体やゴム状物質を共
重合せしめる場合、スチレン系単量体にて構成される部
分が少くとも共重合体中の主成分を占めることが必要で
あり、又、ゴム状物質を使用する場合にはその使用割合
をスチレン系単量体と他のビニル単量体との総合計量1
00重量部に対し0.5〜20重量部の範囲とすること
が望ましい。
When copolymerizing a styrene monomer with other vinyl monomers or rubber-like substances, it is necessary that the styrene monomer constitute at least the main component of the copolymer. In addition, if a rubbery substance is used, the ratio of its use should be the total amount of styrene monomer and other vinyl monomers.
It is desirable to set it as the range of 0.5-20 weight parts to 00 weight parts.

前記したスチレン系単量体の重合に用いるラジカル重合
開始剤の添加時期としては、重合開始前に低温活性型有
機過酸化物と高温活性型有機過酸化物とを添加する、或
いは低温活性型有機過酸化物を使用して重合を開始した
後、単量体の重合率が80%に達するまでの任意な時期
に高温活姓型有機過酸化物を添加することが好ましい。
The timing of adding the radical polymerization initiator used in the polymerization of the styrenic monomers described above is such that a low temperature activated organic peroxide and a high temperature activated organic peroxide are added before the start of polymerization, or a low temperature activated organic peroxide is added before the start of polymerization. After starting the polymerization using the peroxide, it is preferable to add the high temperature active type organic peroxide at any time until the polymerization rate of the monomer reaches 80%.

重合開始剤の添加量としては、重合初期仕込み単量体総
量100重量部に対し、低温活性型有機過酸化物は0.
01〜1.5重量部好ましくは0.05〜0.5重量部
であり、一方、高温活殴型有機過酸化物は前記した低温
活性型有機過酸化物使用量の5〜100重量%望ましく
は10〜50重量%の範囲にて使用される。
The amount of the polymerization initiator added is 0.00 parts by weight of the low temperature activated organic peroxide per 100 parts by weight of the total amount of monomers charged at the initial stage of polymerization.
01 to 1.5 parts by weight, preferably 0.05 to 0.5 parts by weight, while the high-temperature active type organic peroxide is preferably used in an amount of 5 to 100% by weight of the amount of the low-temperature active type organic peroxide used. is used in a range of 10 to 50% by weight.

本発明のスチレン系樹脂は、前記した(1)低温活性型
有機過酸化物と(2)高温活性型有機過酸化物とを重合
開始剤として使用可能な重合形態であればいずれの重合
法例えば懸濁重合法、塊状重合法、塊状一懸濁重合法、
乳化重合法、溶液重合法などにで製造することが出来る
The styrenic resin of the present invention can be produced by any polymerization method in which the above-mentioned (1) low-temperature activated organic peroxide and (2) high-temperature activated organic peroxide can be used as a polymerization initiator, for example. Suspension polymerization method, bulk polymerization method, bulk suspension polymerization method,
It can be manufactured by emulsion polymerization method, solution polymerization method, etc.

一般用ポリスチレン樹脂の製造法として一般的である懸
濁重合法に於ける場合について述べると、懸濁重合時の
重合温度は使用する重合開始剤の分解温度に応じた温度
に設定する必要はあるが通常、単量体の重合率が60〜
90重量%までの第1段階では50〜130℃好適には
80〜100℃であり、次いで重合完了までの第2段階
では80〜150℃好適には100〜140℃に昇温し
て行うとよい。
Regarding the suspension polymerization method, which is a common method for producing general-purpose polystyrene resin, the polymerization temperature during suspension polymerization needs to be set to a temperature that corresponds to the decomposition temperature of the polymerization initiator used. Usually, the polymerization rate of the monomer is 60~
The first stage up to 90% by weight is carried out at a temperature of 50-130°C, preferably 80-100°C, and then the second stage until completion of the polymerization is carried out at an elevated temperature of 80-150°C, preferably 100-140°C. good.

懸濁重合時には通常、安定剤として例えば炭酸マグネシ
ウム、第三級リン酸マグネシウム、澱粉、ポリビニルア
ルコール、ポリアルキレンオキサイド、ポリアクリル酸
ナトリウム、ポリアクリルアミド、ポリビニルピロリド
ン、メチルセルロース、カルボキシルメチルセルロース
、ヒドロキシエチルセルロース、EDTAのナトリウム
塩、各種界面活性剤などを適宜使用することができ、又
、重合完了後は脱水、洗浄、乾燥を行って、重合体を取
り出す。
During suspension polymerization, stabilizers such as magnesium carbonate, tertiary magnesium phosphate, starch, polyvinyl alcohol, polyalkylene oxide, sodium polyacrylate, polyacrylamide, polyvinylpyrrolidone, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and EDTA are usually used. Sodium salts, various surfactants, etc. can be used as appropriate, and after completion of polymerization, dehydration, washing, and drying are performed to take out the polymer.

他の重合法によって重合する場合も懸濁重合法の場合と
同様に常法に従って製造条件を設定すればよい。
When polymerizing by other polymerization methods, the production conditions may be set according to conventional methods as in the case of suspension polymerization.

本発明では重合により得られたスチレン系樹脂を次いで
窒素気流中にて熔融、造粒するが、かかる操作は大気中
の酸素を遮断した状態にての操作を意味し、例えば樹脂
1kg当り窒素ガス1l以上を送り続けた状態の押出機
にて熔融、造粒することにより実施することができる。
In the present invention, the styrene resin obtained by polymerization is then melted and granulated in a nitrogen stream, but this operation means operation in a state where oxygen in the atmosphere is cut off. For example, nitrogen gas per 1 kg of resin is This can be carried out by melting and granulating in an extruder while continuously feeding 1 liter or more.

スチレン系樹脂にべヘン酸を加える時期としては該スチ
レン系樹脂の熔融、造粒工程までの任意な時期にて添加
しても、又、造粒後のスチレン系樹脂に添加してもよい
が、熔融、造粒前に添加するか、造粒中の樹脂に圧入す
ると、熔融、造粒途中に加熱によるスチレン系樹脂の物
性低下もあわせて防止できるので特に好適である。
Behenic acid may be added to the styrenic resin at any time between the melting of the styrene resin and the granulation process, or it may be added to the styrenic resin after granulation. It is particularly preferable to add it before melting or granulating it, or to press it into the resin during granulation, since this can also prevent the physical properties of the styrenic resin from deteriorating due to heating during melting or granulation.

べヘン酸の添加量は、重合にて得られたスチレン系樹脂
(重合に関与した単量体総量にほぼ該当する)に対し、
0.01%以上、好ましくは0.05%以上であり、あ
まり多量に入れてもスチレン系樹脂組成物の物性に著し
い向上もみられないし、実際に成形品を得たときに、臭
気、ブリード等が発生したりすることもあるので、安全
衛生の点を配慮すれば0.5%までで十分である。
The amount of behenic acid added is based on the styrene resin obtained by polymerization (approximately corresponds to the total amount of monomers involved in polymerization).
It is 0.01% or more, preferably 0.05% or more, and even if it is added in too large a amount, there will be no significant improvement in the physical properties of the styrene resin composition, and when actually molded products are obtained, odor, bleeding, etc. 0.5% is sufficient if safety and health considerations are taken into consideration.

本発明のスチレン系樹脂組成物に必要に応じて各種の添
加剤を加えることは差し支えない。
Various additives may be added to the styrenic resin composition of the present invention as necessary.

重合時から成形材料として供するまでに用いられうる添
加剤としては例えば分子量調整剤、可塑剤、内部滑剤(
ステアリン酸など)、変性剤(ゴム状物質など)、難燃
剤、充填剤、発泡剤、着色剤等の如き通常スチレン系樹
脂に用いられるものが同じく使用できる。
Examples of additives that can be used from the time of polymerization to the time of use as a molding material include molecular weight regulators, plasticizers, and internal lubricants (
Stearic acid, etc.), modifiers (rubber-like substances, etc.), flame retardants, fillers, blowing agents, coloring agents, etc. that are commonly used for styrenic resins can also be used.

本発明のスチレン系樹脂組成物は通常の成形機により容
易に成形できるが、その際の熔融温度範囲が180〜3
00℃好ましくは220〜280℃であると最も優れた
樹脂性能が発揮される。
The styrenic resin composition of the present invention can be easily molded using a normal molding machine, but the melting temperature range is 180 to 3.
The best resin performance is exhibited at a temperature of 00°C, preferably 220 to 280°C.

熔融温度が180℃未満では満足な成形品が得難く、ま
たたとえ所望の成形品が得られても成形品中に内在する
残留歪みが大きく、十分な性能が発揮できない。
If the melting temperature is less than 180° C., it is difficult to obtain a satisfactory molded product, and even if a desired molded product is obtained, the residual strain inherent in the molded product is large and sufficient performance cannot be exhibited.

又、300℃を超えた場合はヒケ、ヤケ、ジエツテイン
グマークなどの成形品の外観不良が発生したり、熱と剪
断力に起因する分子切断を招来せしめるのでやはり十分
な性能が発揮できない。
Furthermore, if the temperature exceeds 300°C, the molded product may have poor appearance such as sink marks, discoloration, jetting marks, etc., or molecular breakage due to heat and shearing force may occur, so that sufficient performance cannot be exhibited.

本発明のスチレン系樹脂組成物は熱安定性、強度、剛性
、耐疲労特性、耐クリープ特性等の性能に特に優れる点
に大きな特徴があるが、かかる性能の一例として、たわ
み率−曲げ応力曲線を第1図として示す。
The styrenic resin composition of the present invention is characterized by particularly excellent properties such as thermal stability, strength, rigidity, fatigue resistance, and creep resistance. is shown in Figure 1.

後述する実施例1にて得たスチレン系樹脂組成物(造粒
後の重量平均分子量58万)、市販の一般用ポリスチレ
ン樹脂「デンカスチロールMW−1」(電気化学工業社
製、重量平均分子量39万)及び市販のAS樹脂「タイ
リル783」(旭ダウ工業社製)の3種についてAST
MD−790に従い射出成形し、試験した。
The styrene resin composition obtained in Example 1 (to be described later) (weight average molecular weight after granulation: 580,000), the commercially available general polystyrene resin "Dencastyrol MW-1" (manufactured by Denki Kagaku Kogyo Co., Ltd., weight average molecular weight 39) AST for three types of commercially available AS resin "Tyryl 783" (manufactured by Asahi Dow Industries Co., Ltd.)
Injection molded and tested according to MD-790.

(試験片厚さ3mm、幅12.7mm;スパン間距離1
02mm;曲げ速度50mm/分;測定温度23±1℃
)第1図により、本発明のポリスチレン樹脂組成物が、
破壊に要するまでのエネルギーが他のものより明らかに
高いことが判かる。
(Test specimen thickness: 3 mm, width: 12.7 mm; distance between spans: 1
02mm; Bending speed 50mm/min; Measurement temperature 23±1℃
) According to FIG. 1, the polystyrene resin composition of the present invention has
It can be seen that the energy required for destruction is clearly higher than the others.

このような機械的特徴は、試験条件、成形条件を変えて
も普遍的に得られ、且つ引張試験においても同様な挙動
を示す。
Such mechanical characteristics are universally obtained even if the test conditions and molding conditions are changed, and the same behavior is exhibited in a tensile test.

このように、本発明のスチレン系樹脂組成物は従来のも
のに比べ熱安定性、強度、剛性、特に耐疲労特性、耐ク
リープ特性等の性能に優れ、しかも成形性に於いては従
来と変わらないので、成形材料として有用である。
As described above, the styrenic resin composition of the present invention has superior properties such as thermal stability, strength, and rigidity, especially fatigue resistance and creep resistance, compared to conventional ones, and is also superior in moldability to conventional ones. Therefore, it is useful as a molding material.

特に繰り返し負荷や一定負荷のかかる部分を有する成形
品例えば蝶番部を有する容器、及び蓋類(化粧品コンパ
クト、ダストカバー等)、回転及び回転部を有する成形
品(精密工業用歯車、扇風機用羽根、水槽用攪拌羽根等
)及び積み重ね容器(運搬箱、整理用ケース、大型水槽
等)の用途に有利に使用することができる。
In particular, molded products that have parts that are subjected to repeated loads or constant loads, such as containers with hinged parts and lids (cosmetic compacts, dust covers, etc.), molded products that rotate and have rotating parts (precision industrial gears, fan blades, etc.) It can be advantageously used for applications such as stirring blades for aquariums, etc.) and stacking containers (transport boxes, organizing cases, large aquariums, etc.).

以下、本発明を例を挙げて説明するが、本発明はこれら
の例によって限定されるものではない。
Hereinafter, the present invention will be explained by giving examples, but the present invention is not limited to these examples.

尚、樹脂の物性試験の評価は下記に示す方法で行なった
In addition, evaluation of the physical property test of the resin was performed by the method shown below.

(1)重量平均分子量 重合体20mgをテトラヒドロフラン12mlに溶解し
104,105,106、107Åのスチレンゲル充填
力ラムを用い常温でゲルパーミエーションクロマトグラ
フイー(GPC)にて測定。
(1) 20 mg of weight average molecular weight polymer was dissolved in 12 ml of tetrahydrofuran and measured by gel permeation chromatography (GPC) at room temperature using styrene gel packing force rams of 104, 105, 106, and 107 Å.

(2) メルトフローインデックス JIS K−6870(200℃、5kg荷重)(3)
スパイラルフロ一による流入長比 流入長(L)/厚さ(1)を測定。
(2) Melt flow index JIS K-6870 (200℃, 5kg load) (3)
Measure the inflow length ratio (inflow length (L)/thickness (1)) using the spiral flow.

(射出温度220℃、射出圧力830kg/cm2) (4)曲げ強さ ASTMD−790(曲げ速度2.5mm/分)(5)
ロツクウエル硬度 ASTMD−785(Mスケール) (6)耐疲労特性 ASTMD−671−B法に準拠し、いわゆる荷重一定
平面曲げ疲労法を採用。
(Injection temperature 220℃, injection pressure 830kg/cm2) (4) Bending strength ASTM D-790 (bending speed 2.5mm/min) (5)
Rockwell Hardness ASTM D-785 (M Scale) (6) Fatigue Resistance Characteristics Based on ASTM D-671-B method, so-called constant load plane bending fatigue method is adopted.

測定条件としては1500回/分の振動曲げを振動曲げ
応力550kg/cm2で行ない、試験片の破断までの
振動回数をもって耐疲労特性の尺度とした。
The measurement conditions were vibration bending of 1500 times/min at a vibration bending stress of 550 kg/cm2, and the number of vibrations until the test piece broke was used as a measure of fatigue resistance.

(試験温度25±1℃) (7)耐クリープ特性 厚さ3mm、幅12.7mmの短柵状の試験片をスパン
間距離102mm曲げ応力34kgの条件で曲げクリー
プ試験を70℃の水浴中で行ない、各記述の時間におけ
るたわみ率をもって耐クリープ性の尺度とした。
(Test temperature: 25±1°C) (7) Creep resistance properties A bending creep test was conducted on a short fence-like test piece with a thickness of 3 mm and a width of 12.7 mm under the conditions of a span distance of 102 mm and a bending stress of 34 kg in a water bath at 70°C. The deflection rate at each described time was used as a measure of creep resistance.

(8)円錐押込み強さ 中央に1.5mmのピンゲートをもった横200間、縦
300mm、厚さ2mmの平板を試験試料とし、平板上
のピンゲートから25mm離れた点に先端半径0. 5
mmの円錐体を50mm/分で押込み、破壊に到る最
高荷重をもって押込み強さの尺度とした。
(8) Conical indentation strength A flat plate measuring 200 mm wide, 300 mm long, and 2 mm thick with a 1.5 mm pin gate in the center was used as the test sample, and a tip with a radius of 0. 5
A cone of 50 mm in diameter was pressed at a rate of 50 mm/min, and the maximum load at which it broke was taken as a measure of indentation strength.

(試験温度23±1℃)(9)落錘破壊高さ 縦200mm、横120mm、深さ20mmのラジオキ
ャビネットを試験試料とし、その底面に先端が半径20
mmの半球状で自重50grの荷重を落下させ、その5
0%破壊高さを求めた。
(Test temperature 23 ± 1℃) (9) Falling weight failure height: A radio cabinet with a height of 200 mm, a width of 120 mm, and a depth of 20 mm was used as the test sample, and the tip was placed on the bottom with a radius of 20 mm.
Dropping a load of 50 gr on a hemispherical shape of mm, Part 5
The 0% fracture height was determined.

試験温度23±1℃、試験サンプルは固定して行なった
The test temperature was 23±1° C., and the test sample was fixed.

なお測定結果は第1表にまとめて記載した。The measurement results are summarized in Table 1.

実施例 1 タービン型攪拌翼を備えた5lステンレス製反応器に蒸
留水2000mlを仕込み、懸濁安定剤としての部分ケ
ン化ポリビニルアルコール10gr、ドデシルベンゼン
スルホン酸ソーダ0.05grを溶解後、スチレン10
00gr,ペルオキシヘキサヒドロテレフタル酸ジ第三
級ブチル1gr、過安息香酸第三級ブチル0.5grを
順次仕込んだ。
Example 1 2000 ml of distilled water was charged into a 5 liter stainless steel reactor equipped with a turbine-type stirring blade, and after dissolving 10 g of partially saponified polyvinyl alcohol as a suspension stabilizer and 0.05 g of sodium dodecylbenzenesulfonate, 10 g of styrene was added.
00 gr, ditertiary butyl peroxyhexahydroterephthalate 1 gr, and tertiary butyl perbenzoate 0.5 gr were sequentially charged.

器内を窒素ガスで置換後、500rpmの攪拌下で昇温
し、90℃で10時間懸濁重合させ、次いで120℃で
5時間反応させた。
After purging the inside of the vessel with nitrogen gas, the temperature was raised under stirring at 500 rpm, suspension polymerization was carried out at 90°C for 10 hours, and then reaction was carried out at 120°C for 5 hours.

生成した粒状ポリスチレン樹脂を洗浄、脱水、乾燥した
The resulting granular polystyrene resin was washed, dehydrated, and dried.

得られたポリスチレン樹脂の重量平均分子量は65万で
あった。
The weight average molecular weight of the obtained polystyrene resin was 650,000.

この樹脂にベヘン酸0.1%(樹脂重量に対し)を加え
、窒素気流中にてシリンダ一温度260℃の押出機で造
粒した。
0.1% (based on the resin weight) of behenic acid was added to this resin, and the mixture was granulated using an extruder with a cylinder temperature of 260° C. in a nitrogen stream.

得られたペレットの重量平均分子量は58万であった。The weight average molecular weight of the obtained pellets was 580,000.

このようにして得られた重合物を熔融温度230℃及び
280℃で射出成形し、各々の測定に供した。
The polymers thus obtained were injection molded at melting temperatures of 230°C and 280°C, and subjected to each measurement.

実施例 2 5lのステンレス製反応器に、蒸留水2000ml、第
三級リン酸カルシウム10gr、ドデシルベンゼンスル
ホン酸ソーダ0.05gr、スチレン1000gr、流
動パラフィン40gr.ペルオキシヘキサヒドロフタル
酸ジ第三級ブチル1gr、ペルオキシイソフタル酸ジ第
三級ブチル0.5grを仕込み、500rpm攪拌下9
0℃で10時間懸濁重合させ、次いで120℃に昇温し
、その温度で4時間反応後、生成したポリスチレン樹脂
を洗浄、脱水、乾燥させた。
Example 2 In a 5l stainless steel reactor, 2000ml of distilled water, 10gr of tertiary calcium phosphate, 0.05gr of sodium dodecylbenzenesulfonate, 1000gr of styrene, 40gr of liquid paraffin. Charge 1 gr of di-tert-butyl peroxyhexahydrophthalate and 0.5 gr of di-tert-butyl peroxyisophthalate, and stir at 500 rpm.
Suspension polymerization was carried out at 0°C for 10 hours, then the temperature was raised to 120°C, and after reaction at that temperature for 4 hours, the produced polystyrene resin was washed, dehydrated, and dried.

得られたポリスチレン樹脂の重量平均分子量は68万で
あった。
The weight average molecular weight of the obtained polystyrene resin was 680,000.

この樹脂にべヘン酸0.05%(同上)及びステアリン
酸0.05%(同上)を加え、窒素気流中にてシリンダ
一温度260℃の押出機にて造粒した。
0.05% of behenic acid (same as above) and 0.05% of stearic acid (same as above) were added to this resin, and granulated in an extruder with a cylinder temperature of 260° C. in a nitrogen stream.

得られた造粒物の重量平均分子量は60万であった。The weight average molecular weight of the obtained granules was 600,000.

このようにして得られたポリスチレン樹脂を、熔融温度
220℃及び270℃で射出成形し、各各の測定に供し
た。
The polystyrene resin thus obtained was injection molded at melting temperatures of 220°C and 270°C, and subjected to each measurement.

実施例 3 5lのステンレス製反応器に、蒸留水2,000ml、
第三級リン酸カルシウム10gr、ドデシルベンゼンス
ルホン酸ソーダ0.05gr、スチレン1,000gr
、ペルオキシヘキサヒドロフタル酸ジ第三級ブチル1g
を仕込み、500rpm攪拌下90℃で懸濁重合させた
Example 3 In a 5-liter stainless steel reactor, 2,000 ml of distilled water,
Tertiary calcium phosphate 10gr, sodium dodecylbenzenesulfonate 0.05gr, styrene 1,000gr
, ditertiary butyl peroxyhexahydrophthalate 1g
was charged, and suspension polymerization was carried out at 90° C. while stirring at 500 rpm.

重合5時間経過した時点で1,1−ジ第三級ブチルペル
オキシ−3,3,5−トリメチルシクロヘキサン0.5
grを添加し、更に90℃で5時間反応させた。
After 5 hours of polymerization, 0.5 of 1,1-ditertiary butylperoxy-3,3,5-trimethylcyclohexane
gr was added, and the mixture was further reacted at 90°C for 5 hours.

次いで120℃に昇温し、4時間重合後反応を完結させ
た。
Next, the temperature was raised to 120°C, and the reaction was completed after polymerization for 4 hours.

得られたポリスチレン樹脂の重量平均分子量は63万で
あった。
The weight average molecular weight of the obtained polystyrene resin was 630,000.

この樹脂にべヘン酸0.1%(同上)を加え、窒素気流
中にてシリンダ一温度260℃で造粒したときの重量平
均分子量は55万であった。
When 0.1% of behenic acid (same as above) was added to this resin and granulated in a nitrogen stream at a cylinder temperature of 260°C, the weight average molecular weight was 550,000.

このようにして得られたポリスチレン樹脂を熔融温度2
50℃で射出成形し、各々の測定に供した。
The polystyrene resin thus obtained has a melting temperature of 2
It was injection molded at 50°C and subjected to each measurement.

実施例 4 5lのステンレス製反応器にエチルベンゼン800gr
、スチレン1,200gr、流動パラフィン48gr、
ペルオキシヘキサヒドロテレフタル酸ジ第三級ブチル0
.65gr、過酸化ジ第三級ブチル0.3gr、ベヘン
酸0.8gr及びステアリン酸0.4grを順次仕込ん
だ。
Example 4 800g of ethylbenzene in a 5L stainless steel reactor
, styrene 1,200gr, liquid paraffin 48gr,
Ditertiary butyl peroxyhexahydroterephthalate 0
.. 65 gr, ditertiary butyl peroxide 0.3 gr, behenic acid 0.8 gr, and stearic acid 0.4 gr were sequentially charged.

器内を窒素ガスで置換後500rpmの攪拌下で昇温し
90℃で10時間反応させた。
After purging the inside of the vessel with nitrogen gas, the temperature was raised while stirring at 500 rpm, and the reaction was carried out at 90°C for 10 hours.

次いで250℃に昇温し、減圧下でエチルベンゼン及び
未反応のスチレンを除去した。
The temperature was then raised to 250°C, and ethylbenzene and unreacted styrene were removed under reduced pressure.

得られたポリスチレン樹脂をロートプレツクスで粉砕後
、窒素気流中にて260℃で造粒した。
The obtained polystyrene resin was pulverized in a rotoplex and then granulated at 260° C. in a nitrogen stream.

そのものの重量平均分子量は55万であった。The weight average molecular weight of the product itself was 550,000.

このようにして得られた樹脂を熔融温度250℃で射出
成形し各々の測定に供した。
The resin thus obtained was injection molded at a melting temperature of 250° C. and subjected to each measurement.

実施例 5 5lのステンレス製反応器に蒸留水2,000mlを仕
込み懸濁安定剤としての部分ケン化ポリビニルアルコー
ル5gr、カルボキシルメチルセルロース5gr、 メ
チルセルロース5grを溶解後、スチレン600gr、
α−メチルスチレン200gr、メタクリル酸メチル2
00gr、流動パラフィン40gr、ペルオキシヘキサ
ヒドロイソフタル酸ジ第三級ブチル1gr,過酸化ジ第
三級ブチル0.5grを順次仕込んだ器内を窒素ガスで
置換後500rpmの攪拌下で昇温し90℃で12時間
懸濁重合させた。
Example 5 2,000 ml of distilled water was charged into a 5 liter stainless steel reactor, and after dissolving 5 gr of partially saponified polyvinyl alcohol as a suspension stabilizer, 5 gr of carboxyl methyl cellulose, and 5 gr of methyl cellulose, 600 gr of styrene,
α-methylstyrene 200g, methyl methacrylate 2
00gr, liquid paraffin 40gr, ditertiary butyl peroxyhexahydroisophthalate 1gr, and ditertiary butyl peroxide 0.5gr were sequentially charged inside the vessel, which was purged with nitrogen gas, and then heated to 90°C under stirring at 500 rpm. Suspension polymerization was carried out for 12 hours.

次いで115℃で2時間、130℃で2時間反応させた
Next, the reaction was carried out at 115°C for 2 hours and at 130°C for 2 hours.

生成した粒状ポリスチレン樹脂の重量平均分子量は60
万であった。
The weight average molecular weight of the produced granular polystyrene resin is 60
It was 10,000.

この樹脂にべヘン酸0.15%(同上)を加え、窒素気
流中のシリンダ一温度260℃の押出機で造粒した。
0.15% of behenic acid (same as above) was added to this resin and granulated using an extruder with a cylinder temperature of 260° C. in a nitrogen stream.

このようにして得られたポリスチレン系共重合樹脂を熔
融温度240℃及び290℃で射出成形し各々の測定に
供した。
The polystyrene copolymer resin thus obtained was injection molded at melting temperatures of 240° C. and 290° C. and subjected to each measurement.

比較例 1 実施例1と同じ処方で重合し、重合終了後、洗浄、脱水
、乾燥して粒状ポリスチレン樹脂を得た樹脂(重量平均
分子量63万)を、このままシリンダ一温度260℃の
押出機で造粒したときの重量平均分子量は、38万であ
った。
Comparative Example 1 A resin (weight average molecular weight 630,000) obtained by polymerizing with the same recipe as in Example 1 and washing, dehydrating, and drying after the polymerization was completed (weight average molecular weight 630,000) was directly used in an extruder with a cylinder temperature of 260°C. The weight average molecular weight when granulated was 380,000.

得られたポリスチレン樹脂を熔融温度220℃及び27
0℃で射出成形し、各々の測定に供した。
The obtained polystyrene resin was heated to a melting temperature of 220°C and 27°C.
It was injection molded at 0°C and used for each measurement.

比較例 2 懸濁重合の重合開始剤として1,1−ジ第三級ブチル−
3,3,5−トリメチルシクロヘキサン1.5gr,過
酸化ジ第三級ブチル0.59grを併用し、重合温度1
00℃で8時間、130℃で3時間反応させる以外は実
施例1の処方に依った。
Comparative Example 2 1,1-ditertiary butyl as a polymerization initiator for suspension polymerization
Using 1.5 gr of 3,3,5-trimethylcyclohexane and 0.59 gr of ditertiary butyl peroxide, the polymerization temperature was 1.
The recipe of Example 1 was followed except that the reaction was carried out at 00°C for 8 hours and at 130°C for 3 hours.

得られた樹脂の重量平均分子量は64万であった。The weight average molecular weight of the obtained resin was 640,000.

これをそのまま260℃で造粒したときの重量平均分子
量は39万であった。
When this was granulated as it was at 260°C, the weight average molecular weight was 390,000.

この樹脂を熔融温度250℃で射出成形し各々の測定に
供した。
This resin was injection molded at a melting temperature of 250°C and used for each measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のポリスチレン樹脂組成物、市販の一搬
用ポリスチレン樹脂及びAS樹脂の曲げ応力一たわみ曲
線である。 斜線部分の面積は本発明のポリスチレン樹脂組成物の破
壊に要するエネルギーを示す。
FIG. 1 shows bending stress-deflection curves of the polystyrene resin composition of the present invention, a commercially available polystyrene resin for transportation, and an AS resin. The area of the shaded area indicates the energy required to destroy the polystyrene resin composition of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン系単量体単独或いは必要により該単量体と
共重合可能な他のビニル単量体及び/又はゴム状物質を
加えてなる組成物を、ラジカル重合開始剤として(1)
ベルオキシヘキサヒドロフタル酸ジ第三級ブチル、ベル
オキシヘキサヒドロイソフタル酸ジ第三級ブチル、ベル
オキシヘキサヒドロテレフタル酸ジ第三級ブチルのうち
の少なくとも1種と、(2)高温活性型有機過酸化物と
を使用して重合した後、窒素気流中で熔融、造粒して得
たスチレン系樹脂(A)とベヘン酸(B)とからなるス
チレン系樹脂組成物。
1. A composition consisting of a styrene monomer alone or, if necessary, other vinyl monomers and/or rubber-like substances copolymerizable with the monomer, as a radical polymerization initiator (1)
at least one of ditertiary butyl beroxyhexahydrophthalate, ditertiary butyl bereoxyhexahydroisophthalate, ditertiary butyl bereoxyhexahydroterephthalate, and (2) a high temperature activated organic A styrenic resin composition comprising a styrene resin (A) and behenic acid (B) obtained by polymerizing with a peroxide, followed by melting and granulation in a nitrogen stream.
JP14320379A 1979-11-07 1979-11-07 Styrenic resin composition Expired JPS581142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14320379A JPS581142B2 (en) 1979-11-07 1979-11-07 Styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14320379A JPS581142B2 (en) 1979-11-07 1979-11-07 Styrenic resin composition

Publications (2)

Publication Number Publication Date
JPS5667352A JPS5667352A (en) 1981-06-06
JPS581142B2 true JPS581142B2 (en) 1983-01-10

Family

ID=15333268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14320379A Expired JPS581142B2 (en) 1979-11-07 1979-11-07 Styrenic resin composition

Country Status (1)

Country Link
JP (1) JPS581142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020245919A1 (en) * 2019-06-04 2020-12-10 本田技研工業株式会社 Saddle-riding vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915348B2 (en) * 1981-11-26 1984-04-09 電気化学工業株式会社 Styrenic resin composition
JPS5962604A (en) * 1982-10-01 1984-04-10 Kanegafuchi Chem Ind Co Ltd Preparation of copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020245919A1 (en) * 2019-06-04 2020-12-10 本田技研工業株式会社 Saddle-riding vehicle

Also Published As

Publication number Publication date
JPS5667352A (en) 1981-06-06

Similar Documents

Publication Publication Date Title
US4618663A (en) Process for preparing α-methylstyrene-acrylonitrile copolymers
US3781383A (en) Impact vinyl aromatic polymers and their preparation
KR950006261B1 (en) Rubber-reinforced styrewic polymer resins having improved flow and gloss characteristics
KR100311756B1 (en) Styrene-resin compositions and injection- and extrusion-molded articles
JPS581142B2 (en) Styrenic resin composition
US5854366A (en) Styrene base random copolymer and process for producing the same
JPH0971606A (en) Production of styrene-based polymer, styrene-based resin composition and molded product thereof
JPS5919576B2 (en) Manufacturing method of rubber modified styrenic resin
US4560735A (en) Process for preparing copolymer
US3879321A (en) Ethylene-vinyl acetate and high cis-polybetadiene graft prepared with sequent mercaptor addition
US5089575A (en) Method for the preparation of a copolymer of vinyl chloride and an n-substituted maleimide compound
JPH0518859B2 (en)
JP2824265B2 (en) Styrene resin composition
JPS5896641A (en) Styrene-methacrylic acid copolymer resin composition
JPS6235425B2 (en)
US3536786A (en) High-impact,high temperature thermoplastic and method of preparing same
JPH0334482B2 (en)
JP2001089620A (en) Rubber modified aromatic vinyl resin composition
JPH058723B2 (en)
JPS6237665B2 (en)
JPH08319315A (en) Styrene-based random copolymer and its production
JPS62280206A (en) Production of copolymer
Ma et al. New Chemistries and Technologies Derived from a Common Reaction of α‐Methylstyrene at 61° C
JPS60206810A (en) Production of copolymer
JPS6114208A (en) Heat-resistant vinyl copolymer resin