JPH0334482B2 - - Google Patents

Info

Publication number
JPH0334482B2
JPH0334482B2 JP56181100A JP18110081A JPH0334482B2 JP H0334482 B2 JPH0334482 B2 JP H0334482B2 JP 56181100 A JP56181100 A JP 56181100A JP 18110081 A JP18110081 A JP 18110081A JP H0334482 B2 JPH0334482 B2 JP H0334482B2
Authority
JP
Japan
Prior art keywords
resin
polymerization
strength
styrene
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56181100A
Other languages
Japanese (ja)
Other versions
JPS5883008A (en
Inventor
Junji Nanbu
Yasutoshi Kakizawa
Kenji Yoshino
Nagaro Ariga
Kyotaro Shimazu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP18110081A priority Critical patent/JPS5883008A/en
Publication of JPS5883008A publication Critical patent/JPS5883008A/en
Publication of JPH0334482B2 publication Critical patent/JPH0334482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスチレン系樹脂の製造方法に関し、さ
らに詳細には、特定の三官能性遊離基開始剤を用
いてスチレン系単量体を主体とする単量体を
(共)重合させることからなる、流動性と強度と
が改善された樹脂を製造する方法に関する。 スチレン系樹脂は一般に、成形加工性、寸法安
定性、着色性、電気的特性ならびに安全性などに
すぐれているため、そうした特長を生かして多岐
の分野に亙つて利用されているが、他面におい
て、強度の不足という欠点があつて耐久消費材や
工業部品などの或る程度の耐久強度が要求される
分野ではその改善の必要性が大きな課題となつて
いる。 こうしたスチレン系樹脂の強度改善策の一つと
して、樹脂の分子量を増大せしめることが提案さ
れている〔藤井、プラスチツク材料講座12「スチ
ロール樹脂」、p.15〕。 しかしながら、樹脂の強度向上のために分子量
を増大させるときは樹脂の流動性が著しく悪化す
るという事実が観察されることであり、一般に、
強度と流動性とは相反する特性であるためにこれ
ら両方の特性を良好ならしめることは至難の業と
も言える。 たとえば、機械的強度を重視するのあまり、流
動性を犠牲にしようものなら、成形時には一層の
高温が必要となつて、高温成形に伴なうエネルギ
ーの消費もさることながら、成形物の残留歪の増
加による強度の低下、成形物における透明性の低
下や分解促進などの原因ともなり、さらには成形
サイクルの延長とか、複雑な成形物を得る場合に
おいては成形性の不良などといつた原因ともな
る。その結果は、樹脂の高分子量化にも拘らず、
実際には成形物の強度がそれほど改善されずに、
所期のすぐれた品質の成形物を得ることは不可能
であつた。 また、樹脂の調製という観点からしても、高分
子量化には低温反応が不可欠であつて、重合時間
が異常に長くなつたり、製品中の残存未反応単量
体が著しく増加したり、あるいはこの高分子量化
に応じて樹脂の粘度が高くなつて撹拌動力や輸送
ポンプに負荷がかかりすぎて樹脂の製造が困難に
なるなど、実際上は多大の困難な要素があつて、
かかる高分子量化は極めて難事であつた。 さらに、高粘度の樹脂にあつては熱伝導度が著
しく低下するために効率的な重合熱の移動ないし
は除去ができなくなり、その結果は重合熱が部分
的に蓄熱されて暴走反応につながる虞れがあつ
て、一般には、かかる高分子量化のプロセスは非
常に困難なものとされてきた。 こうした種々の理由により、すぐれた実用強度
を保持したスチレン系樹脂を得るために分子量を
増大せしめるという手段は技術的にも、製造プロ
セス的にも制約があつて、工業的には実現しえな
かつた。 しかるに、高分子量で、かつ、流動性のすぐれ
た樹脂を得ることは大きな工業的価値を持つもの
で、かかる樹脂が得られれば、まことに応用面か
らみても新しい用途が期待できるものである。 たとえば、従来の一般的なスチレン樹脂は衝撃
強度や靭性にすぐれるものであつても、耐クリー
プ特性や耐疲労特性などといつた耐久性能では依
然として不満足な性能しか具備してはおらず、い
わゆるエンジニアリング・プラスチツクスの使用
されている耐久消費材、弱電部品、工業用資材お
よび産業用資材などの如く耐久性能が要求される
分野には、その利用は大幅に制限されていた。 しかるに、汎用のスチレン系樹脂に特有の、す
ぐれた成形加工性をそのまま生かしつつ、加うる
に耐久性能をも付与しうることができれば、上記
した各分野への用途開発も大いに期待できるもの
である。 他方、前記した流動性については、星形分岐ポ
リスチレンが同分子量の直鎖ポリスチレンに比べ
て流動性がすぐれていることはよく知られている
〔永沢、工化誌73(7)P.1264(1970)〕。 ところが、一般に、かかる星形分岐ポリスチレ
ンの製造はイオン重合によつて合成された直鎖ポ
リスチレンの末端を化学的に結合させる方法が採
られているけれども、工業的に製品化するとなる
と至極困難であつた。 しかるに、本発明者らはこうした星形分岐ポリ
スチレン系樹脂を工業的に合成すべく種々検討し
た結果、一般式 〔但し、式中のR1、R2およびR3は互いに同一で
も異なつてもよい4〜10個の炭素原子を有するア
ルキル基またはアルカノイル基であるものとす
る。〕 なる構造を有する遊離基開始剤を用いて合成され
たスチレン系樹脂は非常に高分子量物であるにも
拘らず、流動性も良好で、しかも実用強度も著し
くすぐれたものであることを見出して、本発明を
完成させるに到つた。 すなわち、本発明は前掲の一般式〔〕で示さ
れる三官能性の遊離基開始剤を用い、ゴム状物質
の存在下または不存在下に、スチレン、置換スチ
レンおよび/またはこれらのスチレン系単量体と
共重合性を有する他の単量体を重合せしめること
からなるスチレン系樹脂の製造方法を提供するも
のであり、本発明方法に従うときは、従来公知の
一官能および/または二官能性の遊離基開始剤を
用いて合成されたいずれの樹脂に比較しても、流
動性がよく、高強度を有し、しかも成形温度領域
が広いために、透明性にすぐれた高品質の製品を
提供することができる。 以下、本発明方法を詳述するが、スチレンおよ
び置換スチレン(以下、これらをスチレン系単量
体という。)ならびにこれらのスチレン系単量体
と共重合性を有する他の単量体よりなる群から選
ばれる一種以上の単量体を用い、必要に応じて、
さらにゴム状物質をも存在させ、前記一般式
〔〕で示される遊離基開始剤を用いて、溶剤の
存在下または不存在下に、50〜180℃なる温度で
重合を行なつて樹脂を得るというものであり、必
要に応じて、この樹脂を脱水、乾燥、脱モノマー
および/または脱溶剤の如き後処理工程を経て、
ペレツト化せしめて目的とする製品が得られる。 ここにおいて、上記の遊離基開始剤として代表
的なものには、トリス(アルキルパーオキシ)ト
リアジンまたはトリス(アルカノイルパーオキ
シ)トリアジンなどがあり、これらは単独で、あ
るいは従来のビニル単量体の重合用遊離基開始剤
と組み合わせて使用される。 このように組み合わせて用いられる従来慣用の
開始剤として代表的なものを挙げれば過酸化ベン
ゾイル、1,1−ジ(t−ブチルパーオキシ)−
3,3,5−トリメチルシクロヘキサン、t−ブ
チルハイドロパーオキサイド、t−ブチルパーオ
キシベンゾエート、ジ−t−ブチルパーオキサイ
ド、t−ブチルパーオキシピバレート、クメンハ
イドロパーオキサイド、p−メンタンハイドロパ
ーオキサイド、ジクミルパーオキサイド、ラウロ
イルパーオキサイド、t−ブチルパーオキシイソ
プロピルカーボネート、ジ−t−ブチルパーオキ
シイソフタレート、t−ブチルパーオキシラウレ
ート、t−ブチルパーオキシ−3,5,5−トリ
メチルヘキサノエート、t−ブチルパーオキシ−
2−エチルヘキサノエート、t−ブチルパーオキ
シアセテート、2,5−ジメチル−2,5−ジ
(t−ブチルパーオキシ)ヘキシン−3、オクタ
ノイルパーオキサイド、デカノイルパーオキサイ
ドまたはステアロイルパーオキサイドなどであ
る。 また、前記した置換スチレンとして代表的なも
のとしては、ベンゼン核の水素原子がハロゲン原
子や1〜4個の炭素原子をもつたアルキル基など
で置換されたスチレンなどがあり、たとえばo−
クロルスチレン、p−クロルスチレン、p−メチ
ルスチレン、2,4−ジメチルスチレン、t−ブ
チルスチレンまたはα−メチルスチレンなどであ
り、前記した共重合性を有する他の単量体として
代表的なものには(メタ)アクリロニトリル、α
−クロロアクリロニトリルもしくはシアン化ビニ
リデンの如きアクリロニトリル系単量体;(メタ)
アクリル酸、(メタ)アクリル酸メチル、(メタ)
アクリル酸エチル、(メタ)アクリル酸ブチル、
(メタ)アクリル酸グリシジル、(メタ)アクリル
酸−2−エチルヘキシルもしくは(メタ)アクリ
ル酸ヒドロキシエチルの如き(メタ)アクリル酸
およびそれらのエステル類;酢酸ビニル、塩化ビ
ニル、塩化ビニリデン、ビニルピロリドン、(メ
タ)アクリルアミド、ジメチル(メタ)アクリル
アミド、無水マレイン酸、無水イタコン酸、マレ
イミドまたはビニルケトン類もしくはビニルエー
テル類の如き各種ビニル単量体などがある。 さらに、前記したゴム状物質として代表的なも
のには、ポリブタジエンゴム、SBR、SBSゴム、
EPDM系ゴム;イソプレンもしくはクロロプレ
ンの如き共役1,3−ジエン系単量体から得られ
るゴム;ブタジエン−アクリロニトリルゴム、イ
ソプレン−アクリル酸エステル系共重合体ゴム、
ブチルゴム、アクリル系ゴムもしくはスチレン−
イソブチレン−ブタジエンゴムなどがあるが、こ
れらは単独であるいは2種以上の組み合わせで用
いられる。 さらにまた、前記した溶剤として代表的なもの
はベンゼン、トルエン、キシレンまたはエチルベ
ンゼンなどの如き芳香族炭化水素である。 なお、前記した遊離基開始剤の使用量は重合温
度や単量体の組み合わせや重合方法などによつて
も異なるので一様ではないが、前記した単量体に
対して1ppm〜3重量%、好ましくは50ppm〜0.8
重量%の範囲内が適当である。 重合温度にしても重合方法や単量体の組み合わ
せなどによつて異なり一様ではないが、前述した
ように、50〜180℃、好ましくは100〜160℃の範
囲が適当である。 また、本発明方法を実施するにさいしては、得
られるスチレン系樹脂の使用目的に従つて種々の
重合方法が用いられ、炭酸マグネシウム、炭酸カ
ルシウム、第三燐酸カルシウム、ポリビニルアル
コール、メチルセルローズまたはカルボキシメチ
ルセルローズの如き分散安定剤や各種界面活性剤
などを適宜使用して行なう懸濁重合法のほか、塊
状重合、溶液重合または乳化重合法などの如き公
知の方法が採用できるが、このさい分子量調整剤
または着色剤などを添加せしめて行なうこともで
きる。 かくして、本発明の方法により得られるスチレ
ン系樹脂はそのままで、あるいは必要に応じて、
分子量調整剤、可塑剤、内部滑剤、変性剤、難燃
剤、充填剤、発泡剤、発泡助剤または着色剤など
の如き、通常、スチレン系樹脂に用いられている
添加剤を添加せしめた形で用いてもよい。 次に、本発明を実施例および比較例により具体
的に説明する。 なお、樹脂の物性評価は下記に示す如き試験方
法によつたものである。 試験方法 スパイラル・フロー試験−「SAV−30A型」射出
成形機(山城精機製作所製)を使用し、成形温
度240℃または260℃、射出時間10秒間、冷却時
間20秒間、射出圧力590Kg/cm2(ラム圧40Kg/
cm2)、金型温度60℃および金型のスパイラル断
面積9.82mm2なる条件で行なつた。 押し込み強度試験−「225MVXL−20型三菱ナト
コ」射出成形機(三菱重工業(株)製)を使用し、
成形温度240℃または260℃、射出時間7〜10
秒、冷却時間40秒間および金型温度60℃なる条
件で成形した。なお、射出圧力は成形物重量が
208gになるように適宜調節した。成形物は216
mm×323mm×25mmなる寸法をもつた厚さ2mmな
るフタ型容器であつて、この成形物を23℃の恒
温状態に4日間放置後、押し込み強度の試験に
供した。 ここで、この押し込み強度試験は「オートグ
ラフIS−2000」〔(株)島津製作所製〕を用いて、
断面積450mm2の丸棒を、50mm/minなる速度で、
水平なる平面上に置かれた成形物の中央のゲー
ト部に押し込んで、そのさいの成形物の破壊時
の荷重を以て、この押し込み強度とした。 実施例 1 撹拌機および温度計を装備した200反応器に、
水80Kg、スチレン80Kg、第三燐酸カルシウム1Kg
およびトリス(t−ブチルパーオキシ)トリアジ
ン80gを仕込んで撹拌しながら昇温し、重合温度
を110℃として10時間、さらに130℃で5時間の懸
濁重合を行なつた。 かくして得られたパール状のスチレン樹脂を希
塩酸で洗浄して脱水させたのち、60℃で一昼夜乾
燥させた。 次いで、このパール状樹脂をシリンダー温度
260℃で50mmφなる押出機でペレツト化せしめた。 得られた樹脂の性状値を測定した結果、メルト
フローレートが0.30で、重量平均分子量が570000
であつた。 また、この樹脂の流動特性を知るために、スパ
イラル長さと実用強度としての押し込み強度とを
測定した。 さらに、上記と同様の反応装置を用い、かつ、
上記した重合条件で、ただトリス(t−ブチルパ
ーオキシ)トリアジンの量をそれぞれ240g、190
g、140gおよび110gと変更させることにより重
量平均分子量が360000、410000、430000および
500000なる樹脂を得、これらの各樹脂についても
同様にスパイラル長さと押し込み強度とを測定し
た。それらの結果はまとめて第1表および第1図
に示す。 比較例 1 トリス(t−ブチルパーオキシ)トリアジンに
替えて、一官能性の遊離基開始剤としての過酸化
ベンゾイルを二官能性遊離基開始剤としての1,
1−ジ(t−ブチルパーオキシ)−3,3,5−
トリメチルシクロヘキサンに適宜混合させて、あ
るいは組み合わせずに70〜300gの範囲で用い、
かつ、重合条件を80〜110℃で15時間に変更させ
た以外は、実施例1と同様の操作を繰り返して重
量平均分子量が300000〜560000なる樹脂を得、ス
パイラル長さと押し込み強度とを測定した。それ
らの結果はまとめて第1表に示す。 実施例 2 実施例1と同様の反応器に水100Kg、スチレン
80Kg、第三燐酸カルシウム1.2Kg、鉱油0.8Kgおよ
びトリス(t−ブチルパーオキシ)トリアジン
144gを仕込んで撹拌しながら昇温し、110℃で8
時間、さらに130℃で5時間、懸濁重合を行なつ
てパール状のスチレン樹脂を得た。 以後は実施例1と同様の操作を繰り返してペレ
ツト化せしめた。 得られた樹脂を240℃と260℃で成形し、押し込
み強度とスパイラル長さとを測定した。それらの
結果はまとめて第2表に示す。 比較例 2 トリス(t−ブチルパーオキシ)トリアジンに
替えて1,1−ジ(t−ブチルパーオキシ)−3,
3,5−トリメチルシクロヘキサンを192g用い、
かつ、85℃で15時間、さらに120℃で3時間とい
う条件に変更させた以外は、実施例2と同様にし
て樹脂を得、その樹脂についての押し込み強度と
スパイラル長さとを測定した。それらの結果は第
2表に示す。 実施例 3 実施例1と同様の反応器を用い、水90Kg、スチ
レン70Kg、メタクリル酸メチル10Kg、第三燐酸カ
ルシウム2Kgおよびトリス(t−ブチルパーオキ
シ)トリアジン112gを仕込んで撹拌しながら昇
温し、95℃で10時間、さらに125℃で5時間懸濁
重合を行なつてパール状のスチレン樹脂を得た。
以後は実施例1と同様の操作を繰り返して、押し
込み強度とスパイラル長さとを測定した。 それらの結果はまとめて第3表に示す。 比較例 3 トリス(t−ブチルパーオキシ)トリアジンに
替えてジ−t−ブチルパーオキシヘキサヒドロテ
レフタレートを60g用い、かつ、重合条件を85℃
で10時間、次いで120℃で5時間に変更させた以
外は、実施例3と同様にして樹脂を得、その樹脂
について押し込み強度とスパイラル長さとを測定
した。それらの結果はまとめて第3表に示す。 実施例 4 撹拌機および温度計を装備した5の反応器を
三つ並べて連続塊状重合を行なつた。まず、スチ
レンにその5重量%の「NF−35」(旭化成工業
(株)製ブタジエンゴム)を溶解して、これを2Kg/
hr.で第一の反応器に供給した。これと並行して、
トリス(t−ブチルパーオキシ)トリアジンのト
ルエン溶液〔該トリアジン/トルエン=10/90
(重量比)なる溶液〕を2Kg/hr.で第一反応器に
供給した。 これらの供給液は第一反応器で120℃に1時間、
第二反応器で130℃に1時間、続いて第三反応器
で170℃に1.5時間連続的に重合させ、得られた樹
脂は連続的に槽型脱揮槽に送られ、100mmHgの減
圧下に190℃で未反応モノマーおよび低沸点物を
脱揮し、次いで5mmHgまで減圧にされている押
出機で脱揮しながらペレツト化を行ない、1.65
Kg/hr.で樹脂ペレツトを得た。 得られた樹脂について押し込み強度とスパイラ
ル長さとを測定した処を、第4表に示す。 比較例 4 トリス(t−ブチルパーオキシ)トリアジンの
トルエン溶液の代わりに、ジ(t−ブチル)パー
オキサイドのトルエン溶液〔ジ(t−ブチル)パ
ーオキサイド/トルエン=10/90(重量比)なる
溶液〕を用いた以外は、実施例4と同様の操作を
繰り返して、1.70Kg/hr.なる樹脂ペレツトを得
た。 得られた樹脂について押し込み強度とスパイラ
ル長さとを測定した処を、第4表に示す。
The present invention relates to a method for producing styrenic resins, more particularly comprising (co)polymerizing monomers based on styrenic monomers using a specific trifunctional free radical initiator. The present invention relates to a method for producing resins with improved flowability and strength. Styrenic resins generally have excellent moldability, dimensional stability, colorability, electrical properties, and safety, so they are used in a wide variety of fields by taking advantage of these characteristics. However, in fields where a certain degree of durable strength is required, such as durable consumer goods and industrial parts, the need for improvement has become a major issue. As one measure to improve the strength of these styrene resins, it has been proposed to increase the molecular weight of the resin [Fujii, Plastic Materials Lecture 12, "Styrene Resin", p. 15]. However, it has been observed that when increasing the molecular weight to improve the strength of the resin, the fluidity of the resin deteriorates significantly;
Since strength and fluidity are contradictory properties, it can be said to be an extremely difficult task to improve both of these properties. For example, if we place too much emphasis on mechanical strength and sacrifice fluidity, even higher temperatures will be required during molding, which will not only consume energy but also cause residual distortion in the molded product. This can cause a decrease in strength due to an increase in the number of molded products, a decrease in transparency in molded products, and accelerated decomposition. Furthermore, it can also cause lengthening of the molding cycle and poor moldability when obtaining complex molded products. Become. As a result, despite the high molecular weight of the resin,
In reality, the strength of the molded product did not improve much;
It was not possible to obtain molded articles of the desired excellent quality. Furthermore, from the viewpoint of resin preparation, low-temperature reactions are essential for increasing the molecular weight, which may result in an abnormally long polymerization time, a significant increase in residual unreacted monomers in the product, or As the molecular weight increases, the viscosity of the resin increases, which places too much load on stirring power and transport pumps, making it difficult to manufacture the resin.
Achieving such a high molecular weight was extremely difficult. Furthermore, in the case of highly viscous resins, the thermal conductivity is significantly reduced, making it impossible to efficiently transfer or remove polymerization heat, which may result in partial accumulation of polymerization heat, leading to a runaway reaction. Therefore, the process of increasing the molecular weight has generally been considered to be very difficult. For these various reasons, increasing the molecular weight in order to obtain a styrenic resin that maintains excellent practical strength is difficult to achieve industrially due to technical and manufacturing process constraints. Ta. However, obtaining a resin with a high molecular weight and excellent fluidity has great industrial value, and if such a resin can be obtained, new uses can be expected from an application standpoint. For example, even though conventional styrene resins have excellent impact strength and toughness, they still have unsatisfactory performance in terms of durability such as creep resistance and fatigue resistance.・The use of plastics has been greatly restricted in fields where durable performance is required, such as durable consumer goods, light electrical parts, industrial materials, and industrial materials. However, if it is possible to make use of the excellent moldability characteristic of general-purpose styrene-based resins while also imparting durability, there is great promise for the development of applications in each of the above-mentioned fields. . On the other hand, regarding the fluidity mentioned above, it is well known that star-shaped branched polystyrene has superior fluidity compared to linear polystyrene of the same molecular weight [Nagazawa, Koka Shi 73 (7) P. 1264 ( 1970)]. However, although such star-branched polystyrene is generally produced by chemically bonding the ends of linear polystyrene synthesized by ionic polymerization, it is extremely difficult to commercialize it industrially. Ta. However, as a result of various studies aimed at industrially synthesizing such star-shaped branched polystyrene resins, the present inventors found that the general formula [However, R 1 , R 2 and R 3 in the formula are an alkyl group or an alkanoyl group having 4 to 10 carbon atoms, which may be the same or different from each other. ] It was discovered that a styrenic resin synthesized using a free radical initiator having the following structure has good fluidity and extremely high practical strength, despite having a very high molecular weight. As a result, we have completed the present invention. That is, the present invention uses a trifunctional free radical initiator represented by the above general formula [], and injects styrene, substituted styrene, and/or these styrenic monomers in the presence or absence of a rubbery substance. The present invention provides a method for producing a styrenic resin, which comprises polymerizing other monomers that are copolymerizable with the styrenic resin.When the method of the present invention is followed, conventionally known monofunctional and/or difunctional Compared to any resin synthesized using free radical initiators, it has good fluidity, high strength, and has a wide molding temperature range, providing high-quality products with excellent transparency. can do. The method of the present invention will be described in detail below. Using one or more monomers selected from, if necessary,
Furthermore, a rubbery substance is also present, and a resin is obtained by polymerizing using a free radical initiator represented by the above general formula [] at a temperature of 50 to 180°C in the presence or absence of a solvent. If necessary, this resin is subjected to post-treatment steps such as dehydration, drying, demonomer removal, and/or desolvent removal.
The desired product is obtained by pelletizing. Here, typical free radical initiators include tris(alkylperoxy)triazine or tris(alkanoylperoxy)triazine, which can be used alone or in conventional polymerization of vinyl monomers. used in combination with free radical initiators. Typical initiators used in combination in this way are benzoyl peroxide, 1,1-di(t-butylperoxy)-
3,3,5-trimethylcyclohexane, t-butyl hydroperoxide, t-butyl peroxybenzoate, di-t-butyl peroxide, t-butyl peroxypivalate, cumene hydroperoxide, p-menthane hydroperoxide , dicumyl peroxide, lauroyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butylperoxyisophthalate, t-butylperoxylaurate, t-butylperoxy-3,5,5-trimethylhexa Noate, t-butylperoxy-
2-ethylhexanoate, t-butylperoxyacetate, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, octanoyl peroxide, decanoyl peroxide or stearoyl peroxide, etc. It is. Typical examples of the above-mentioned substituted styrene include styrene in which the hydrogen atom of the benzene nucleus is substituted with a halogen atom or an alkyl group having 1 to 4 carbon atoms, such as o-
Chlorstyrene, p-chlorostyrene, p-methylstyrene, 2,4-dimethylstyrene, t-butylstyrene, α-methylstyrene, etc., which are representative of the other monomers having copolymerizability mentioned above. (meth)acrylonitrile, α
-Acrylonitrile monomers such as chloroacrylonitrile or vinylidene cyanide; (meth)
Acrylic acid, (meth)methyl acrylate, (meth)
Ethyl acrylate, butyl (meth)acrylate,
(Meth)acrylic acid and its esters such as glycidyl (meth)acrylate, 2-ethylhexyl (meth)acrylate or hydroxyethyl (meth)acrylate; vinyl acetate, vinyl chloride, vinylidene chloride, vinylpyrrolidone, ( Examples include various vinyl monomers such as meth)acrylamide, dimethyl(meth)acrylamide, maleic anhydride, itaconic anhydride, maleimide, or vinyl ketones or vinyl ethers. Furthermore, typical rubber-like substances mentioned above include polybutadiene rubber, SBR, SBS rubber,
EPDM rubber; rubber obtained from conjugated 1,3-diene monomers such as isoprene or chloroprene; butadiene-acrylonitrile rubber, isoprene-acrylic acid ester copolymer rubber,
Butyl rubber, acrylic rubber or styrene
Examples include isobutylene-butadiene rubber, which may be used alone or in combination of two or more. Furthermore, typical solvents mentioned above are aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene. The amount of the above-mentioned free radical initiator used varies depending on the polymerization temperature, monomer combination, polymerization method, etc., and is not uniform, but it is 1 ppm to 3% by weight based on the above-mentioned monomers. Preferably 50ppm~0.8
A range of % by weight is suitable. Although the polymerization temperature varies depending on the polymerization method and the combination of monomers, etc., it is suitably in the range of 50 to 180°C, preferably 100 to 160°C, as described above. Furthermore, when carrying out the method of the present invention, various polymerization methods are used depending on the intended use of the styrenic resin obtained. In addition to suspension polymerization using appropriate dispersion stabilizers such as methylcellulose and various surfactants, known methods such as bulk polymerization, solution polymerization, or emulsion polymerization can be used, but molecular weight adjustment is necessary in this case. It is also possible to add a coloring agent or a coloring agent. Thus, the styrenic resin obtained by the method of the present invention can be used as is or if necessary,
Additives commonly used in styrenic resins such as molecular weight regulators, plasticizers, internal lubricants, modifiers, flame retardants, fillers, blowing agents, blowing aids or colorants are added. May be used. Next, the present invention will be specifically explained using Examples and Comparative Examples. The physical properties of the resin were evaluated using the test method shown below. Test method Spiral flow test - Using "SAV-30A" injection molding machine (manufactured by Yamashiro Seiki Seisakusho), molding temperature 240℃ or 260℃, injection time 10 seconds, cooling time 20 seconds, injection pressure 590Kg/cm 2 (Ram pressure 40Kg/
cm 2 ), the mold temperature was 60° C., and the spiral cross-sectional area of the mold was 9.82 mm 2 . Indentation strength test - Using "225MVXL-20 type Mitsubishi Natco" injection molding machine (manufactured by Mitsubishi Heavy Industries, Ltd.),
Molding temperature 240℃ or 260℃, injection time 7-10
molding was carried out under conditions of a cooling time of 40 seconds and a mold temperature of 60°C. Note that the injection pressure depends on the weight of the molded product.
The weight was adjusted appropriately so that it weighed 208 g. 216 molded items
This molded product, which was a lid-type container with dimensions of mm x 323 mm x 25 mm and a thickness of 2 mm, was left at a constant temperature of 23° C. for 4 days and then subjected to an indentation strength test. Here, this indentation strength test was performed using "Autograph IS-2000" [manufactured by Shimadzu Corporation].
A round bar with a cross-sectional area of 450 mm 2 is moved at a speed of 50 mm/min.
The indentation strength was defined as the load at which the molded product broke when the molded product was pressed into the central gate portion placed on a horizontal plane. Example 1 A 200 reactor equipped with a stirrer and a thermometer was
80Kg of water, 80Kg of styrene, 1Kg of tricalcium phosphate
and 80 g of tris(t-butylperoxy)triazine were charged, the temperature was raised with stirring, and suspension polymerization was carried out at a polymerization temperature of 110° C. for 10 hours and then at 130° C. for 5 hours. The pearl-shaped styrene resin thus obtained was washed with dilute hydrochloric acid, dehydrated, and then dried at 60° C. for a day and a night. Next, this pearl-shaped resin is heated to cylinder temperature.
It was pelletized at 260°C using an extruder with a diameter of 50 mm. As a result of measuring the properties of the obtained resin, the melt flow rate was 0.30 and the weight average molecular weight was 570000.
It was hot. In addition, in order to know the flow characteristics of this resin, the spiral length and the indentation strength as practical strength were measured. Furthermore, using the same reaction apparatus as above, and
Under the above polymerization conditions, the amount of tris(t-butylperoxy)triazine was 240g and 190g, respectively.
The weight average molecular weight is 360,000, 410,000, 430,000 and
500,000 resins were obtained, and the spiral length and indentation strength of each of these resins were similarly measured. The results are summarized in Table 1 and Figure 1. Comparative Example 1 Tris(t-butylperoxy)triazine was replaced with benzoyl peroxide as a monofunctional free radical initiator and 1, as a difunctional free radical initiator.
1-di(t-butylperoxy)-3,3,5-
Use in the range of 70 to 300 g with or without mixing with trimethylcyclohexane,
The same procedure as in Example 1 was repeated except that the polymerization conditions were changed to 80 to 110°C for 15 hours to obtain a resin with a weight average molecular weight of 300,000 to 560,000, and the spiral length and indentation strength were measured. . The results are summarized in Table 1. Example 2 100 kg of water and styrene were placed in the same reactor as in Example 1.
80Kg, tricalcium phosphate 1.2Kg, mineral oil 0.8Kg and tris(t-butylperoxy)triazine
Pour 144g and raise the temperature while stirring, and raise the temperature to 110℃.
Suspension polymerization was further carried out at 130° C. for 5 hours to obtain a pearl-like styrene resin. Thereafter, the same operations as in Example 1 were repeated to pelletize. The resulting resin was molded at 240°C and 260°C, and the indentation strength and spiral length were measured. The results are summarized in Table 2. Comparative Example 2 1,1-di(t-butylperoxy)-3, instead of tris(t-butylperoxy)triazine
Using 192g of 3,5-trimethylcyclohexane,
A resin was obtained in the same manner as in Example 2, except that the conditions were changed to 85° C. for 15 hours and 120° C. for 3 hours, and the indentation strength and spiral length of the resin were measured. The results are shown in Table 2. Example 3 Using the same reactor as in Example 1, 90 kg of water, 70 kg of styrene, 10 kg of methyl methacrylate, 2 kg of tribasic calcium phosphate, and 112 g of tris(t-butylperoxy)triazine were charged and heated while stirring. Suspension polymerization was carried out at 95°C for 10 hours and then at 125°C for 5 hours to obtain pearl-like styrene resin.
Thereafter, the same operations as in Example 1 were repeated to measure the indentation strength and spiral length. The results are summarized in Table 3. Comparative Example 3 60g of di-t-butylperoxyhexahydroterephthalate was used instead of tris(t-butylperoxy)triazine, and the polymerization conditions were 85°C.
A resin was obtained in the same manner as in Example 3 except that the temperature was changed to 10 hours at 120° C. and 5 hours at 120° C., and the indentation strength and spiral length of the resin were measured. The results are summarized in Table 3. Example 4 Continuous bulk polymerization was carried out using three reactors of No. 5 equipped with a stirrer and a thermometer. First, 5% by weight of ``NF-35'' (Asahi Kasei Corporation) was added to styrene.
Butadiene Rubber Co., Ltd.) was dissolved and 2 kg/
hr. to the first reactor. In parallel with this,
Toluene solution of tris(t-butylperoxy)triazine [triazine/toluene = 10/90
(weight ratio)] was supplied to the first reactor at a rate of 2 kg/hr. These feed solutions were heated to 120°C for 1 hour in the first reactor.
Continuous polymerization was carried out at 130℃ for 1 hour in the second reactor, followed by 1.5 hours at 170℃ in the third reactor, and the resulting resin was continuously sent to a tank-type devolatilization tank under a reduced pressure of 100 mmHg. Then, unreacted monomers and low-boiling substances were devolatilized at 190°C, and then pelletized while devolatilizing in an extruder with a reduced pressure of 5 mmHg.
Resin pellets were obtained in Kg/hr. Table 4 shows the measurements of the indentation strength and spiral length of the obtained resins. Comparative Example 4 Instead of a toluene solution of tris(t-butylperoxy)triazine, a toluene solution of di(t-butyl)peroxide [di(t-butyl)peroxide/toluene = 10/90 (weight ratio)] was used. The same operation as in Example 4 was repeated except that the solution] was used to obtain resin pellets of 1.70 kg/hr. Table 4 shows the measurements of the indentation strength and spiral length of the obtained resins.

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から、前記一般式〔〕で示される
遊離開始剤を用いて得られた本発明製品は、従来
より一般的に用いられている一官能性および二官
能性の遊離基開始剤を使つて得られたものよりも
樹脂の流動性が良好な上に、実用強度も非常にす
ぐれていることが知れる。
[Table] From the above results, the product of the present invention obtained using the free initiator represented by the general formula [] It is known that the fluidity of the resin is better than that obtained using a resin, and the practical strength is also very superior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法により得られた樹脂の流
動特性を説明するためのもので、スパイラル長さ
と押し込み強度との関係を示すものであり、図中
の実線は実施例1で得られた樹脂についてのもの
であり、点線は比較例1で得られた樹脂について
のものである。
Figure 1 is for explaining the flow characteristics of the resin obtained by the method of the present invention, and shows the relationship between the spiral length and the indentation strength. The dotted line is for the resin obtained in Comparative Example 1.

Claims (1)

【特許請求の範囲】 1 一般式 〔但し、式中のR1、R2およびR3は互いに同一で
も異なつてもよい4〜10個の炭素原子を有するア
ルキル基またはアルカノイル基であるものとす
る。〕 で示される遊離基開始剤を用い、ゴム状物質の存
在下または不存在下に、スチレン、置換スチレン
および/またはこれらのスチレン系単量体と共重
合性を有する他の単量体を重合せしめることを特
徴とする、スチレン系樹脂の製造方法。
[Claims] 1. General formula [However, R 1 , R 2 and R 3 in the formula are an alkyl group or an alkanoyl group having 4 to 10 carbon atoms, which may be the same or different from each other. ] Polymerization of styrene, substituted styrene and/or other monomers copolymerizable with these styrenic monomers in the presence or absence of a rubbery substance using a free radical initiator shown in A method for producing a styrenic resin, characterized by:
JP18110081A 1981-11-13 1981-11-13 Production of styrene resin Granted JPS5883008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18110081A JPS5883008A (en) 1981-11-13 1981-11-13 Production of styrene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18110081A JPS5883008A (en) 1981-11-13 1981-11-13 Production of styrene resin

Publications (2)

Publication Number Publication Date
JPS5883008A JPS5883008A (en) 1983-05-18
JPH0334482B2 true JPH0334482B2 (en) 1991-05-22

Family

ID=16094832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18110081A Granted JPS5883008A (en) 1981-11-13 1981-11-13 Production of styrene resin

Country Status (1)

Country Link
JP (1) JPS5883008A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855428A (en) * 1986-06-11 1989-08-08 Akzo N.V. Triazine peroxides
JPH0649116A (en) * 1992-07-28 1994-02-22 Nippon Oil & Fats Co Ltd Organic peroxide and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168518A (en) * 1964-01-23 1965-02-02 James B Harrison Alkyl peroxy triazines
JPS5665014A (en) * 1979-11-01 1981-06-02 Mitsui Toatsu Chem Inc Production of rubber-modified styrene type resin
JPS5856561A (en) * 1981-09-30 1983-04-04 Nec Corp Loudspeaker telephone set
JPS5876405A (en) * 1981-10-31 1983-05-09 Denki Kagaku Kogyo Kk Manufacture of styrene polymer
JPH0334482A (en) * 1989-06-30 1991-02-14 Nec Corp Stabilizing apparatus of interval of oscillation frequency of laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168518A (en) * 1964-01-23 1965-02-02 James B Harrison Alkyl peroxy triazines
JPS5665014A (en) * 1979-11-01 1981-06-02 Mitsui Toatsu Chem Inc Production of rubber-modified styrene type resin
JPS5856561A (en) * 1981-09-30 1983-04-04 Nec Corp Loudspeaker telephone set
JPS5876405A (en) * 1981-10-31 1983-05-09 Denki Kagaku Kogyo Kk Manufacture of styrene polymer
JPH0334482A (en) * 1989-06-30 1991-02-14 Nec Corp Stabilizing apparatus of interval of oscillation frequency of laser device

Also Published As

Publication number Publication date
JPS5883008A (en) 1983-05-18

Similar Documents

Publication Publication Date Title
US5304618A (en) Polymers of brominated styrene
KR102146370B1 (en) Method for preparing copolymer
EP3262088B1 (en) Continuous process for preparation of high heat resistance copolymers
JPH0830096B2 (en) Injection molding material
US5221787A (en) Method of preparing maleic anhydride terpolymers
JP3603425B2 (en) Styrene random copolymer and method for producing the same
TW201542606A (en) Heat-resistant styrene copolymer and styrene resin composition comprising the same
KR100893873B1 (en) Continuous Process for Preparing Thermoplastic Copolymer Resin Having Excellent Heat Resistance
JPH0334482B2 (en)
KR100364232B1 (en) Preparation method of thermoplastic resin with excellent impact resistance and low gloss
EP0028517B2 (en) A method of manufacturing rubber modified styrene resins and resins produced by such a method
JPH0449841B2 (en)
JPH11246624A (en) Polystyrene-based resin and its foam
JP2931162B2 (en) Method for producing polystyrene resin
JPH0625229B2 (en) Method for producing thermoplastic resin
JP3297180B2 (en) Maleimide copolymer
US5880232A (en) Process for producing styrene based polymer and molded articles comprising the polymer
KR20000055398A (en) Thermoplastic resin composition with good chemical resistance and sheet extraction characteristics
JPH0518859B2 (en)
JPH08127626A (en) High-nitrile vinylic copolymer and its production
KR100576322B1 (en) Method of Preparing Low-costed AS Resin with Good Heat Resistance
JP3367575B2 (en) Thermoplastic copolymer composition
KR100573440B1 (en) Continuous Process of Preparing High-Flow and High-Gloss Rubber-Modified Styrenic Resin
JPS581142B2 (en) Styrenic resin composition
JP2895119B2 (en) Method for producing rubber-modified styrenic resin