JPS58113700A - Electric heating method of pipe line - Google Patents

Electric heating method of pipe line

Info

Publication number
JPS58113700A
JPS58113700A JP20996281A JP20996281A JPS58113700A JP S58113700 A JPS58113700 A JP S58113700A JP 20996281 A JP20996281 A JP 20996281A JP 20996281 A JP20996281 A JP 20996281A JP S58113700 A JPS58113700 A JP S58113700A
Authority
JP
Japan
Prior art keywords
power
pipe line
power supply
electric heating
heating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20996281A
Other languages
Japanese (ja)
Inventor
Ichiro Okamura
岡村 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20996281A priority Critical patent/JPS58113700A/en
Publication of JPS58113700A publication Critical patent/JPS58113700A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/18Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)

Abstract

PURPOSE:To make it possible to prevent uneven temperature distribution caused by a voltage drop in the electric heating method of a pipe line by dividing the power supply section of the line pipe into a plural number of divisions, and supply, in time shearing, power to the respective divisions. CONSTITUTION:Power is supplied to a pipe line until a fluid inside the pipe line reaches the prescribed temperature, and further in order to maintain said temperature, the power is intermittently supplied. Since a power supply section has been divided, electrical switchgears 6, 7 and 8 are ignited and controlled in order, and the power is successively supplied to respective divisions 41, 42 and 43. And, when the fluid temperature inside a pipe line reaches a prescribed value, uneven temperature distribution caused by a voltage drop in the electric heating method of the pipe line can be prevented, since the ignition intervals of respective electrical swithgears 6, 7 and 8 have been made wider compared with those at rise of the operation.

Description

【発明の詳細な説明】 本楯明嬬高粘m原油等の高粘度流体を輸送するパイプラ
インの給電加熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply heating method for a pipeline that transports a high viscosity fluid such as high viscosity crude oil.

高粘度原油は常温で凝固する性質をもっている良め、パ
イプラインで効率的に輸送するためには管体を加熱し、
流体温度を所定の温度に保持する必賛がある。管体を加
熱する方法としては、蒸気(温水)Kよる方法、電気加
熱による方法勢があるが1.電気加熱方法として紘例え
ば111図に示されるーような二重管式電気直線加熱シ
ステムがある。
High viscosity crude oil has the property of solidifying at room temperature, so in order to transport it efficiently by pipeline, the tube body must be heated.
There is a need to maintain the fluid temperature at a predetermined temperature. There are two methods of heating the tube: one using steam (hot water) and the other using electric heating.1. As an electric heating method, there is a double pipe electric linear heating system as shown in FIG. 111, for example.

こOシステムは流体を輸送する鋼管1 (内管)oat
sK絶縁を兼ねえ断熱材2を配置し、その外側を鋼管5
(外管〕で保護した二重管構造のパイプライン4の一端
で内管1と外管5とt短絡し、他端に交流電源Eを接続
して直接通電すれば、二重管は鋼管の電気抵抗分で発熱
する。この発熱は鋼管全体に均一に行なわnる九め流体
への熱伝達の効率が曳く、局部的な温度上昇がないので
無理のない加熱が実現できている。
This O system is a steel pipe 1 (inner pipe) that transports fluid.
A heat insulating material 2 is placed that also serves as sK insulation, and a steel pipe 5 is placed on the outside of the heat insulating material 2.
If the inner pipe 1 and the outer pipe 5 are short-circuited at one end of the pipeline 4, which has a double-pipe structure protected by Heat is generated due to the electrical resistance of the tube.This heat generation occurs uniformly throughout the steel pipe, and due to the efficiency of heat transfer to the fluid, there is no local temperature rise, making it possible to achieve reasonable heating.

しかしながら、このようなシステムにおいてもその夾用
距laI/′i主として電圧降下により制限されていた
。それを防ぐため次の方法が採られている。
However, even in such a system, the range laI/'i is limited primarily by the voltage drop. The following method is adopted to prevent this.

(1)電源電圧を上げる。(1) Increase the power supply voltage.

(iり給電点を加熱回路の中央部に設ける。(The feeding point is provided in the center of the heating circuit.)

(iiり複数系統で給電する。(ii) Power is supplied through multiple systems.

ところが、上記の各方法(1)〜(txt)にはそれぞ
れ次のような問題があった。
However, each of the above methods (1) to (txt) has the following problems.

(i)高電圧にすればするtlど絶縁が困難になる。(i) If the voltage is set to high, insulation becomes difficult.

(11)実用距離がやや延びるが限度がある。(11) The practical distance is slightly extended, but there is a limit.

(i i l)給電線の費用が大となる。(i i l) The cost of the power supply line becomes large.

本発明はこのような状況に鑑みて発明され良ものであり
、パイプラインの給電区間を複数に区分し、各区分への
給電をタイムシェアリングにより行なうことにより、電
圧降下を押さえてその実用船lll&を延ばすことを可
能にしたパイプラインの電気加熱方法を提供するもので
ある。
The present invention was invented in view of this situation, and is a good idea because it divides the power supply section of the pipeline into multiple sections and supplies power to each section by time sharing, thereby suppressing the voltage drop and improving the practicality of the ship. This invention provides a method for electrically heating a pipeline that makes it possible to extend the length of the pipeline.

本発明は電気加熱方法における電圧降下の軽減化を目的
にしたものであるから、その加熱方法の如何を問わず電
気加熱方法であれば全て含′まれるものである。すなわ
ち、上述の二重管式電気直接加熱システムのみならず、
(a)パイプラインに直接通電し管体を発熱させる直接
電加熱法、(b)耐熱ケーブルを内蔵した発熱鋼管をパ
イプラインに1liliL、この回路に通電し発熱させ
る5ECT法(商品名)、(C)二重管の内管と外管と
の間に断熱#を充填すると共にMIケーブルを挿入し、
このケーブルの電気抵抗により発熱させるMIケーブル
法等のいずれも含まれる。
Since the present invention is aimed at reducing the voltage drop in electric heating methods, it includes all electric heating methods regardless of the heating method. In other words, not only the above-mentioned double-pipe electric direct heating system, but also
(a) Direct electric heating method where electricity is applied directly to the pipeline and the pipe body generates heat, (b) 5ECT method (product name) where a 1liliL heat-generating steel pipe with a built-in heat-resistant cable is connected to the pipeline and electricity is applied to this circuit to generate heat. C) Fill insulation between the inner and outer pipes of the double pipe and insert the MI cable,
This includes any method such as the MI cable method in which heat is generated by the electrical resistance of the cable.

以下本発明の実施例を図面に基づきながら説明する0 1112図は本発明に係る方法を実施するための加熱シ
ステムの一実施例の説明図であり、このシステムは二重
管式電気直接加熱システムを基本としており、従って、
詳細に図示されていないが細部は凧1図のそれと同一で
ある。
Embodiments of the present invention will be described below based on the drawings. FIG. is based on, therefore,
Although not shown in detail, the details are the same as those of the kite in Figure 1.

本実施例ではパイプライン4の給電区間が3区′間に区
分されており、給電線5からそれぞれ開閉装置6,7.
8を介して各区分に給電されている。
In this embodiment, the power supply section of the pipeline 4 is divided into three sections, each extending from the power supply line 5 to the switchgear 6, 7.
Power is supplied to each section via 8.

ここで、各開閉装置6.7.8は図示しないが半導体ス
イッチとその点弧制御装置とから構成されているものと
する。
Here, each switching device 6.7.8 is assumed to be composed of a semiconductor switch and its ignition control device, although not shown.

給電線の電圧降下に着目すれば、従来の方法は給電区間
が区分されていないから、加熱体が給電線を兼用してお
り、このため必然的に電圧降下も大きくなり、第6図の
特性−@Aに示したようにその実用船11iLe  は
きわめて短いものとなっている。
Focusing on the voltage drop in the feeder line, in the conventional method, the feeder section is not divided, so the heating element also serves as the feeder line, which inevitably results in a large voltage drop, resulting in the characteristics shown in Figure 6. - As shown in @A, the practical ship 11iLe is extremely short.

こnに対し、本発明に係る方法は上述のような給電シス
テムになっているから、第6図の特性−11ABに示し
たように、加熱体への給電電圧が給電線5の電圧降下E
−によって許容最小供給電圧′E;rni nに下がる
距離節 まで実用距離が延長し、その−は上記L・ に
比べてはるかに長距離となっている。
On the other hand, since the method according to the present invention has a power supply system as described above, the power supply voltage to the heating element is reduced by the voltage drop E of the power supply line 5, as shown in characteristic-11AB of FIG.
By -, the practical distance is extended to the distance node where the allowable minimum supply voltage 'E;

次に本実施例における給電方法を従来方法のそれと比べ
ながら説明する。
Next, the power supply method in this embodiment will be explained while comparing it with that of a conventional method.

従来方法による給電は164図(A)に示し良ように、
パイプライン内の流体が所定の温度になる・まで給電し
く立上す)、次にその温度を維持する九め関けつ的に給
電する(温度保持)。
The conventional method of power supply is shown in Figure 164 (A).
Power is supplied until the fluid in the pipeline reaches a predetermined temperature (temperature maintenance), and then power is supplied in stages to maintain that temperature (temperature maintenance).

本実施例に係る給電方法も上述の場合と基本的KtiF
Jじであるが、給電区間を区間しているので、第4E 
CB)に示し九ように、開閉装置6,7゜8を順次点弧
制御することにより、各区間41゜42.43に順次給
電し、パイプライン内の流体11度が所定の温度に達し
たならば、各開閉制御装置6,7.8の点弧間隔を立上
り時の場合に比べて広くとるようにしている。このよう
にして上記流体温度を一定に保持している。゛また、タ
イムシェアリングに給電しているから、パイプラインの
長さ方向の温度分布も均一となっている。
The power supply method according to this embodiment is also similar to the above case and the basic KtiF
J, but since the power supply section is separated, the 4th E
As shown in CB), by sequentially controlling the opening and closing devices 6, 7, 8, power was supplied to each section 41, 42, and 43 in sequence, and the fluid in the pipeline reached a predetermined temperature of 11 degrees. If so, the firing interval of each opening/closing control device 6, 7.8 is set to be wider than that at the time of startup. In this way, the fluid temperature is kept constant.゛Also, since power is supplied through time sharing, the temperature distribution along the length of the pipeline is also uniform.

以上の説明から明らかなように本発明に係る方法は、パ
イプラインの給電区間を複数に区分し、各区分への給電
をタイムシェアリングにより行なうようにしたので、電
圧降下が押さえられ結果としてその実用距離が延びると
共に、パイプラインの長さ方法の温度分布も均一にある
という優れた効果が得られている。
As is clear from the above explanation, the method according to the present invention divides the power supply section of the pipeline into a plurality of sections and supplies power to each section by time sharing, which suppresses voltage drop. Excellent effects have been achieved in that the practical distance is extended and the temperature distribution along the length of the pipeline is also uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパイプラインの二重管式電気直接加熱システム
の説明図、第2図は本発明に係る方法を実施するための
加熱システムの一例の説明図、帛3図は距離−電圧降下
特性図、龜4図(A)。 (B)はそれぞれ従来方法による給電方法及び本発明に
係る給電方法の説明図である。 4・・・パイプライン、5・・・給電線、6,7.8・
・・半導体スイッチ。 代塩入弁理士  佐 藤 正 年
Fig. 1 is an explanatory diagram of a double pipe electric direct heating system for pipelines, Fig. 2 is an explanatory diagram of an example of a heating system for carrying out the method according to the present invention, and Fig. 3 is an explanatory diagram of a distance-voltage drop characteristic. Fig. 4 (A). (B) is an explanatory diagram of a conventional power supply method and a power supply method according to the present invention, respectively. 4...Pipeline, 5...Power line, 6,7.8・
...Semiconductor switch. Daishioiri Patent Attorney Masatoshi Sato

Claims (1)

【特許請求の範囲】[Claims] パイプラインの給電区間を複数に区分し、各区分への給
電をタイムシェアリングにより行なうことを4111と
するパイプラインの電気加熱方法。
4111. A method for electrically heating a pipeline, in which the power supply section of the pipeline is divided into a plurality of sections, and power is supplied to each section by time sharing.
JP20996281A 1981-12-28 1981-12-28 Electric heating method of pipe line Pending JPS58113700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20996281A JPS58113700A (en) 1981-12-28 1981-12-28 Electric heating method of pipe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20996281A JPS58113700A (en) 1981-12-28 1981-12-28 Electric heating method of pipe line

Publications (1)

Publication Number Publication Date
JPS58113700A true JPS58113700A (en) 1983-07-06

Family

ID=16581550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20996281A Pending JPS58113700A (en) 1981-12-28 1981-12-28 Electric heating method of pipe line

Country Status (1)

Country Link
JP (1) JPS58113700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019318A (en) * 2014-06-17 2014-09-03 大庆高瞻电气科技有限公司 Long-transportation electromagnetic induction electric heat tracing and oil gas connecting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019318A (en) * 2014-06-17 2014-09-03 大庆高瞻电气科技有限公司 Long-transportation electromagnetic induction electric heat tracing and oil gas connecting system

Similar Documents

Publication Publication Date Title
US2992538A (en) Thermoelectric system
DK149720B (en) FUEL OIL HEATING DEVICE
GB1279537A (en) Transportation pipes heated by heat generating pipes utilizing skin-effect current
US2304489A (en) Control instrumentality
US3632976A (en) Differential and/or discontinuous heating along pipelines by heat-generating pipes utilizing skin-effect current
KR100824227B1 (en) Baking method
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
GB2147776A (en) Electrically operated heating installation
JPS58113700A (en) Electric heating method of pipe line
GB1227350A (en) Improvements in cable terminations
KR20220092607A (en) pipeline electric heating system
RU2584137C2 (en) Method for applying electrothermal effect on long pipelines and induction heating system therefor
US4204407A (en) Heated piping system for fusible salt heat exchange fluid in a solar power plant
MX2022002935A (en) Heater bundles with local power switching.
JPS5630543A (en) Piping device
US3116167A (en) Thermoelectric generators
US2953623A (en) Forced convection cooling for isolated phase bus
US1383107A (en) Generation and distribution of heat
US1139001A (en) Electrical water-heater.
SU955524A1 (en) Device for heating fluid medium
WO2018084728A1 (en) Fired heat exchanger with a thermoelectric generator
US3654513A (en) Arc heater apparatus and method for producing a diffuse arc discharge
US2197639A (en) High tension cable system
JPS5915250B2 (en) Cable forced cooling line
RU182642U1 (en) DEVICE FOR HEATING INDUSTRIAL OBJECTS