JPS5811292B2 - How to manufacture casting molds - Google Patents

How to manufacture casting molds

Info

Publication number
JPS5811292B2
JPS5811292B2 JP51014642A JP1464276A JPS5811292B2 JP S5811292 B2 JPS5811292 B2 JP S5811292B2 JP 51014642 A JP51014642 A JP 51014642A JP 1464276 A JP1464276 A JP 1464276A JP S5811292 B2 JPS5811292 B2 JP S5811292B2
Authority
JP
Japan
Prior art keywords
graphite
molds
mold
master
master mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51014642A
Other languages
Japanese (ja)
Other versions
JPS5296926A (en
Inventor
小木曽光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP51014642A priority Critical patent/JPS5811292B2/en
Publication of JPS5296926A publication Critical patent/JPS5296926A/en
Publication of JPS5811292B2 publication Critical patent/JPS5811292B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は熱硬化性鋳型、常温硬化性鋳型、発熱自硬性鋳
型等を造型するための黒鉛製マスターモールドの製造方
法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a graphite master mold for molding thermosetting molds, room temperature hardening molds, exothermic self-hardening molds, and the like.

金属鋳造用鋳型としては砂型、金型、シェル型、石膏型
、エチールシリケートをバインダーとする耐火物型(シ
ョウプロセスやロストワックス法)等が知られている。
Known molds for metal casting include sand molds, metal molds, shell molds, plaster molds, and refractory molds using ethyl silicate as a binder (Shaw process and lost wax method).

これらの鋳型の中で、砂型、シェル型、石膏型等は木型
や金型あるいはゴム型等のマスターを用いて造型されて
いる。
Among these molds, sand molds, shell molds, plaster molds, etc. are made using masters such as wooden molds, metal molds, or rubber molds.

砂型や石膏型は常温で造型出来るので木型マスターを用
いて造型しても何ら作業上欠陥を生じないが、シェル型
の場合は熱硬化性造型方法が一般的であるために金型マ
スターを用いて造型されている。
Sand molds and plaster molds can be molded at room temperature, so using a wooden mold master will not cause any operational defects, but in the case of shell molds, thermosetting molding methods are common, so it is difficult to use a mold master. It is molded using.

また砂型造型法の1種である発熱自硬性鋳型は木型マス
ターを用いて造型されているが、発熱により木型に損傷
を与える事があるので、木型表面に耐火物等の塗装を施
して使用される場合が多い。
In addition, heat-generating self-hardening molds, which are a type of sand molding method, are made using a wooden mold master, but since heat generation can damage the wooden mold, the surface of the wooden mold is coated with a refractory material, etc. It is often used.

本発明の目的とするところは金型や木型に代るべき、か
つ取扱いが容易なマスター材料を見い出し、マスターモ
ールドとして実用化に供しようというところにある。
The purpose of the present invention is to find a master material that can replace metal molds and wooden molds and is easy to handle, and to put it into practical use as a master mold.

特に主目的とするのは熱に安定でかつ寸法精度に秀れた
多種少量品用マスターモールドを製作する事にある。
In particular, the main purpose is to produce master molds for a wide variety of small quantity products that are stable to heat and have excellent dimensional accuracy.

従って、マスターモールドとして使用可能な条件は、加
工が容易であり、耐熱性に秀れ、かつ熱衝撃性に安定な
物でなければならない。
Therefore, the conditions for use as a master mold must be that it is easy to process, has excellent heat resistance, and is stable against thermal shock.

木型は加工性には秀れているが熱には弱く、金型は熱に
は強いが加工時間が非常に長い欠点がある。
Wooden molds have excellent workability but are weak against heat, and metal molds are strong against heat but have the drawback of requiring extremely long processing times.

例えばシェル鋳型の製作法の主なものとしては、熱硬化
性シェル鋳型造型方法としてのフェノール系レジンを粘
結剤とするシェルモールド法、フラン系レジンを粘結剤
とした熱硬化性シェル鋳型造型法であるホット・ボック
ス法、及びフェノール系レジンとインシアネートを粘結
剤とし、これにアミン系ガスを吹き込んで常温で硬化さ
せるコールド・ボックス法等がある。
For example, the main methods for producing shell molds include the shell mold method, which uses phenolic resin as a binder, and the thermosetting shell mold method, which uses furan resin as a binder. There are two methods: the hot box method, which uses phenolic resin and incyanate as a binder, and the cold box method, which uses phenolic resin and incyanate as a binder, blows amine gas into it, and cures it at room temperature.

これらシェル鋳型造型法においてシェルモールド法及び
ホット・ボックス法は熱硬化性造型法であるのでマスタ
ーモールドは熱に安定な金型を使用しなければならない
In these shell mold manufacturing methods, the shell mold method and the hot box method are thermosetting molding methods, so a master mold that is stable to heat must be used.

コールド・ボックス法は常温硬化性造型法だからマスタ
ーモールドは木型でもよいが、量産用は金型が使用され
ている。
Since the cold box method is a molding method that hardens at room temperature, the master mold can be a wooden mold, but for mass production, a metal mold is used.

従ってシェル鋳型のみならず、その他の造型法も含めて
、熱硬化性または発熱自硬性の造型法においては金型に
代るべき熱衝撃に安定なマスターモールドを、常温硬化
性においては木型に代るべき耐久性のあるマスターモー
ルドを見い出す事が出来れば造型上有恭となるにちがい
ない。
Therefore, in addition to shell molds, as well as other molding methods, a master mold that is stable against thermal shock, which is a substitute for a mold, is used in thermosetting or exothermic self-hardening molding methods, and a wooden mold is used in cold-curing molds. If we can find a durable master mold to replace it, it will surely be a blessing in terms of molding.

以上の理由に従って発明者は数種類の材料について検討
を加えた。
Based on the above reasons, the inventor investigated several types of materials.

先ず最初に耐火物の材料であるアルミナの焼結晶につい
て検討してみたが、一度焼結されたアルミナは切削等の
二次加工が非常に困難である事がわかった。
First, we investigated sintered crystals of alumina, which is a material for refractories, but found that once alumina has been sintered, secondary processing such as cutting is extremely difficult.

これはマスターモールドの条件には適しない。This is not suitable for master mold conditions.

また熱衝撃にも不安定で使用に値しない事を知った。I also learned that it is unstable against thermal shock and is not worth using.

炭化珪素の焼結品も同じ結果が得られた。The same results were obtained with sintered silicon carbide.

次にアルミナをリン酸系バインダーで固めて一定の形状
のマスターモールドを成型し、実験してみたがやはり熱
衝機に不安定であった。
Next, we hardened the alumina with a phosphoric acid binder to form a master mold of a certain shape, and experimented with it, but it was still unstable to the heat shock machine.

また黒鉛繊維を使った耐熱性繊維強化プラスチックによ
って一定の形状に成型したマスターモールドを製作し実
験した。
We also fabricated a master mold made of heat-resistant fiber-reinforced plastic made of graphite fiber into a certain shape and conducted experiments.

しかし熱硬化性造型法の場合は200〜400℃にも温
度が上るのでプラスチックが劣化してくり返し使用する
事が出来なかったが、常温硬化性造型法においてはマス
ターモールドとして十分に使用出来る事が判明した。
However, in the case of the thermosetting molding method, the temperature rises to 200 to 400°C, which deteriorates the plastic and makes it impossible to use it repeatedly, but with the room temperature curing molding method, it can be used satisfactorily as a master mold. found.

たゞ繊維強化プラスチックによるマスターモールドは切
削等の二次加工が困難なために木型に比べてもう1つ物
足らない面がある。
Master molds made of fiber-reinforced plastics have another disadvantage compared to wooden molds because secondary processing such as cutting is difficult.

これは他のプラスチック、例えばエポキシ製マスターモ
ールドにおいても同じ事がいえた。
The same can be said for other plastics, such as epoxy master molds.

そこで発明者は熱衝撃に安定な黒鉛に着目してマスター
モールドを製作し実験をした。
Therefore, the inventor focused on graphite, which is stable against thermal shock, and produced a master mold and conducted experiments.

黒鉛は天然質と人造質の2種類に大別されるがその材質
によってさらに分類すると、人造黒鉛質天然黒鉛質、不
浸透性黒鉛質、黒鉛炭素質、金属黒鉛質、粘土黒鉛質に
分けられる。
Graphite is roughly divided into two types: natural and artificial. When further categorized by material, it can be divided into artificial graphite, natural graphite, impermeable graphite, graphite carbon, metallic graphite, and clay graphite. .

これら種類について加工性、熱衝撃性、及びマスターモ
ールドとしての取扱い面について検討を加えた。
We investigated the processability, thermal shock resistance, and handling aspects of these types as master molds.

先ず加工性においては旋盤加工及び木工用ノミを使った
彫刻加工の2点を調べた。
First, two aspects of workability were investigated: lathe processing and engraving using a wood chisel.

旋盤の切削工具として5種(SK5)の炭素鋼工具及び
タングステン系の超硬工具を用い、木工用ノミは炭素鋼
の1種(SKI)を用いた。
As cutting tools for the lathe, a 5th grade (SK5) carbon steel tool and a tungsten carbide tool were used, and a 1st grade carbon steel (SKI) chisel was used for the woodworking chisel.

黒鉛の種類の中で黒鉛炭素質の物はペースト状のために
除外しその他の材質全てについて200角材の寸法にし
た物をあらかじめ用意して実験した。
Among the types of graphite, graphite-carbonaceous materials were excluded because they are paste-like, and all other materials were prepared in advance with the dimensions of 200 square pieces and tested.

その結果例れの加工実験においても加工上何ら問題は生
じなかった。
As a result, no problems occurred during processing in the processing experiments.

旋盤加工では200角材を150z材に加工したが工具
の損傷も見られなかった。
During lathe processing, a 200mm square piece was turned into a 150z piece, but no damage to the tool was observed.

また彫刻加工では木工用ノミを使っても木型さ同じ程度
かや5困難を供なう程度で加工する事が出来た。
In addition, even when using a wood chisel for carving, it was possible to carve the carving with the same level of difficulty as the wooden pattern.

木工用ノミで黒鉛が加工出来る事はマスターモールドを
製作する場合非常に有益となる。
Being able to process graphite with a wood chisel is extremely useful when making master molds.

加工時間は金型に比べ50%短縮された。次に熱衝撃性
の実験のために内径100ダ、内側高さ150の有底容
器を各々の材質で製作し、300℃に熱せられた砂を黒
鉛製容器に注入させたゾちに水槽に埋没させる実験をく
り返した。
Processing time was reduced by 50% compared to molds. Next, for thermal shock experiments, bottomed containers with an inner diameter of 100 da and an inner height of 150 da were made of each material, and sand heated to 300°C was poured into the graphite container, which was then placed in a water tank. We repeated the burying experiment.

黒鉛製容器内に300℃の砂を注入させたのは水槽に埋
没させた時、容器の外側と砂の満された内側との冷却時
間に差が出来るようにしたのである。
The reason why sand at 300°C was injected into the graphite container was to create a difference in the cooling time between the outside of the container and the sand-filled inside when it was buried in a water tank.

この実験結果においても熱衝撃においては安定である事
が判明した。
The results of this experiment also revealed that it is stable against thermal shock.

これらの実験結果、黒鉛がマスター用素材として十分に
適する事が判明したので最後に取扱い面から検討を加え
た。
As a result of these experiments, it was found that graphite was fully suitable as a material for the master, so we finally considered the handling aspect.

黒鉛の材質については前述したがマスターモールドの要
素としては寸法精度や機械的強度等においても重要な面
がある。
As mentioned above, graphite is an important element of the master mold in terms of dimensional accuracy and mechanical strength.

特に取扱い土量も重要なのは寸法精度であるが、黒鉛の
熱膨張係数は線膨張係数で1〜3X10−6程度で高温
になってもその値の変化は少ない。
In particular, dimensional accuracy is important in terms of the volume of soil to be handled, and graphite has a coefficient of linear expansion of about 1 to 3×10 −6 , and its value does not change much even at high temperatures.

特に人造黒鉛質は熱による膨張の影響は受けないといっ
てよい。
In particular, it can be said that artificial graphite is not affected by expansion due to heat.

また機械的強度としては曲げ強さでは人造黒鉛質で50
〜250kg/cm2金属黒鉛質200〜900kg/
cm2とその数字の範囲が太きい。
In terms of mechanical strength, artificial graphite has a bending strength of 50
~250kg/cm2 Metal graphite 200~900kg/
The range of cm2 and its numbers is wide.

また弾性率は人造黒鉛質で400〜1000kg/mm
2、天然黒鉛質で500〜1.129kg/mm2と同
じようにその数字の範囲が大きい。
In addition, the elastic modulus is 400 to 1000 kg/mm for artificial graphite.
2. The numerical range is large, as in natural graphite, 500 to 1.129 kg/mm2.

この事は材質にバラツキが多いという事になるが、材質
のチェックを十分にすれば使用上何ら問題はないと見て
よい。
This means that there are many variations in the material, but if you check the material thoroughly, there should be no problem in use.

また最近等方性の黒鉛製品が出来るようになったので強
度面でのバラツキも少くなる。
Also, recently it has become possible to produce isotropic graphite products, which reduces the variation in strength.

ところが黒鉛で最も問題となる欠陥はその製品の気孔率
が高い事である。
However, the most problematic defect with graphite is the high porosity of the product.

普通黒鉛製品の密度比は70〜85係、すなはち気孔率
が15〜30係にもなるので、黒鉛の表面や内部には必
ず巣(空孔のことであり、以下空孔を全て巣と称す)が
あると思はなければならない。
The density ratio of normal graphite products is 70 to 85, which means that the porosity is 15 to 30. ).

特に表面に巣があるとマスターモールドとしては好まし
くないのは勿論の事である。
In particular, it goes without saying that if there are cavities on the surface, it is not desirable as a master mold.

また高密度黒鉛は密度比が高く、かなり組織が微細で巣
も少ないが、完全に巣がないとはいえない。
Furthermore, high-density graphite has a high density ratio, has a fairly fine structure, and has few cavities, but it cannot be said to be completely void-free.

シェル鋳型の造型において熱硬化性の場合、瞬間的にレ
ジンが液状になるので巣の中にレジンがくい込み、肌の
粗雑なシェル鋳型が出来てしまう。
When molding a shell mold using thermosetting resin, the resin instantly becomes liquid, causing the resin to sink into the cavities, resulting in a shell mold with a rough skin.

従って黒鉛は巣のない物あるいは伺らかの処理によって
巣うめされた物を使用しなければならない。
Therefore, it is necessary to use graphite that is free of cavities or that has been treated with cavities.

黒鉛の真比重は1.9〜22であるが製品となった物は
見掛比重で1.45〜1.85位しか得られない。
The true specific gravity of graphite is 1.9 to 22, but the apparent specific gravity of the product is only 1.45 to 1.85.

従って何らかの方法による表面処理で巣うめをする事が
使用上重要な条件となる。
Therefore, it is an important condition for use that the surface be treated by some method to contain the nests.

すなはち少なくとも黒鉛の表面の密度を、黒鉛成型体が
有する圧粉密度より高めるように表面処理を施こして、
巣をなくすることが必要である。
In other words, surface treatment is performed so that at least the density of the graphite surface is higher than the compacted powder density of the graphite molded body,
It is necessary to eliminate the nest.

黒鉛の表面の圧粉密度を高める方法、すなはち巣をなく
す方法として圧着処理及び含浸処理について検討を加え
た。
We investigated crimping and impregnating treatments as a method to increase the density of the powder on the surface of graphite, and in other words, to eliminate cavities.

圧着処理としてはカーボンペーストを巣内部にうめ込む
方法について実験をしたが、黒鉛製品の表面が汚れたり
、ペーストの強度が黒鉛母材より弱いのであまり好まし
い結果は得られなかった。
As a pressure bonding process, we experimented with a method in which carbon paste was embedded inside the cavity, but because the surface of the graphite product became dirty and the strength of the paste was weaker than that of the graphite base material, very favorable results were not obtained.

そこで性質が黒鉛に似ている金属珪素化合物の1種であ
るモリブデンシリサイド(MoSi2)をケイ酸ソーダ
で反応させて硬化させる方法について実験をした。
Therefore, we conducted an experiment on a method of curing molybdenum silicide (MoSi2), a type of metal silicon compound whose properties are similar to graphite, by reacting it with sodium silicate.

モリブデンシリサイドと微粉黒鉛の1:1の配合比の混
合物をケイ酸ソーダで調合して泥状と成した物を内径1
00φ、内側高さ150の黒鉛表面に塗布して常温自硬
させ、自硬後に黒鉛表面を仕上げ高温乾燥させた。
A mixture of molybdenum silicide and fine graphite in a ratio of 1:1 is mixed with sodium silicate to form a slurry with an inner diameter of 1:1.
00φ and an inner height of 150 mm, it was applied to the surface of graphite and allowed to self-harden at room temperature. After self-hardening, the graphite surface was finished and dried at high temperature.

これを熱衝撃実験と同じ方法でテストをくり返したが、
巣うめされた個所においても何ら変化も見られず、非常
に強固に付着していた。
This test was repeated using the same method as the thermal shock experiment, but
No changes were observed in the nested areas, which were very firmly attached.

また微粉黒鉛の代りに微粉アルミナを用いても同じ結果
が得られたが、付着層の仕上りは微粉黒鉛を用いた方が
良好であった。
The same results were obtained by using fine alumina instead of fine graphite, but the finish of the adhesion layer was better when fine graphite was used.

含浸処理については溶融金属、無機質の溶液、樹脂の3
種類について実験をした。
For impregnation treatment, there are three methods: molten metal, inorganic solution, and resin.
I experimented with types.

何れの種類においても真空中で含浸する方法によって含
浸処理をしてピースを得、表面処理によるテストと同じ
方法でテストをくり返した。
All types were impregnated in a vacuum to obtain pieces, and the test was repeated in the same manner as the surface treatment test.

結果において大差はなかったが、樹脂を含浸した場合が
最も早く表面が荒れ、溶融金属及び無機質の溶液の場合
は表面が荒れる事もなかった。
Although there was no significant difference in the results, the surface became rough most quickly when impregnated with resin, while the surface did not become rough when using molten metal and inorganic solutions.

なお含浸剤としては溶融金属では亜鉛、無機質溶液では
リン酸系溶液、樹脂では熱可塑性樹脂が最も含浸性に秀
れていた。
As impregnating agents, zinc was used for molten metals, phosphoric acid solutions were used for inorganic solutions, and thermoplastic resins were used for resins that had the best impregnating properties.

亜鉛は黒鉛を侵蝕させる性質に富んでいるので含浸性に
秀れているのは勿論の事であるが、他の金属、例えばア
ルミニウム等は含浸処理が困難であった。
Since zinc has the property of corroding graphite, it is of course excellent in impregnating properties, but impregnating other metals such as aluminum has been difficult.

また樹脂の場合熱硬化性樹脂であるエポキシや不飽和ポ
リエステル等についてもテストをしたが含浸処理中に樹
脂が硬化してしまったりしてその作業が困難であった。
In the case of resin, we also tested thermosetting resins such as epoxy and unsaturated polyester, but the work was difficult because the resin hardened during the impregnation process.

密度比は改良処理前の密度比70〜85%の黒鉛製品が
、圧着処理や含浸処理によって95係以上に改良された
The density ratio of the graphite product, which had a density ratio of 70 to 85% before the improvement treatment, was improved to 95% or higher by the compression treatment and the impregnation treatment.

以上黒鉛について、加工性、熱衝撃性、取扱い面におけ
る密度すなはち気孔率と巣の関連性において検討を加え
た結果、黒鉛の見掛比重が1.45以上あればマスター
モールドとして使用出来る事が判明した。
As a result of the above studies of graphite in terms of workability, thermal shock resistance, density in terms of handling, that is, the relationship between porosity and voids, we found that if the apparent specific gravity of graphite is 1.45 or more, it can be used as a master mold. There was found.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1 熱硬化性シェル鋳型、すなはちシェルモールドの造型用
マスターモールド材として見掛比重1.65、密度比8
0係の人造黒鉛質黒鉛を用いてマスターモールドを製作
した。
Example 1 Thermosetting shell mold, apparent specific gravity 1.65, density ratio 8 as master mold material for molding shell mold
A master mold was manufactured using artificial graphite of 0 ratio.

加工は旋盤及びフライスによる切削と手による彫刻加工
で実施、黒鉛表面の密度比の改良(巣うめの目的)はモ
リブデンシリサイドとケイ酸ソーダの反応を粘結剤とし
て利用し黒鉛粉末の混合された物で圧着処理法により実
施した。
Processing was carried out by cutting with a lathe and milling machine and engraving by hand.The density ratio of the graphite surface was improved (the purpose of nesting) by mixing graphite powder using the reaction of molybdenum silicide and sodium silicate as a binder. It was carried out using a pressure bonding method.

なお表面処理剤の配合は次の通りである。The composition of the surface treatment agent is as follows.

黒鉛粉末400メツシュ全通 75重重量モリすデンシ
リサイド粉末 25重量係上記配合物に重量比6係
のケイ酸ソーダ及び水を少量混ぜた物を調合剤とした。
A preparation was prepared by mixing a small amount of sodium silicate and water in a weight ratio of 6 to the above formulation.

表面処理された物を400〜600℃で10時間焼成し
てマスターモールドを得た。
The surface-treated product was fired at 400 to 600°C for 10 hours to obtain a master mold.

こうして製作された黒鉛製マスターモールドを用いて、
フェノール系レジンを粘結剤とした熱硬化性シェルモー
ルドを造型した。
Using the graphite master mold produced in this way,
A thermosetting shell mold was created using phenolic resin as a binder.

シェルモールド材料はあらかじめレジンの被覆されたレ
ジンコーテツドサンドを用い、吹き込み注入によって3
00℃に予熱されているマスターモールドえ注入して造
型した。
The shell mold material uses resin-coated sand that has been coated with resin in advance, and is molded by blow injection.
The mold was molded by pouring into a master mold that had been preheated to 00°C.

造型を300回くり返したが黒鉛製マスターモールドは
何ら損傷も発生しなかった。
Although the molding process was repeated 300 times, no damage occurred to the graphite master mold.

また造型されたシェルモールドの表面状態も良好で、特
に光沢が良かった。
The surface condition of the shell mold was also good, and the gloss was particularly good.

また1時間当りの成型数量は金型に比べ1.5倍であっ
た。
Furthermore, the number of molds per hour was 1.5 times that of molds.

なお離型剤は乾式(溶剤タイプ)の変性タイプのシリコ
ンを使用した。
As the mold release agent, a dry (solvent type) modified silicone was used.

実施例 2 実施例1と同じく熱硬化性シェル鋳型造型用マスターモ
ールド材として見掛比重1.50、密度比70%の人造
黒鉛質黒鉛を用いてマスターモールドを製作した。
Example 2 As in Example 1, a master mold was manufactured using artificial graphite graphite having an apparent specific gravity of 1.50 and a density ratio of 70% as a master mold material for making a thermosetting shell mold.

加工は実施例1と同じであるが、黒鉛表面の密度比の改
良として熱り塑性樹脂のポリスチレンをトリクロールエ
タンで溶して15%重量比のポリスチレン溶液を作製し
て含浸液とし減圧下で含浸処理法で実施した。
The processing was the same as in Example 1, but in order to improve the density ratio of the graphite surface, polystyrene, which is a thermoplastic resin, was dissolved in trichloroethane to prepare a polystyrene solution with a weight ratio of 15%, and this was used as an impregnating liquid under reduced pressure. It was carried out using the impregnation treatment method.

なお真空タンクは真空度60mmHgで保持し10時間
マスターモールドを沈漬した。
The vacuum tank was maintained at a vacuum level of 60 mmHg, and the master mold was submerged for 10 hours.

乾燥は常温で4時間、150℃で1時間実施した。Drying was carried out at room temperature for 4 hours and at 150°C for 1 hour.

こうして得た黒鉛製マスターモールドを用いて実施例1
と同じく変性タイプのシリコン離型剤を塗布してフェノ
ール系シェルモールドを造型したが、200回位で含浸
された樹脂結合部の荒れが発生した。
Example 1 Using the graphite master mold thus obtained
A phenolic shell mold was molded by applying a modified silicone mold release agent in the same manner as above, but after about 200 times the impregnated resin joint became rough.

実施例 3 見掛比重1.60、密度比75係の人造黒鉛質黒鉛及び
天然質黒鉛を使って各々マスターモールドを製作した。
Example 3 Master molds were manufactured using artificial graphite and natural graphite having an apparent specific gravity of 1.60 and a density ratio of 75.

加工は実施例1と同じようにして実施し、黒鉛の圧粉体
の密度比及び表面の密度比の改良は、含浸法及び圧着処
理法の併用によった。
The processing was carried out in the same manner as in Example 1, and the density ratio of the graphite green compact and the density ratio of the surface were improved by using a combination of an impregnation method and a compression treatment method.

含浸剤としてはリン酸アルミニウム溶液を用い、真空度
60mmH9で10時間沈漬した。
An aluminum phosphate solution was used as the impregnating agent, and the sample was submerged at a vacuum degree of 60 mmH9 for 10 hours.

沈漬後低温にて予備乾燥後、実施例1で使用した表面処
理剤を圧着して400℃にて10時間の焼成を実施した
After pre-drying at a low temperature after dipping, the surface treatment agent used in Example 1 was applied and baked at 400° C. for 10 hours.

このようにして得うした各マスターモールドは、大巾に
密度の向上したものとなり、600回のシェルモールド
造型後も全く表面の変化が見られなかった。
Each master mold thus obtained had a greatly improved density, and no change in the surface was observed even after 600 shell mold moldings.

実施例 4 実施例1から3の方法と同じ方法で各々のマスターモー
ルドを製作し、常温硬化性造型方法であるコールド・ボ
ックス法について実験をした。
Example 4 Each master mold was manufactured using the same method as in Examples 1 to 3, and an experiment was conducted using the cold box method, which is a molding method that hardens at room temperature.

コールド・ボックス法はフェノール系レジンとイソシア
ネートを粘結剤としアミン系ガスにて常温転化させる方
法であるが、量産型としては金型を使用するので金型の
代用として黒鉛製マスターモールドの実験をした。
The cold box method is a method in which phenolic resin and isocyanate are used as a binder, and conversion is carried out at room temperature using amine gas.However, since a mold is used for mass production, we conducted an experiment using a graphite master mold as a substitute for the mold. did.

実施例1から3の何れのマスターモールドも300回の
くり返し造型を試みたが表面の肌荒れは見られなかった
Although the master molds of Examples 1 to 3 were repeatedly molded 300 times, no roughness was observed on the surface.

実施例2の樹脂を含浸したマスターモールドも常温硬化
性造型法の場合は十分に使用に供せられる事が判明した
It has been found that the master mold impregnated with the resin of Example 2 can also be used satisfactorily in the case of a cold-curing molding method.

以上実施例1から実施例4に記載したように黒鉛製マス
ターモールドを用いて熱硬化性、常温硬化性を間はず鋳
造用鋳型を造型する事が出来た。
As described above in Examples 1 to 4, a casting mold with both thermosetting and room temperature curability could be produced using a graphite master mold.

なお最長ライフとしては実施例3に記載した中で人造黒
鉛質を使用したマスターモールドがくり返し使用800
回にも十分耐えた。
As for the longest life, the master mold using artificial graphite described in Example 3 has a lifespan of 800 times.
It withstood well enough.

従って黒鉛製マスターモールドは熱硬化性造型法におけ
る量産用には向かないが多種少量品生産用や、木型に代
る耐久性用として納期や価格の面で有利である事が判明
した。
Therefore, although graphite master molds are not suitable for mass production using thermosetting molding methods, they have been found to be advantageous in terms of delivery time and price for producing a wide variety of small quantities and as a durable alternative to wooden molds.

Claims (1)

【特許請求の範囲】[Claims] 1 黒鉛成型体が有する圧粉の密度比において、該黒鉛
成型体の少くとも表面の密度比を高めるように、圧着、
含浸等により表面処理を施した黒鉛マスターモールドを
用いて鋳造用鋳型を製造する方法。
1 Pressing,
A method of manufacturing casting molds using a graphite master mold that has been surface-treated by impregnation, etc.
JP51014642A 1976-02-09 1976-02-09 How to manufacture casting molds Expired JPS5811292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51014642A JPS5811292B2 (en) 1976-02-09 1976-02-09 How to manufacture casting molds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51014642A JPS5811292B2 (en) 1976-02-09 1976-02-09 How to manufacture casting molds

Publications (2)

Publication Number Publication Date
JPS5296926A JPS5296926A (en) 1977-08-15
JPS5811292B2 true JPS5811292B2 (en) 1983-03-02

Family

ID=11866842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51014642A Expired JPS5811292B2 (en) 1976-02-09 1976-02-09 How to manufacture casting molds

Country Status (1)

Country Link
JP (1) JPS5811292B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966532A (en) * 1972-11-01 1974-06-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966532A (en) * 1972-11-01 1974-06-27

Also Published As

Publication number Publication date
JPS5296926A (en) 1977-08-15

Similar Documents

Publication Publication Date Title
US5433261A (en) Methods for fabricating shapes by use of organometallic, ceramic precursor binders
US5143665A (en) Method of producing molds that can be washed away with water and use of such molds
EP0661246B1 (en) Process for preparing refractory molded articles and binders therefor
EP0125511B1 (en) Carbon fiber-reinforced gypsum models, forming molds, or its preceding molds, and a method for producing them
US4919193A (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
US5468285A (en) Ceramic core for investment casting and method for preparation of the same
US3160931A (en) Core casting method
US3285756A (en) Mold or core composition for metal casting purposes
JPS6092040A (en) Collapsible sand core for high-pressure casting
JPS5811292B2 (en) How to manufacture casting molds
JP2003126940A (en) Casting mold and manufacturing method therefor
US4685503A (en) Method of manufacturing a disintegratable core for casting
CN111511482B (en) Method for producing metal castings or hardened moldings using aliphatic polymers containing hydroxyl groups
JPS587379B2 (en) Method of manufacturing molds and cores
JPH0636954B2 (en) Composition for easily disintegrating mold
US5703144A (en) Solid furan binders for composite articles
JPH0229003B2 (en)
JPS61112602A (en) Mold for molding ceramics
JPH0723248B2 (en) Method for manufacturing ceramic molded body
JPS6358082B2 (en)
JPS6120506B2 (en)
JPS61176439A (en) Production of ceramic core
JPH0339774B2 (en)
JP2859653B2 (en) Mold production method
US1146388A (en) Process for making sound-records.