JPS58112691A - Fused flux for submerged arc welding and its production - Google Patents

Fused flux for submerged arc welding and its production

Info

Publication number
JPS58112691A
JPS58112691A JP20931981A JP20931981A JPS58112691A JP S58112691 A JPS58112691 A JP S58112691A JP 20931981 A JP20931981 A JP 20931981A JP 20931981 A JP20931981 A JP 20931981A JP S58112691 A JPS58112691 A JP S58112691A
Authority
JP
Japan
Prior art keywords
flux
welding
submerged arc
arc welding
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20931981A
Other languages
Japanese (ja)
Inventor
Takayuki Yasui
孝行 安居
Shinichi Fukushima
新一 福島
Tomoyuki Suzuki
友幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP20931981A priority Critical patent/JPS58112691A/en
Publication of JPS58112691A publication Critical patent/JPS58112691A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates

Abstract

PURPOSE:To improve welding workability and the mechanical properties of weld metal by contg. a specific weight ratio of S in the components of SiO2, MnO fluxes and limiting the contents of FeO and P. CONSTITUTION:Main flux components of slag forming agents are, by weight, 20-60% SiO2, 10-50% MnO, <=30% CaO, <=30% MgO, and <=15% CaF2, and 0.02-0.10% S is contained therein. Also, <=3% FeO and <=0.05% P are contained. Content of s and excess content of oxygen are calculated with respect to the raw materials to be compounded in the flux and vulcanizers contg. S such as iron sulfide and calcium sulfide, carbon, 1 or>=2 kinds deoxidizers among Fe-Si; Si-Mn; Al, etc. or coke, etc. contg. relatively much S are added, then these materials are melted in a reducing atmosphere at <=1,700 deg.C, whereby the flux is obtained.

Description

【発明の詳細な説明】 本発明は、軟鋼〜60キロ級高張力鋼の溶接に使用した
場合、溶接作業性および形接金属の機械的a質に優れた
特性を有する潜弧溶接用フラックスおよびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a flux for submerged arc welding that has excellent properties in terms of welding workability and mechanical quality of metals to be joined when used for welding mild steel to 60 kg class high tensile strength steel. The present invention relates to a manufacturing method thereof.

潜弧溶接は、その適用分野の拡大とともに、撫種の鋼材
に対する適応性が要求されつつあるが、従来の溶接施工
においても高能率化への対応と、欠陥発生による手直し
工数の低減を目的とした施工条件の検討が進められてい
る。
As the field of application expands, submerged arc welding is required to be adaptable to various kinds of steel materials, but conventional welding is also being used to increase efficiency and reduce the number of reworks due to defects. Construction conditions are currently being considered.

適用される溶射としての溶接用フラックスに関しても、
その使用条件に対応できるより高度の品質特性として、
溶接金属の機械的性質は勿論、溶接作業性に優れたもの
が要求される仁ととなる。
Regarding welding flux as applied thermal spray,
As a more advanced quality characteristic that can meet the usage conditions,
The weld metal is required not only to have excellent mechanical properties but also to have excellent welding workability.

潜弧溶接における作業性を損ねる要素は、主としてピッ
ト、あば友等の表面欠陥の発生とスラグの剥離性の問題
である。これ等は自動溶接の存在価値にすら係わる重大
な問題であり欠陥発生に対する感受性が低くかつ容易に
溶接スラグが剥離することは、潜弧溶接用フラックスに
とりて不可欠、O簀累である。これと同時に溶接金属の
低温衝撃特性の優れることが要求されつつあることも時
代のすう勢でToって、両者を同時に解決することは当
業者らの懸案でおりこれまで多くの試みが成されて来た
が、満足する結果は得られていないのが実態である。
Factors that impair workability in submerged arc welding are mainly the occurrence of surface defects such as pits and pockmarks, and the problem of slag removability. These are serious problems that even affect the existence of automatic welding, and low susceptibility to the occurrence of defects and easy peeling of welding slag are essential for submerged arc welding fluxes. At the same time, with the trend of the times, weld metals are increasingly required to have excellent low-temperature impact properties, and it has been a concern of those skilled in the art to solve both of these issues at the same time, and many attempts have been made to date. However, the reality is that the results are not satisfactory.

本発明者等は十分な検討を重ねた結果、従来の常識を全
く否定する新たな技術思想を究明したものであって、そ
の要点は、通常のSiO□−M1101000フラック
ス組成においてS(硫黄)を0.02〜0.1096の
範囲で含有させるとともに、F・0成分を3−以下とす
ることが溶接作業性を飛躍的に向上せしめることである
。あわせて、組成中のP(#)をo、 o 5 %以下
とすることにより溶接金属の低温靭性を高位に保持でき
ることが判明したものである。そして更に、かかるフラ
ックスを得るにあたり、緻密な検討を重ねた結果、極め
て合理的でかつ画期的な製造方法を確立したものである
As a result of thorough studies, the inventors of the present invention have discovered a new technical idea that completely defies conventional common sense.The main point is that S (sulfur) is Containing F in the range of 0.02 to 0.1096 and controlling the F.0 component to 3- or less dramatically improves welding workability. In addition, it has been found that the low-temperature toughness of the weld metal can be maintained at a high level by controlling P(#) in the composition to 0, 5% or less. Furthermore, as a result of careful study in obtaining such flux, we have established an extremely rational and innovative manufacturing method.

すなわち、これまでは、潜弧溶接用7ラツクス中のSは
鉄冶金の考え方からの固定概念として有害であり、溶接
ワレおよび靭性劣化を生ずる一部として原材料の選択あ
るいは脱硫を目的とした予備処理または溶解時のガス吹
込等の制御を行なっているのが常識でさえあったもので
ある。しかしながら溶接においては事情が異なり、逆に
この8はピット、あばた等の欠陥防止およびスラグ剥離
を究明したもので、この理由は以下に述べることによる
と考えられる。
In other words, up until now, S in the 7 lux for submerged arc welding has been considered harmful as a fixed concept from iron metallurgy, and as a part of causing weld cracking and toughness deterioration, it has been used in the selection of raw materials or in preliminary treatment for the purpose of desulfurization. It was even common knowledge that gas injection during melting was controlled. However, the situation is different in welding, and on the contrary, this No. 8 investigates the prevention of defects such as pits and pockmarks and slag peeling, and the reason for this is thought to be as described below.

溶接時の高温のアーク熱によって溶接部近傍の空気、水
分およびフラックスを含めた素材の持つ水分、その他の
ガス化成分が解離し、溶融金属中にN 、 H、Co等
の形で溶解する。冷却の進行とともに過飽和に溶解した
ガスが漸次放出されるが、これはスラグと金属の界面に
気泡を生成しかつ成長することとなる。とりわけ金属の
凝固時に際しては多量のガスを凝固界面に放出し、これ
は先の気泡に捕捉されることとなる。この生成する気泡
の量およびこれがスラグ層中に包含され分離浮上するか
否かは、そのときの溶接条件、溶接材料に影響されるが
特にスラグの粘度、表面張力が直接的に関与すると推定
される。すなわち、このスラグの粘度が高くかつ表面張
力が大なる場合においては、発生した気泡を溶融金属と
の界面に固定しかつ冷却の進行とともに発生するガスも
この気泡中に集中する結果、内圧が増大し溶融金属面を
も圧迫することとなる。この結果として凝固した金属面
にはめげた(円形又は針状の凹み)を形成するものであ
る。また、ガス発生量の多い場合には気泡が過大となり
浮力によりてこの界面から一部離脱し、スラグ層を経て
外部へ逸することとなる。
The high-temperature arc heat during welding dissociates the air, moisture, and other gasified components of the material, including flux, in the vicinity of the weld, and dissolves them in the form of N, H, Co, etc. in the molten metal. As cooling progresses, the supersaturated dissolved gas is gradually released, which causes bubbles to form and grow at the slag-metal interface. In particular, when metal solidifies, a large amount of gas is released to the solidification interface, and this gas is trapped by the previous bubbles. The amount of bubbles generated and whether they are included in the slag layer and float separately are influenced by the welding conditions and welding material, but it is estimated that the viscosity and surface tension of the slag are directly involved. Ru. In other words, when the slag has a high viscosity and a large surface tension, the generated bubbles are fixed at the interface with the molten metal, and as cooling progresses, the gas generated also concentrates in the bubbles, resulting in an increase in internal pressure. This also puts pressure on the molten metal surface. As a result, an indentation (circular or needle-shaped depression) is formed on the solidified metal surface. In addition, when the amount of gas generated is large, the bubbles become too large and partially detach from this interface due to buoyancy, and escape to the outside through the slag layer.

このときアーク空洞を乱すため、ビード波形の乱れを生
じ、スラグの剥離性が著しく劣化するとともに、ピット
の発生、スラグイン等の重大欠陥をも惹き起こすもので
もある。ここにおいて、Sの添加含有は浴融スラグの表
面張力を著しく低下させ、かつ粘度を低下させる作用を
有するため、上記欠陥の発生防止に極めて有効なもので
ありて、そ6含有単が0.02%未満では効果がなく、
1九〇、10%を超えるとスラグの流動性が良過ぎる結
果ピード形状が劣化し好ましくない。
At this time, since the arc cavity is disturbed, the bead waveform is disturbed, and the slag releasability is significantly deteriorated, and serious defects such as pitting and slug-in are also caused. Here, the addition of S has the effect of significantly lowering the surface tension and viscosity of the bath melt slag, so it is extremely effective in preventing the occurrence of the above-mentioned defects. There is no effect if it is less than 0.02%,
190. If it exceeds 10%, the fluidity of the slag will be too good, resulting in deterioration of the bead shape, which is not preferable.

さらにこのSの作用効果を左右する成分としてフラック
ス中のFeO量が関与するものである・すなわち次式で
示すように、F・0は、−素親和力が弱いため1v接熱
で容易に解離して酸素を放出する。
Furthermore, the amount of FeO in the flux is involved as a component that influences the action and effect of S. In other words, as shown in the following equation, F. and release oxygen.

これがSと反応しガス化してスラグ層から分離。This reacts with S, gasifies it, and separates it from the slag layer.

逸散することとなって前述O8の効果を失なわせるもの
で、特にFeOを所定量以下にすること−(重要なポイ
ントとなる。
This is what causes FeO to dissipate and lose the effect of O8, so it is especially important to keep FeO below a predetermined amount.

F・0→F・+O,S+20→SO□↑さらKPをo、
 o s %以下とすることによりて溶接金属の機械的
性質としての衝撃靭性が飛躍的に向上できる。
F・0→F・+O, S+20→SO□↑Sara KP o,
By setting it to os% or less, the impact toughness as a mechanical property of the weld metal can be dramatically improved.

次いで、上記の溶接作業性を保有し、かつ機械的特性を
喪好に維持し得るフラックスの製造方法について本発明
者等は更に検討を重ねぇ結果、極めて合理的で画期的な
製法を見出すに至oたものである。
Next, the inventors conducted further studies on a method for producing flux that can maintain the above-mentioned welding workability and maintain good mechanical properties, and as a result, they discovered an extremely rational and innovative production method. It's been a long time since I've been in the middle of a long time.

通常のフラックス原料として使用するものは主として酸
化マンガン鉱石、硅酸、石灰、アルミナ、マグネシアク
リンカ−1螢石等であって、とのオtiるいは予備処理
して溶解に供している。これ等はいずれも不純成分とし
てFeO,P* 8等を多少のバラツキをもって含有す
るものでありて、予備処理等では、Sを除いてFeO、
PはTotり変動しないと同時に原料の選択のみでは一
定に管理し得ないものである。また特に酸化マンガン鉱
石については、主に二酸化マンガンを用いる場合が多く
このままではMn0z又はF・203として、あるいは
、800℃〜1000℃程度の予備処理においてすらM
!120.の形態で過剰の酸素を保有するものである。
The materials used as ordinary flux raw materials are mainly manganese oxide ore, silicic acid, lime, alumina, magnesia clinker, fluorite, etc., which are pretreated with ore and subjected to melting. All of these contain FeO, P*8, etc. as impurity components with some variation, and in preliminary treatment, FeO, P*8, etc. are removed except for S.
P does not fluctuate over time and at the same time cannot be controlled at a constant level only by selecting raw materials. In addition, especially for manganese oxide ore, manganese dioxide is often used as it is, or as Mn0z or F.
! 120. It retains excess oxygen in the form of

この酸素は、溶解に際してSと反応し、5O2fスとし
て逸散する傾向を有するのであるが、先のS量のバラツ
キとともにその歩留量は不安定であって既に述べたよう
なSの作用を安定して付与することはできない。また、
F@O成分はそれ自体酸素補給源であり溶接金属中の介
在物を増加させるため靭性を劣化させるものである。以
上の目的に対して原料の酸素量に見合う還元剤の添加と
8成分の、加硫剤による補足添加を同時に行ない、しか
も溶解源[1,700℃以下の還元雰囲気での溶解を行
ナウコト2>f8量t−0,02〜0.10 f4F)
範tSO一定値に制御するに不可欠であることを究明し
友ものである。更にF・o、pを多く含む原料の溶解に
おいても還元反応作用としてF・0成分の脱鉄による低
下、および鉄分へのPの固溶による脱リン効ることはS
を安定に歩留らせ、その作業性改善効果を有効に発揮せ
しめるに不可欠で桑る。
This oxygen has a tendency to react with S and dissipate as 5O2f gas when dissolved, but the yield is unstable due to the variation in the amount of S, and the effect of S as described above is unstable. It cannot be provided stably. Also,
The F@O component itself is an oxygen supply source and increases inclusions in the weld metal, thereby deteriorating toughness. For the above purpose, we simultaneously added a reducing agent corresponding to the amount of oxygen in the raw material and supplemented the eight components with a vulcanizing agent, and also performed melting in a reducing atmosphere at a temperature below 1,700°C. >f8 amount t-0.02~0.10 f4F)
It has been discovered that this is essential for controlling the range tSO to a constant value. Furthermore, in the dissolution of raw materials containing a large amount of F・O, P, the reduction reaction effect reduces the F・0 component due to iron removal, and the dephosphorization effect due to the solid solution of P in the iron content is S.
It is essential to maintain a stable yield and effectively demonstrate its workability improvement effect.

以上の知見にもとづいて本発明拡構成されたもので塾り
、さらに具体的に述べる。
Based on the above knowledge, the present invention has been expanded and configured, and will be described in more detail.

本発明における好ましいスラグ生成剤の主な7う、クス
成分は重量比でSly、 20〜$Q9G、MmO10
〜50%、CaO≦30 % 、 MgO≦口]。
The main seven components of the preferred slag forming agent in the present invention are Sly, 20~$Q9G, MmO10 in weight ratio.
~50%, CaO≦30%, MgO≦mouth].

CaF2≦15−でToす、これにSを0.02〜α1
〇−含有サセ、カッF@0 <3 S 、 P <0.
05 %としたものである。
To set CaF2≦15-, add S to this from 0.02 to α1
〇-Containing sasse, KaF@0 <3 S, P <0.
05%.

かかる7ラツクスは、溶解用原料として通常のフシック
ス配合原料に対し、これよ9%たらされるS量および過
剰酸素量を算出しこれを補足するように、硫化鉄、硫化
カルシウム等の如きsvt含有する加硫剤および炭素、
F・−81、81−Mm、ムを等OR’rll剤の1種
又は2種以上、tえは、比較的に8を多く含有するコー
クス等を添加し、これを1700℃以下の温度で遮元宴
囲気下で溶解することによって製造される。
This 7LAX is a dissolving raw material that contains svt such as iron sulfide, calcium sulfide, etc., by calculating the amount of S and excess oxygen added by 9% compared to the usual FUSIX blended raw materials. vulcanizing agent and carbon,
F・-81, 81-Mm, etc. One or more kinds of OR'rll agents, etc., and coke etc. containing a relatively large amount of 8 are added, and this is heated at a temperature of 1700℃ or less. It is produced by melting under a closed atmosphere.

以下、本発明に従った7う、クスにおける好ましい成分
範囲について説明する。
Hereinafter, preferred ranges of ingredients in the sour cream according to the present invention will be explained.

sio□はスラグをガラス化し適当な粘性を保持するに
不可欠の成分であって、その含有量が30−未満および
60%超では溶接作業性が総合的に劣化する。
sio□ is an essential component for vitrifying slag and maintaining appropriate viscosity, and if its content is less than 30% or more than 60%, welding workability will deteriorate overall.

MEIOは8102との共存によりスラグの融点、粘性
をII!IL溶接金属を健全に保持する作用を有するが
、10チ未満では十分でなく、まft、SOx超では粘
性が低下し過ぎビード形状が悪くなシ好ましくない。
MEIO coexists with 8102 to improve the melting point and viscosity of slag! It has the effect of keeping the IL weld metal sound, but if it is less than 10 inches, it is not sufficient, and if it exceeds SOx, the viscosity will drop too much and the bead shape will become bad, which is not preferable.

CaOは塩基度を調整し溶接部の機械的特性を曳くする
目的で加えるものであるが、30−を超えると、水素吸
蔵量の増加により水素ワレ等の問題を生ずるとともに発
生ガス増量によってビット。
CaO is added to adjust the basicity and improve the mechanical properties of the welded part, but if it exceeds 30 -, problems such as hydrogen cracking will occur due to an increase in the amount of hydrogen absorbed, and the amount of generated gas will increase, resulting in bits.

あばた郷の欠陥を生じ易くなり本発明の特性を失なうも
のである。
This tends to cause pockmarked defects and the characteristics of the present invention are lost.

Mぎ0はCaOと同様の効果を有するが、特にスラグの
剥離に関して良好な作用を呈するものである。
Although MgO has the same effect as CaO, it exhibits particularly good effects in terms of slag peeling.

しかし30%を超えて添加し次場合には、CaQと同様
水素吸蔵による欠陥を生ずるため適当でない一〇aF2
はスラグの粘度、融点を調整する目的で添加し、また、
溶接アーク長を適度に保持し他のガス分圧を低下せしめ
ることによるfス吸薦欠陥V止に有効な作用を示す、し
かし1596を超えて添加するとビード形状が悪くなり
スラグ0剥離性−bt劣化するため不適当である。
However, if more than 30% is added, 10aF2, which is not suitable, will cause defects due to hydrogen absorption, similar to CaQ.
is added to adjust the viscosity and melting point of the slag, and
It shows an effective effect on preventing fs suction defects V by maintaining the welding arc length at an appropriate level and lowering the partial pressure of other gases. However, if it is added in excess of 1596, the bead shape deteriorates and slag 0 peelability -bt It is unsuitable because it deteriorates.

つぎに本発明を実施例を用いて説明する。Next, the present invention will be explained using examples.

実施例 市販の潜弧溶接用溶融型フラツクスム〜D411につい
て、従来の製造方法における配合原料での成分比を本発
明例と対比して第1表に示した。
EXAMPLE Table 1 shows the component ratios of the raw materials blended in a conventional manufacturing method for a commercially available fusion type Fluxum D411 for submerged arc welding in comparison with an example of the present invention.

このうちCの7ラツクスに使用した配合原料の分析値お
よび原料配合比を第2表に例示しえ。
Table 2 shows the analysis values and raw material blending ratios of the raw materials used for 7 luxes of C.

第1表および第2表における4、0(余剰酸素)とは、
各原料について下記により算出したものである。
4,0 (surplus oxygen) in Tables 1 and 2 means:
It is calculated as follows for each raw material.

(注)良だし、〔〕内は原子量でありてF・0→F・+
0 、 Fe12,5→2F・+30 、 T、M!1
0!→T、Phot。
(Note) It's good, and the number in [ ] is the atomic weight, F・0 → F・+
0, Fe12,5→2F・+30, T, M! 1
0! →T, Photo.

の反応による余剰酸素分として算定したものなお、T 
0Mno 2にはMI&s04およびkk20Bの形1
10ものも余剰酸素分をMnO2の中に換算して含めて
いる。
It is calculated as the surplus oxygen content due to the reaction of T
0Mno 2 has MI&s04 and kk20B form 1
10 also included excess oxygen in MnO2.

ここで本発明の製法においては、品質特性に応じ余剰酸
素分を還元するに要する轟量以上0111元剤を添加す
るものであるが溶解炉の雰囲気制御および炉材に使用す
るC質材料からの寄与によりても影響されるものでTo
りて、この轟量値に満たない量でありても本発明の目的
、および効果を失なうものではない。
In the manufacturing method of the present invention, 0111 base material is added in an amount exceeding the amount required to reduce excess oxygen according to the quality characteristics, but it is necessary to control the atmosphere of the melting furnace and to reduce the amount of carbon material used for the furnace material. It is also influenced by the contribution of To
Therefore, even if the amount is less than this value, the object and effect of the present invention will not be lost.

また、加硫による81m正量16、jgxWIJに示し
たように酸化−還元/母うメータによりて、一義的に壷
理で龜るS歩留を勘案し、かつその7ツックスの品質特
性に応じて配合上の必要量を割り出し、添加したもので
ある。
In addition, as shown in 81m vulcanization 16, as shown in JgxWIJ, using an oxidation-reduction/machining meter, we primarily take into account the S yield that is increased by potting, and also according to the quality characteristics of the 7tx. The amount required for the formulation was determined and added.

ここで、還元剤としての脱酸剤および加硫剤は通常の化
学・冶金等に用いるものであれば、その作用において差
異は認められない。
Here, if the deoxidizing agent and the vulcanizing agent as reducing agents are those used in ordinary chemistry, metallurgy, etc., no difference is recognized in their effects.

第1表の配合原料について約1トン容量電気炉にて1.
40 Q kw (D電力を負荷し、出湯冷却したフラ
ックスの組成は第3表に示すごとくである。なお、この
ときの溶解平均温度は約1,450℃であつて負荷を2
.200 kWに上げ、溶解温度を約1.7!S。
1. Using the raw materials listed in Table 1 in an electric furnace with a capacity of approximately 1 ton.
40 Q kw (The composition of the flux that was loaded with D power and cooled at the outlet is as shown in Table 3. The average melting temperature at this time was approximately 1,450°C, and the load was 2
.. Increased the power to 200 kW and the melting temperature to about 1.7! S.

℃にし次場合のフラックス中の8成分は薦1図に例示し
たようにS歩留値が低く、添加加硫0効来が減じてしま
うため、本発明の目的とする効果が十分得られず不逼尚
である。
The 8 components in the flux when heated to He is unsophisticated.

第3表のフラックス(水冷もしくは放冷処I[Oのち、
乾燥粉砕し粒度調整したもの)について纂4表に示す条
件でI開先突合せおよびすみ肉潜弧溶接を行なっ九場合
の溶接作業性、またV開先による全溶着金属の衝撃特性
を第5表に整層した。
The flux shown in Table 3 (after water cooling or air cooling treatment I[O,
Table 5 shows the welding workability when welding the I-groove butt and fillet submerged arc welding (dried, crushed and adjusted particle size) under the conditions shown in Table 4, and the impact properties of the entire weld metal due to the V-groove. It was arranged in layers.

第 4 表  溶接条件 第 5 表  溶接試験結果 (::極めて良い O:良い・Δ:やや劣る ×:悪い
この結果、フッ、クスのS量を制御しかり脱鉄・脱リン
を行なり九本発明方法による7う、クスはいずれも優れ
比特性を有することが判5た。なお、本発明の技術思想
はTlO2を主成分として含む7ラツクスにも適用でき
る。
Table 4 Welding conditions Table 5 Welding test results (:: Very good O: Good / Δ: Slightly poor ×: Bad As a result, iron removal and dephosphorization were carried out by controlling the amount of S in the sulfur and chlorine. It was found that all of the 7 lacs obtained by the method had excellent ratio properties.The technical idea of the present invention can also be applied to 7 lacs containing TlO2 as a main component.

このような効果は従来の常識からは容易に想到し得ない
ところであり、原材料資源的にも低品位原料が使用可能
となり、安価な製造;ストで、かつ優れ比特性を有する
フラックス及びその製造方法を開発したものでありて、
本発明は産業界に稗益するところが極めて大である。
Such effects cannot be easily imagined from conventional common sense, and in terms of raw material resources, low-grade raw materials can be used, and a flux and its manufacturing method that is inexpensive to produce and has excellent specific properties. It was developed by
The present invention is of great benefit to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1表に示す原料組成の酸化還元Δラメータと
第3表に示す7ラツクス組成におけるB量比(歩留)と
の関係を溶解温度により例示した図である。
FIG. 1 is a diagram illustrating the relationship between the redox delta parameters of the raw material compositions shown in Table 1 and the B amount ratio (yield) in the 7 lux composition shown in Table 3, using melting temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)  通常のスラグ生成剤成分からなり、その際8
0.02〜0.10−を含有し、かつ、F・0≦3チ。 P≦o、 o s sであることを特徴とする潜弧溶接
用齢融型フラ、クス。
(1) Consisting of ordinary slag forming agent components, in which 8
Contains 0.02 to 0.10-, and F.0≦3. An age-melting type flux for submerged arc welding, characterized in that P≦o, o s s.
(2)  通常のフラックス配合原料のS量および過@
a!l!素量に応じて加硫剤、および脱酸剤を添加し、
これを1,700℃以下の温度において還元雰囲気中で
俗解することを特徴とする潜弧溶接用溶融製フラックス
の製造方法・
(2) S amount and excess of normal flux blending raw materials
a! l! Add vulcanizing agent and deoxidizing agent according to the quantity,
A method for producing a molten flux for submerged arc welding, characterized in that this is carried out in a reducing atmosphere at a temperature of 1,700°C or less.
JP20931981A 1981-12-25 1981-12-25 Fused flux for submerged arc welding and its production Pending JPS58112691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20931981A JPS58112691A (en) 1981-12-25 1981-12-25 Fused flux for submerged arc welding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20931981A JPS58112691A (en) 1981-12-25 1981-12-25 Fused flux for submerged arc welding and its production

Publications (1)

Publication Number Publication Date
JPS58112691A true JPS58112691A (en) 1983-07-05

Family

ID=16570973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20931981A Pending JPS58112691A (en) 1981-12-25 1981-12-25 Fused flux for submerged arc welding and its production

Country Status (1)

Country Link
JP (1) JPS58112691A (en)

Similar Documents

Publication Publication Date Title
US4764224A (en) Baked flux for submerged arc welding
JP3392347B2 (en) Sintered flux for submerged arc welding and method for producing the same
KR100706026B1 (en) High speed submerged arc welding flux
CN109093286A (en) A kind of 2.25Cr-1Mo steel exchange submerged arc welding welding wire and solder flux
JPS58112691A (en) Fused flux for submerged arc welding and its production
JP2011156588A (en) Coated arc-welding electrode for ductile cast iron
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
US1658879A (en) Manufacture of alloys
JP4687489B2 (en) Steel continuous casting method
CN106514053A (en) Sintering flux used for stainless steel high-speed electro-slag strip surfacing and preparation method for same
US2288836A (en) Process for economically and rapidly obtaining high quality steels
SU1400833A1 (en) Powder wire
SU1276470A1 (en) Charge for producing molden welding flux
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPH01262094A (en) Low hydrogen type coated electrode
US1983604A (en) Production of refined metal
US20240141462A1 (en) Method for smelting low-phosphorus high-manganese steel based on reduction dephosphorization of ferromanganese
JPS5937719B2 (en) Sintered flux for submerged arc welding
JPH0292497A (en) Flux for high-speed submerged arc welding of spiral steel pipe
KR20020057596A (en) Aluminum-Manganese Deoxidizer Using for Deoxidation Process of Hot-Metal
KR950007326B1 (en) Exothermic molding flux of continuous casting
US3549338A (en) Welding wire
JPH0457438B2 (en)
JPH07207359A (en) Method for refining molten al or al alloy
SU1293238A1 (en) Flux for treating copper alloys