JPS58112269A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58112269A
JPS58112269A JP56214324A JP21432481A JPS58112269A JP S58112269 A JPS58112269 A JP S58112269A JP 56214324 A JP56214324 A JP 56214324A JP 21432481 A JP21432481 A JP 21432481A JP S58112269 A JPS58112269 A JP S58112269A
Authority
JP
Japan
Prior art keywords
adhesive
rubber
layer
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56214324A
Other languages
Japanese (ja)
Inventor
Sanji Ueno
上野 三司
Tadanori Maoka
忠則 真岡
Kenji Murata
謙二 村田
Tamotsu Shirogami
城上 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56214324A priority Critical patent/JPS58112269A/en
Publication of JPS58112269A publication Critical patent/JPS58112269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make no changes in the characteristic to be caused even when a fuel cell is used under an operational condition, in which electrolyte has a high temperature and a high concentration, for a long time by sealing the peripheries and the corners of a stacked body by means of a three-layered adhesive consisting of the first and the third fluorine-rubber-system adhesive layers and the second silicone-rubber-system adhesive layer. CONSTITUTION:After a fluorine-rubber-system adhesive usually diluted in a solvent is applied to joined parts such as the corners and the peripheries of the stacked body, the adhesive coats are changed into rubber-like form by vaporizing the solvent at room temperature or under a heated condition. On the other hand, silicone rubber can be easily formed in a thick layer since it is not an adhesive dissolved into a solvent and it causes almost no voluminal shrinkage during the time when it is changed into rubber-like form. The thickness of the first and the third fluorine-rubber-system adhesive layers should be around 0.2- 0.3mm., and the thickness of the second silicone-rubber-system adhesive layer should be around 1.5-2.0mm.. The desired thickness of each of these layers can be easily achieved by applying the adhesive about two or three times.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は新規な燃料電池、より詳しくはコーナー及び周
囲を気密シール材料で良好に密封した燃料電池に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel fuel cell, and more particularly to a fuel cell whose corners and periphery are well sealed with hermetic sealing material.

〔発明の技術的背景〕[Technical background of the invention]

周知のように、燃料電池は水素、−酸化炭素、巌化水素
などの燃料を活物質とする負極たる燃料極と、酸素又は
空気を活物質とする正極たる酸化剤極と苛性カリやリン
酸等の電解質とからなってお〕、これら燃料電池はその
種類に応じて或は室温で、或は高温で作動する。
As is well known, a fuel cell consists of a fuel electrode, which is a negative electrode, which uses a fuel such as hydrogen, carbon oxide, or hydrogen sulfide as an active material, an oxidizer electrode, which is a positive electrode, which uses oxygen or air as an active material, and a caustic potash, phosphoric acid, etc. Depending on the type, these fuel cells operate at room temperature or at elevated temperatures.

たとえばリン酸を電解質とし190〜100℃の高温で
作動する燃料電池は通常第1図の如く構成される。この
図において(dFi曲記の如き燃141に、電解質、酸
化剤極からなる通常正方形の板状素電池を示し、この素
電池lは間にグラファイト等を主成分とするインターコ
ネクタ2を介在させて交互に積層する。このインターコ
ネクタ2は両面に溝加工を施して反応ガス供給番容易に
しであるが、このインターコネクタJFi数個に1個の
割合で冷却媒体が循環するパイプJt−埋めこんだ冷却
パイプ付インターコネクタ弘によ多置換されている。
For example, a fuel cell that uses phosphoric acid as an electrolyte and operates at a high temperature of 190 to 100 DEG C. is normally constructed as shown in FIG. In this figure, a normally square plate-shaped unit cell consisting of an electrolyte and an oxidizer electrode is shown in the fuel 141 (as in the dFi notation). This interconnector 2 has grooves on both sides to facilitate the supply of reaction gas, but one JFi interconnector has a pipe Jt-embedded through which the cooling medium circulates. Many have been replaced with interconnectors with cooling pipes.

このようにして形成された積層体5の周囲には第1図に
示すようにしてマニホルド6が装着されて、反応ガス1
.の供給、排出を可能にするとともに、燃料ガスと酸化
剤ガスの隔離を可能にしている。
A manifold 6 is attached around the stacked body 5 thus formed as shown in FIG.
.. This makes it possible to supply and discharge gas, as well as to separate fuel gas and oxidant gas.

而して前記素電池!及びインターフネクター叉Fiダな
どの要素の寸法に誤差が生ずるのは避妙がたく、又これ
ら要素を積層するとき積み上げ誤差が生ずるのは避は難
く、その結果第3図の如く、積層体のコーナー及び周囲
に段差が生ずるに至る。
And the above-mentioned cell battery! It is unavoidable that errors occur in the dimensions of elements such as interfunctors and FIers, and it is unavoidable that errors occur when stacking these elements, and as a result, as shown in Fig. 3, This results in the formation of steps at the corners and around the edges.

マニホルドにはガスケットが装着されているが、これの
みでは前記の如き段差の故に積層体とマニホルドの気密
が不十分であり、そのため従来ガスケットと積層体の間
に、気密性で弾力性のあるシールゴム接着剤りを塗布し
て更に気密化が図られていた。
A gasket is attached to the manifold, but with only this gasket, the airtightness between the laminate and the manifold is insufficient due to the above-mentioned level difference.Therefore, conventionally, an airtight and elastic sealing rubber is used between the gasket and the laminate. An adhesive was applied to make it even more airtight.

〔背景技術の問題点〕[Problems with background technology]

リン酸を電解質とする燃料電池においてはデ!〜100
%のりン酸を用いてlテO〜200℃の高温で動作する
ため、前記シールゴム接着剤は前記の如き電解質即ちリ
ン酸と高い温度に耐えねばならず、またかかる耐電解質
性、耐熱性とと4に気密性、:1: 柔軟性、接着性が要求される。
In fuel cells using phosphoric acid as the electrolyte, De! ~100
% phosphoric acid and operate at high temperatures ranging from 200°C to 200°C, the sealing rubber adhesive must withstand high temperatures with the electrolyte, i.e., phosphoric acid, and must have such electrolyte resistance, heat resistance and and 4. Airtightness: 1: Flexibility and adhesiveness are required.

従来この種の接着剤としては主としてシリコーンゴム系
の接着剤が用いられていたが、かかる接着剤をシール材
料として用いた燃料電池を長時間(iooo時間以上)
、高@ (110℃以上)で起電反応を行なわせた結果
次のような問題点が見出された・ 即ちシリコーンゴム接着剤を用いた場合素電池に接触し
た部位でその接着剤の灰化、欠落が見られ、シール性が
低下していた。即ちシリコーンゴム接着剤は耐熱性、ゴ
ム弾性に秀れているが、耐リン酸性即ち耐電解質性が秀
れていないことが判明した。このように従来用いられて
いたシリコーンゴム系接着剤は耐りン酸性、耐熱性が不
十分で69、そのためリン酸を電解質とし高温で動作す
る燃料電池のシール材料としては良好に利用することが
できなかった。
Conventionally, silicone rubber-based adhesives have been mainly used as this type of adhesive, but fuel cells using such adhesives as sealing materials have been used for long periods of time (more than iooo hours).
As a result of conducting an electromotive reaction at high temperatures (over 110°C), the following problems were discovered: When using a silicone rubber adhesive, the ash of the adhesive is generated at the part that comes into contact with the unit cell. There were some cracks and cracks, and the sealing performance had deteriorated. That is, it has been found that silicone rubber adhesives have excellent heat resistance and rubber elasticity, but do not have excellent phosphoric acid resistance, that is, electrolyte resistance. As described above, conventionally used silicone rubber adhesives have insufficient phosphoric acid resistance and heat resistance69, and therefore cannot be used well as sealing materials for fuel cells that use phosphoric acid as an electrolyte and operate at high temperatures. could not.

〔発明の目的〕[Purpose of the invention]

かくて本発明は上述のような問題点を解決して、耐電解
質性・耐、−、!θた更′気密性・柔軟性・接着性にす
ぐれたレール材料により積層体のコーナー、周囲を密封
させた燃料電池を提供することを目的とするものである
Thus, the present invention solves the above-mentioned problems and improves electrolyte resistance, -,! The object of the present invention is to provide a fuel cell in which the corners and periphery of the stack are sealed using a rail material with excellent airtightness, flexibility, and adhesiveness.

〔発明の概要〕[Summary of the invention]

本発明者の研究、実験によれば、前記積層体の周囲及び
コーナーを、第一層と第三層をフッ素ゴム系接着剤、第
二層をシリコーンゴム系接着剤とする複合接着剤層によ
って密封することKより、前記目的が達成されることが
見出された。
According to the research and experiments of the present inventor, the periphery and corners of the laminate are formed by a composite adhesive layer in which the first and third layers are a fluororubber adhesive and the second layer is a silicone rubber adhesive. It has been found that by sealing K, the above object is achieved.

かくて本発明は、燃料極、電解質と酸化剤極を有する素
電池を、インターコネクタを介して積層して積層体を形
成し、その周囲にマニホルドを装着してなる燃料電池に
おいて、前記積層体のコーナー及び周囲を、第一層と第
三層をフッ素ゴム系接着剤、第二層をシリコーンゴム系
接着剤とする複合接着剤層によって密封することを特徴
とする燃料電池を提供するものである。
Thus, the present invention provides a fuel cell in which unit cells having a fuel electrode, an electrolyte, and an oxidizer electrode are stacked via interconnectors to form a laminate, and a manifold is attached around the laminate. The fuel cell is characterized in that the corners and periphery of the fuel cell are sealed with a composite adhesive layer in which the first and third layers are a fluororubber adhesive and the second layer is a silicone rubber adhesive. be.

本発明について更に説明すれば、従来ポリフルオロエチ
レン、ポリフルオロエチレンプロピレン、ポリクロロフ
ルオロエチレン等のフッ素樹脂は耐熱性、耐薬品性の各
種熱的、化学的性質のすぐれた材料としてよく知られて
伝たが、近年この種のゴム系接着剤が開発されて耐熱性
、耐薬品性を要する部位への薄いコーテイング材として
使用されている―本発明ではこのようなフッ素ゴム接着
剤を第1図についてさきに説明したような素電池とイン
ターコネクタの積層体のコーナー、周囲のシール材料と
して用いるのであり、これによるときは任意の電解質、
任意の作動温度で作動する燃料電池、特にリン酸を電解
質とし1to−2□θ℃の高温で作動する燃料電池にお
いて長期間使用してもそ9シール材料の灰化、脆化等の
性能の劣化は見られず、従って耐熱性、耐電解性、そし
て気密性、柔軟性、接着性に優れていることが判明した
のである。
To further explain the present invention, fluororesins such as polyfluoroethylene, polyfluoroethylene propylene, and polychlorofluoroethylene have been well known as materials with excellent thermal and chemical properties such as heat resistance and chemical resistance. However, in recent years, this type of rubber adhesive has been developed and is used as a thin coating material for areas that require heat resistance and chemical resistance. It is used as a sealing material for the corners and surroundings of the stack of cell and interconnector as explained earlier, and when using this, any electrolyte,
Fuel cells that operate at any operating temperature, especially fuel cells that use phosphoric acid as an electrolyte and operate at high temperatures of 1 to 2□θ°C, may experience deterioration in performance such as ashing and embrittlement of sealing materials even after long-term use. Therefore, it was found that the material has excellent heat resistance, electrolytic resistance, airtightness, flexibility, and adhesiveness.

使用に当っては通常溶媒に希釈されているフッ素ゴム系
接着剤を前記積層体のコーナー、周囲等の接着部位に塗
布し、室温又は加熱した状態で溶媒を蒸発させゴム化さ
せる。しかし−回の塗゛布で見られる塗膜の厚さは精々
Q、/ 、 Q、、l II+であるので厚く塗布した
い場合は何度も重ねて塗布し、その都変溶媒を蒸発させ
これを繰返すことが必要である。
In use, a fluororubber adhesive, which is usually diluted with a solvent, is applied to the adhesive areas such as the corners and periphery of the laminate, and the solvent is evaporated at room temperature or under heating to form a rubber. However, the thickness of the coating film seen after - times of coating is at most Q, / , Q, , lII+, so if you want to coat it thickly, you can coat it many times and evaporate the varying solvent each time. It is necessary to repeat.

一方シリコーンゴムは先述のように高−1高濃度のリン
酸には侵され耐電解質性には劣るが、耐熱性、ゴム弾性
KFi秀れている。しかもこのゴムは溶媒溶第型接着剤
ではないのでゴム化時の体積の収縮が殆どないので厚い
層を形成するのが容易である。
On the other hand, as mentioned above, silicone rubber is attacked by phosphoric acid at a high concentration of high-1 and has poor electrolyte resistance, but it has excellent heat resistance and rubber elasticity KFi. Furthermore, since this rubber is not a solvent-soluble type adhesive, there is almost no volumetric shrinkage during rubberization, making it easy to form a thick layer.

かくて本発明ではフッ素ゴム系接着剤とシリコーンゴム
系接着剤両者の利点を生かして、電湊質と接触する外側
表面に耐熱性と耐電解質性に富むフッ素ゴム系接着剤を
用い、中央部に耐電解質性には劣るが、耐熱性、ゴム弾
性に富み、厚い層を形成することが容易なシリコーンゴ
ム系接着剤を用いるのであり、このように第一層にフッ
素ゴム系接着剤、第二層にシリコーンゴム系接着剤、そ
して第三層にフッ素ゴム系接着剤を用いる三層形成複合
接着剤層によって密封するときは、耐熱性、耐電解質性
を保持し、ゴム弾性にすぐれて帥記段差を吸収し、従っ
て高濃度の電解質を用いて高温度で作動するという過酷
な作動m墳条件下にシける長時間の使用に際しても灰化
、脆化などの性能の劣化を来すことなく良好に使用する
ことができるのである。
Thus, in the present invention, taking advantage of the advantages of both fluororubber adhesives and silicone rubber adhesives, a fluororubber adhesive with high heat resistance and electrolyte resistance is used on the outer surface that contacts the electrolyte, and the central part Although it has poor electrolyte resistance, silicone rubber adhesive is used because it has high heat resistance and rubber elasticity and can easily form a thick layer. When sealed with a three-layer composite adhesive layer that uses a silicone rubber adhesive for the second layer and a fluoro rubber adhesive for the third layer, it maintains heat resistance and electrolyte resistance, and has excellent rubber elasticity. Therefore, performance deterioration such as ashing and embrittlement occurs even when used for long periods of time under harsh operating conditions such as operating at high temperatures and using highly concentrated electrolytes. Therefore, it can be used successfully without any problems.

第一層乃至第三層各層の厚さは第一、第三層のフッ化ゴ
ム系接着剤は夫々0.1〜0.3−程度とし、又それら
によって覆われる第二層のシリコーンゴム系接着剤の厚
さは/j〜コ、0■程変とし、各層とも一〜J回程度の
塗布で所望の厚さを容易に得ることができる。伺段差の
ある場合、少くとも素電池端部はフッ素ゴム系接着剤で
覆うようにすることが必要である。
The thickness of each of the first to third layers is approximately 0.1 to 0.3 mm for the fluorinated rubber adhesive in the first and third layers, and the silicone rubber adhesive in the second layer covered by them. The thickness of the adhesive varies by about /j to 0, and the desired thickness can be easily obtained by coating each layer about 1 to J times. If there is a step difference, it is necessary to cover at least the edges of the unit cell with a fluororubber adhesive.

今上記の如き燃料電池の作動項境と同様な環境下に本発
明による複合接着剤とシリコーンゴム系接着剤を長時間
保持した比較試験結果を次に示す。
The following are the results of a comparative test in which the composite adhesive of the present invention and a silicone rubber adhesive were maintained for a long time under the same operating conditions as the fuel cell as described above.

(試験例) グラファイトを主成分とするsew四方、厚さj■のイ
ンターコネクタに凸巾jlll、凹巾、3wm、深畜コ
謹の溝加工t−施し、これに第一層としてフッ素ゴム系
接着剤(日産理工株式会社製常温硬化フッ素ゴム)を二
度塗布して厚みθ、311I+の塗膜をつ〈シ、第二層
として溝部のクボミが完全に見えなくなるまでシリコー
ンゴム系接着剤(東芝シリコーン株式会社製シール−f
h接着材: ”’IA J?ORTV)を塗布し、さら
にその上にフッ素ゴム系接着剤をさきと同様に二度塗布
してはソ同じ厚さの塗膜をえた。
(Test example) An interconnector whose main component is graphite and has four sides and a thickness of J■, has a convex width of Jllll, a concave width of 3wm, and has a deep grooved T- groove, and then a fluororubber based as the first layer. Apply adhesive (room-temperature-curing fluororubber manufactured by Nissan Riko Co., Ltd.) twice to form a coating film with a thickness of θ, 311I+. As a second layer, apply silicone rubber adhesive (fluoro rubber that cures at room temperature) until the hollows in the grooves are completely invisible. Toshiba Silicone Corporation Seal-f
h Adhesive material: ``IA J?ORTV'' was applied, and then a fluororubber adhesive was applied on top of it twice in the same manner as before to obtain a coating film of the same thickness.

かかる試料(試料1)f:lデo”c、9317にのリ
ン酸水溶液中に浸漬し100 、200 、 !t00
時間経過稜の試料の膨潤、剥離、溶解の有無を観察した
。又比較のためシリコーンゴム系接着剤を同じ厚さに塗
布してなる試料2に、ついても同様な試験を行なった。
Such a sample (sample 1) was immersed in a phosphoric acid aqueous solution of f:ldeo"c, 9317 and 100, 200, !t00
The presence or absence of swelling, peeling, and dissolution of the ridge sample was observed over time. For comparison, a similar test was also conducted on Sample 2, which was coated with a silicone rubber adhesive to the same thickness.

その試験の結果を次の表1に示す。The results of the test are shown in Table 1 below.

表I −: 殆ど変化なし +  : わずかK111められる ++:  はっきり認められる +十+:  非常Kf−j、りきり認められる1m!/
よ〕明らかなように本発明の試料では高温161)lF
D電解質&c ioo 、 wo 、 zoo時間曝サ
レすも膨潤、剥離、溶解をみることなく、性状に何の変
化も観察されなかった。これに対して比較の試料の場合
は100時間では変化はなかったが200時間でわずか
に変化がみられ、SOO時間でははっき夛と変化が認め
−られた。又表には記載されていないが本発明の試料で
はゴム弾性も殆ど変化が認められなかった。このように
本発明による複合接着剤はかかる過酷な作動環境下にも
良好に密封しうるが、シリコーンゴム系接着剤では著し
い経時変化が観察され、良好に密封しえないことが明ら
かである。  ゛ 〔発明の実施例〕 次に実際の燃料電池について実施し、試験した場合の例
を挙げる。
Table I -: Almost no change+: Only K111 observed ++: Clearly observed +10+: Extremely Kf-j, 1m clearly observed! /
As is clear, the samples of the present invention were exposed to high temperatures of 161) lF.
No swelling, peeling, or dissolution was observed, and no change in properties was observed even after exposure to electrolyte D & cioo, wo, zoo for hours. On the other hand, in the case of the comparative sample, there was no change at 100 hours, but a slight change was observed at 200 hours, and a clear change was observed at the SOO time. Although not shown in the table, almost no change was observed in the rubber elasticity of the samples of the present invention. As described above, the composite adhesive according to the present invention can provide good sealing even under such harsh operating environments, but with silicone rubber adhesives, significant changes over time are observed and it is clear that good sealing cannot be achieved. [Example of the Invention] Next, an example will be given in which an actual fuel cell was implemented and tested.

(実施例) 水素を燃料とする燃料極、93%リン酸水溶液を電解質
、空気を酸化剤とする酸化剤極を有する1051四方、
厚さ1.コ■の板状の素電池を図面第1図の如くインタ
コネクタを介して積層させる。このインタコネクタは試
験例のように両面に溝加工を施してあり、同様な要領で
三層構造の接着剤を塗布した。インタコネクタは3個に
1個冷却パイプ付インタコネクタを用いる。このように
して10cmの高さの積層体を形成し、その周囲に、燃
料及び酸化剤の供給、排出のための高さ10erllK
巾10CWIX深さ5cInの大きさのマニホルドを装
着した。
(Example) A 1,051-square-foot structure with a fuel electrode using hydrogen as fuel, an electrolyte using 93% phosphoric acid aqueous solution, and an oxidizer electrode using air as an oxidant.
Thickness 1. The plate-shaped unit cells (1) are stacked together via interconnectors as shown in Figure 1 of the drawing. This interconnector had grooves formed on both sides as in the test example, and a three-layer adhesive was applied in the same manner. One in three interconnectors is equipped with a cooling pipe. In this way, a 10 cm high stack was formed, and around it a 10 erllK height for supplying and discharging fuel and oxidizer.
A manifold with a width of 10 CWIX and a depth of 5 cIn was installed.

このようにして形成された燃料電池を本体温度lざ0〜
/90℃、単位面積当シコ00 mA/cryTで起電
反応を行なった。燃料、酸化剤は単位時間、水素10j
/mMs、空気xt7mmで供給しそして100時間、
!y待時間1ooo時間経過後のマニホルドからの水素
ガスの漏洩の有無を水素ガス検出器によ)測定しえ。
The fuel cell formed in this way has a main body temperature of 0 to 0.
The electromotive reaction was carried out at /90°C and 00 mA/cryT per unit area. Fuel, oxidizer: unit time, hydrogen 10j
/mMs, supplied with air xt 7 mm and for 100 hours,
! After the waiting time of 1ooo hours has elapsed, use a hydrogen gas detector to measure the leakage of hydrogen gas from the manifold.

又tooo時間経過後にマニホルドをはずし、シールゴ
ムの劣化状況を観察した。
After too much time had elapsed, the manifold was removed and the deterioration of the seal rubber was observed.

さらに比較例として接着剤として試験例で用いたのと同
じシリコーンゴム接着剤を用い九以外は同様につくられ
た燃料電池で同様に試験を行なった。これらの試験の結
果は次の表1に示すとおり表1 − : 水素ガス検出されず + : 水素ガスがわずかに検出された++:  水素
ガスが多く検出された この表1から明らかなように本発明のように三層構成の
接着剤によシ密封し喪燃料電池では100θ時間経過後
も反応ガス漏れは検出されず、又分解調査でもゴムシー
ル部に灰化、脆化はみられず劣化は観察されなかった。
Furthermore, as a comparative example, the same silicone rubber adhesive as used in the test example was used as the adhesive, and a fuel cell manufactured in the same manner with the exception of 9 was tested in the same manner. The results of these tests are shown in Table 1 below. Table 1 -: No hydrogen gas detected +: Slight amount of hydrogen gas detected ++: Large amount of hydrogen gas detected As is clear from Table 1, In a fuel cell sealed with a three-layer adhesive as in the invention, no reaction gas leakage was detected even after 100θ hours, and a disassembly investigation showed no ashing or embrittlement in the rubber seal, indicating no deterioration. Not observed.

これに対してシリコーンゴム接着剤のみにょ夛密封した
比較例の燃料電池では時間の経過とともに反応ガス漏れ
が検出され、又分解調査においてはシール表面が灰化し
て脆くなっており、シール材料としての特性劣化が著し
いことが判った。
On the other hand, in a comparative fuel cell sealed with only silicone rubber adhesive, reactive gas leakage was detected over time, and a disassembly investigation revealed that the seal surface had turned to ash and become brittle, making it difficult to use as a sealing material. It was found that the characteristics deteriorated significantly.

以上述べたごとく、本発明によれば素電池とインタコネ
クタを交互に積層してなる積層体の周囲及びコーナーを
、第一、第三層をフッ素ゴム系接着剤、第二層をシリコ
ーンゴム系接着剤とする三層構成の接着剤層により密封
することによって、高温、高濃度の電解質の作動環境条
件下にシいて長時間使用しても特性に何の変化もなく、
良好に使用することができるのである。
As described above, according to the present invention, the periphery and corners of a laminate formed by alternately stacking unit cells and interconnectors are coated with a fluororubber adhesive for the first and third layers, and a silicone rubber adhesive for the second layer. By sealing with a three-layer adhesive layer, there is no change in characteristics even after long-term use under high temperature and high concentration electrolyte operating environment conditions.
It can be used successfully.

よって本発明はこの種の燃料電池として誠に有効な4の
を提供しうるのである。
Therefore, the present invention can provide four truly effective fuel cells of this type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燦料電池の積層体を分解して示す
説明図、第1図は同積層体とマニホルドの構成を示す説
明図、第3図は同積層体の積層状l1t−拡大して示す
説明図である。 l・・・素電池、コ、ダ・・・インターコネクタ、J・
・−バイブ、!・・・積層体、6・・・w=ホルト、7
・・・接着剤・ 第1図
FIG. 1 is an explanatory diagram showing an exploded view of a laminate of a phosphorescent battery according to the present invention, FIG. 1 is an explanatory diagram showing the structure of the laminate and a manifold, and FIG. It is an explanatory view enlarged and shown. l...Battery, K, D...Interconnector, J.
・-Vibe! ...Laminated body, 6...w=Holt, 7
...Adhesive・Figure 1

Claims (1)

【特許請求の範囲】[Claims] 燃料極、電解質、酸化剤極を有する素電池と、インタコ
ネクタを交互に積層して積層体を形成し、その周囲にマ
ニホルドを装着してなる燃料電池において、前記積層体
のコーナー及び周囲を、第一層と第三層をフッ素ゴム接
着剤、第二層をシリコーンゴム系接着剤とする複合接着
剤層で密封したことを特徴とする燃料電池。
In a fuel cell in which a unit cell having a fuel electrode, an electrolyte, an oxidizer electrode, and an interconnector are alternately stacked to form a laminate, and a manifold is attached around the laminate, the corners and surroundings of the laminate are A fuel cell characterized in that the first and third layers are sealed with a composite adhesive layer in which a fluororubber adhesive is used and the second layer is a silicone rubber adhesive.
JP56214324A 1981-12-26 1981-12-26 Fuel cell Pending JPS58112269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214324A JPS58112269A (en) 1981-12-26 1981-12-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214324A JPS58112269A (en) 1981-12-26 1981-12-26 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58112269A true JPS58112269A (en) 1983-07-04

Family

ID=16653864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214324A Pending JPS58112269A (en) 1981-12-26 1981-12-26 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58112269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
FR2785142A1 (en) * 1998-04-22 2000-04-28 Siemens Ag ELECTROTECHNICAL COMPONENT WITH PLASTIC PASSIVE SURFACE AND USE OF THIS COMPONENT
US6660422B2 (en) * 1998-12-11 2003-12-09 Utc Fuel Cells, Llc Proton exchange membrane fuel cell external manifold seal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933826A1 (en) * 1998-02-03 1999-08-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte membrane fuel cell and seal assembly therefor
US6316139B1 (en) 1998-02-03 2001-11-13 Matsushita Electric Industrial Co., Ltd. Fuel cell having a gasket with an adhesive layer
FR2785142A1 (en) * 1998-04-22 2000-04-28 Siemens Ag ELECTROTECHNICAL COMPONENT WITH PLASTIC PASSIVE SURFACE AND USE OF THIS COMPONENT
US7024737B2 (en) 1998-04-22 2006-04-11 Siemens Aktiengesellschaft Method for producing an electronic or electrical component with a plastic-passivated surface
US6660422B2 (en) * 1998-12-11 2003-12-09 Utc Fuel Cells, Llc Proton exchange membrane fuel cell external manifold seal

Similar Documents

Publication Publication Date Title
JP4484369B2 (en) Fuel cell with seal between individual membrane assembly and plate assembly
US7422819B2 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
US20130084507A1 (en) Non-volatile cathodes for lithium oxygen batteries and method of producing same
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
JP2001297777A (en) Macromolecular electrolyte fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2000294254A (en) Solid high polymer fuel cell
US20020090542A1 (en) Composite basic element and its seal for fuel cell and manufacturing process for the assembly
JPS58112269A (en) Fuel cell
JP2005302526A (en) Solid polymer electrolyte membrane and membrane electrode assembly having solid polymer electrolyte membrane
JPH03114147A (en) High temperature fuel cell device
JPH11111312A (en) Solid electrolyte type fuel cell
JPS58119172A (en) Fuel cell device
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH0475262A (en) Solid electrolytic fuel cell
ES2361565T3 (en) SOLID BOARD OBTAINED THROUGH THERMAL PROJECTION.
KR102123714B1 (en) Planar type solid oxide fuel cell
KR101483489B1 (en) Seperator for fuel cell and method for manufacturing the same
JPH0193063A (en) Seal structure of molten carbonate fuel cell
JP7390648B2 (en) Interconnector member and method for manufacturing interconnector member
JPH0684530A (en) Solid electrolyte type fuel cell
JPH0473268B2 (en)
JPS61185869A (en) Fuel cell
JPS61183866A (en) Alkaline cell