JPS61185869A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61185869A
JPS61185869A JP60026753A JP2675385A JPS61185869A JP S61185869 A JPS61185869 A JP S61185869A JP 60026753 A JP60026753 A JP 60026753A JP 2675385 A JP2675385 A JP 2675385A JP S61185869 A JPS61185869 A JP S61185869A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
laminated
unit cell
proofness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60026753A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kase
加瀬 吉彦
Mitsuru Kono
河野 満
Toshiaki Seki
関 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60026753A priority Critical patent/JPS61185869A/en
Publication of JPS61185869A publication Critical patent/JPS61185869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve reliability by improving gas seal construction of a laminated interface end portion of a unit cell by sealing uneven portions on the laminated end face of the unit cell and small clearances of the laminated interface end portion with fluoro-group rubber paint having heat proofness and electrolyte proofness. CONSTITUTION:Fluro-group rubber paint 20 having heat proofness and electro lyte proofness is coated on the small clearances 19 on a laminated interface end portion of a unit cell and large uneven portions of the laminated end por tion, and putty 18 which is a sealing material for absorbing unevenness is coated thereon to be smooth so as to obtain sealed portions. In this process, as fluoro- group rubber paint, polyamine curing rubber, peroxide curing rubber, polyol curing rubber etc. are used. Then, inside and outside of a manifold can be sealed completely.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は燃料電池に係り、特に単位セルの積層界面端部
のガスシール構造の改良を図った燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell in which the gas seal structure at the end of the stacked interface of unit cells is improved.

[発明の技術的背景とその問題点] 従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換する装置として燃料電池が知られている。こ
の燃料電池は通常、電解質を含浸したマトリックスを挾
んで一対の多孔質電極を配置するとともに、一方の電極
の背面に水素等の流体燃料を接触させ、また他方の電極
の背面に酸素等の流体酸化剤を接触させ、このとき起こ
る電気化学的反応を利用して、上記電極間から電気エネ
ルギーを取り出すようにしたものであり、前記燃料と酸
化剤が供給されている限り高い変換効率で電気エネルギ
ーを取り出すことができるものである。
[Technical Background of the Invention and Problems Therein] Fuel cells have conventionally been known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually consists of a pair of porous electrodes sandwiching an electrolyte-impregnated matrix, with a fluid fuel such as hydrogen in contact with the back of one electrode, and a fluid such as oxygen with the back of the other electrode. Electrical energy is extracted from between the electrodes by bringing an oxidizing agent into contact and utilizing the electrochemical reaction that occurs.As long as the fuel and oxidizing agent are supplied, electrical energy can be extracted with high conversion efficiency. can be taken out.

ところで、上記のような原理に基づく、特にリン酸を電
解質とした燃料電池の単位セルは、第3図に示すように
構成されており、またこの単位セルを複数個積層するこ
とによって、第4図に示すように燃料電池装置全体を構
成している。
By the way, the unit cell of a fuel cell based on the above-mentioned principle, especially using phosphoric acid as an electrolyte, is constructed as shown in FIG. As shown in the figure, the entire fuel cell device is configured.

すなわち、第3図において単位セルは、電解質を含浸し
たマトリックス1を境にして両側に多孔質体で形成され
触媒が付加されているリブ付電極2.3(通常炭素材か
ら成る)を配置し、またこのリブ付電極2,3は触媒付
加面の反対面にそれぞれ流体燃料および流体酸化剤の流
通路4,5を有している。更に、各リブ付電極2,3の
マトリックス1と反対側の背面には、それぞれセパレー
タ6を配置している。
That is, in FIG. 3, the unit cell has ribbed electrodes 2.3 (usually made of carbon material) formed of a porous material and provided with a catalyst on both sides of a matrix 1 impregnated with an electrolyte. The ribbed electrodes 2 and 3 have flow passages 4 and 5 for fluid fuel and fluid oxidant, respectively, on the opposite surface of the catalyst application surface. Furthermore, a separator 6 is arranged on the back surface of each ribbed electrode 2, 3 on the opposite side from the matrix 1.

このように、マトリックス1、リブ付電極2゜3および
セパレータ6を積層し、この状態でそれぞれリブ付電極
2.3の流体燃料流通路および流体酸化剤流通路の両端
開口部のみを残し各積層端面部を気密にシールして単位
セルを構成している。
In this way, the matrix 1, the ribbed electrode 2.3, and the separator 6 are stacked, and in this state, each stacked layer is stacked, leaving only the openings at both ends of the fluid fuel flow passage and the fluid oxidant flow passage of the ribbed electrode 2.3. The end face is hermetically sealed to form a unit cell.

第3図のように構成された単位セルは複数個積層され、
第4図に示すように単位セル間の電気的導通を得るため
に、締付具7により所定圧で締付けられる。その後、こ
の積層体の1つの対向する端面の一方にそれぞれシール
材8を介して燃料供給口9を有するマニホールド10と
、他に燃料排出口1)電解質を有するマニホールド12
とが当てがわれ、また他の対向する端面の一方にそれぞ
れシール材8を介して酸化剤供給口13を有するマニホ
ールド14と、他方に酸化剤排出口15を有するマニホ
ールド16とが当てがわれ、これらマニホールド10.
12.14.16がボルト等で締付けられて気密保持さ
れ、これによって燃料電池装置17が構成されている。
A plurality of unit cells configured as shown in Fig. 3 are stacked,
As shown in FIG. 4, the unit cells are tightened with a predetermined pressure by a fastener 7 in order to establish electrical continuity between the unit cells. Thereafter, a manifold 10 having a fuel supply port 9 via a sealing material 8 is provided on one of the opposing end faces of this stacked body, and a manifold 12 having a fuel discharge port 1) and an electrolyte.
and a manifold 14 having an oxidizing agent supply port 13 on one of the other opposing end surfaces via a sealing material 8, and a manifold 16 having an oxidizing agent discharge port 15 on the other side, These manifolds10.
12, 14, and 16 are tightened with bolts or the like to maintain airtightness, thereby configuring the fuel cell device 17.

したがってかかる燃料電池装置1)電解質7においては
、燃料供給口9から流体燃料を供給すると、この燃料は
各単位セルの流通路4を分流して多孔性のリブ電極2の
背面に接しながら流れ、その後燃料排出口1)電解質か
ら排出される。また、酸化剤供給口13から流体酸化剤
を供給すると、この酸化剤は各単位セルの流通路5を分
流して多孔性リブ付電極3の背面に接触しながら流れ、
その後酸化剤排出口15から排出されることになる。そ
してこの時、流体燃料とはそれぞれ拡散によって多孔性
リブ付電極2.3内に供給され、燃料電池としての電気
エネルギーを発生する。なお、図では出力端子を省略し
ている。
Therefore, in such a fuel cell device 1) in the electrolyte 7, when fluid fuel is supplied from the fuel supply port 9, this fuel branches through the flow path 4 of each unit cell and flows while being in contact with the back surface of the porous rib electrode 2. The fuel is then discharged from the electrolyte through the outlet 1). Furthermore, when a fluid oxidant is supplied from the oxidizer supply port 13, this oxidant flows through the flow path 5 of each unit cell and flows while contacting the back surface of the porous ribbed electrode 3.
Thereafter, the oxidizing agent is discharged from the oxidizing agent outlet 15. At this time, the fluid fuel is supplied into the porous ribbed electrode 2.3 by diffusion, and generates electrical energy as a fuel cell. Note that the output terminal is omitted in the figure.

また、このように組立られた燃料電池は通常加圧容器の
中に納められ、マニホールドの洩れガスの飛散防止およ
び効率を上げるために高圧条件下で運転する。ここで、
加圧容器はマニホールド内の反応ガスと外部の圧力差を
少なくするように不活性ガスが加圧充填され、かつマニ
ホールドから加圧容器内に反応ガスが洩れるのを防止す
るため数+trtm A Q程度に容器内圧力を高めて
いる。
Further, the fuel cell assembled in this manner is usually housed in a pressurized container and operated under high pressure conditions to prevent scattering of gas leaking from the manifold and to increase efficiency. here,
The pressurized container is pressurized and filled with inert gas to reduce the pressure difference between the reaction gas inside the manifold and the outside, and to prevent the reaction gas from leaking from the manifold into the pressurized container. The pressure inside the container is increased.

ところで、上述した燃料電池の単位セル積層端面へのマ
ニホールド取付けにおいては、積層による凹凸を吸収す
る耐熱、耐リン酸性を有する凹凸吸収用のパテ材により
シール部を平滑化し、更に耐熱、耐リン酸性のガスケッ
トを介してマニホールドが取付けられ、これによりマニ
ホールド内部と外部を気密にシールするようになってい
る。
By the way, when attaching the manifold to the end face of the stacked unit cells of the fuel cell described above, the sealing part is smoothed with a heat-resistant and phosphoric acid-resistant putty material that absorbs the unevenness caused by the stacking. The manifold is attached via a gasket, which creates an airtight seal between the inside and outside of the manifold.

しかしながら、耐熱、耐リン酸性のパテ材のみでは積層
端面の大きな凹凸は吸収出来るが、積層界面端部の小さ
な隙間は完全に埋めることができない。このため、マニ
ホールドの内部と外部とを完全にシールすることが出来
ず、マニホールドに比して圧力を高めである加圧容器か
ら不活性ガスがマニホールド内に流入して反応ガスであ
る流体燃料および流体酸化剤が希釈され、濃度低下の原
因となって電池特性の低下を招いている。そのために、
最近では積層界面端部のより確実なシール構造の出現が
強く望まれてきている。
However, although heat-resistant and phosphoric acid-resistant putty materials alone can absorb large irregularities on the end faces of the laminated layers, they cannot completely fill the small gaps at the ends of the laminated interfaces. For this reason, it is not possible to completely seal the inside and outside of the manifold, and inert gas flows into the manifold from a pressurized container whose pressure is higher than that of the manifold. The fluid oxidizer is diluted, causing a decrease in concentration and resulting in a decrease in battery characteristics. for that,
Recently, there has been a strong desire for a more reliable sealing structure at the edge of the laminated interface.

[発明の目的] 本発明は上記のような事情を考慮して成されたもので、
その目的は単位セルの積層界面端部のガスシール構造を
改良し、信頼性を向上させることが可能な燃料電池を提
供することにある。
[Object of the invention] The present invention was made in consideration of the above circumstances, and
The purpose is to improve the gas seal structure at the end of the laminated interface of the unit cell and to provide a fuel cell capable of improving reliability.

[発明の概要] 本発明では上記の目的達成するために、単位セルの積層
端面の凹凸および積層界面端部の小さな隙間を耐熱、耐
電解質性を有するフッ素系ゴム塗料でシールするように
したことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention seals the irregularities on the stacked end faces of unit cells and the small gaps at the stacked interface edges with a fluorine-based rubber paint having heat resistance and electrolyte resistance. It is characterized by

[発明の実施例] 以下、本発明の一実施例について、第1図(a )(b
)および第2図を参照して説明する。第1図(a>は、
本発明による燃料電池における単位セルの積層界面端部
の構成例を断面図にて示したもので、第1図(b)に従
来のシール部の構成を併せて示している。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 1(a) and 1(b).
) and FIG. 2. Figure 1 (a> is
This is a cross-sectional view showing an example of the configuration of the stacked interface end portion of the unit cell in the fuel cell according to the present invention, and FIG. 1(b) also shows the configuration of a conventional seal portion.

つまり本実施例では、前述した構成の単位セルの積層界
面端部の小さな隙間19および積層端面の大きな凹凸に
、耐熱、耐リン酸性を有するフッ素系ゴム塗料20を塗
布処理し、その上に凹凸吸収用のシール材であるパテ材
18で平滑化してシール部を形成するものである。ここ
で、フッ素系ゴム塗料としては例えばポリアミン加硫ゴ
ム、パーオキサイド加硫ゴム、ポリオール加硫ゴム等を
使用する。
In other words, in this example, a fluorine-based rubber paint 20 having heat resistance and phosphoric acid resistance is applied to the small gap 19 at the edge of the laminated interface and the large irregularities on the end face of the laminated layer of the unit cell configured as described above, and the unevenness is applied thereon. A seal portion is formed by smoothing with putty material 18, which is an absorbent sealing material. Here, as the fluorine rubber paint, for example, polyamine vulcanized rubber, peroxide vulcanized rubber, polyol vulcanized rubber, etc. are used.

なお従来では、第1図(b)に示す如く積層端面の凹凸
部のみにパテ材18で平滑化を行なっている。
Conventionally, as shown in FIG. 1(b), only the uneven portions of the end faces of the stack are smoothed with a putty material 18.

次に、上記シール部にガスケット21を介して5.5に
97cdの面圧で流体燃料および流体酸化剤供給、排出
用のマニホールドを取り付け、リーク速度すなわちリー
ク係数の測定を行なった。この場合、リーク係数の評価
は100100aの差圧のとき単位シール長M当り、1
時間のリーク量から求め、その結果を下表1に示した。
Next, a manifold for supplying and discharging fluid fuel and fluid oxidizer was attached to the seal portion through a gasket 21 at a surface pressure of 5.5 to 97 cd, and the leak rate, that is, the leak coefficient was measured. In this case, the leakage coefficient is evaluated as 1 per unit seal length M at a differential pressure of 100100a.
It was determined from the amount of leakage over time, and the results are shown in Table 1 below.

[表 1] 表から、従来法ではリーク係数が0.151d/hr・
履・100avAQであったものが、本実施−例のシー
ル構成では、リーク係数が0.058se/hr’am
・100#1)電解質1AQとなり、本実施例では従来
法に比べて約2.5倍のシール効果を得ることができる
[Table 1] From the table, the conventional method has a leakage coefficient of 0.151d/hr・
The leakage coefficient was 100avAQ, but with the seal configuration of this example, the leakage coefficient is 0.058se/hr'am.
-100#1) Electrolyte 1AQ, and in this example, it is possible to obtain a sealing effect approximately 2.5 times greater than that of the conventional method.

一方、燃料電池は起動・停止によって冷熱サイクルが行
なわれ、シール機能が低下する懸念があるため、これら
を模擬したヒートサイクルテストを行ないリーク係数の
変化を調査した。この場合、ヒートサイクルは常温から
200℃の範囲で行ない、その結果を第2図に示した。
On the other hand, fuel cells undergo cooling and heating cycles when they are started and stopped, and there is a concern that their sealing function may deteriorate, so we conducted a heat cycle test that simulated these cycles to investigate changes in the leakage coefficient. In this case, the heat cycle was carried out in the range from room temperature to 200°C, and the results are shown in FIG.

図から、ヒートサイクルによりリーク係数には大きな変
化が認められず、初期値0.058jIi!/hr−履
・100IIWAQに対してヒートサイクル30回目で
も0.0601d/hr−履・100#IIIAqであ
り、極めて安定したシール機能を有していることが分か
る。
From the figure, no significant change was observed in the leakage coefficient due to the heat cycle, and the initial value was 0.058jIi! /hr-shoes/100IIWAQ was 0.0601d/hr-shoes/100#IIIAq even at the 30th heat cycle, which shows that it has an extremely stable sealing function.

さらに、本実施例によるシール構成を施した燃料電池を
用いて発電時間に対するリーク係数の変化を求めた。こ
の場合、発電条件は205℃・220mA/dで150
0時間運転後におけるリーク係数は下表2に示す如くで
あった。
Furthermore, the change in leakage coefficient with respect to power generation time was determined using a fuel cell equipped with the seal structure according to this example. In this case, the power generation conditions are 205°C, 220mA/d, and 150mA/d.
The leak coefficient after 0 hours of operation was as shown in Table 2 below.

[表 2] 上記結果から、リーク係数として安定したシール機能が
維持されていることが分かる。
[Table 2] From the above results, it can be seen that a stable sealing function was maintained in terms of leakage coefficient.

上述したように本実施例のシール構造を有した燃料電池
とすることにより、単位セルの積層界面端部の小さな隙
間19をフッ素系ゴム塗料20で完全に埋めて、マニホ
ールドの内部と外部とを完全にシールすることが可能な
る。もって、加圧容器から不活性ガスがマニホールド内
に流入して反応ガスである流体燃料および流体酸化剤が
希釈されるようなことがなくなり、極めて効率の良い安
定した電池性能を期待することができる。
As described above, by providing a fuel cell with the seal structure of this embodiment, the small gap 19 at the end of the laminated interface of the unit cell is completely filled with the fluorocarbon rubber paint 20, and the inside and outside of the manifold are separated. It is possible to completely seal it. This eliminates the possibility of inert gas flowing into the manifold from the pressurized container and diluting the fluid fuel and fluid oxidizer, which are reactive gases, making it possible to expect highly efficient and stable battery performance. .

[発明の効果] 以上説明したように本発明によれば、単位セルの積層端
面および積層界面端部にフッ素系ゴム塗料を塗布処理し
、その上に耐熱、耐電解質性を有する凹凸吸収用のパテ
材で平滑なシール部を形成し、ガスケットを介して流体
燃料および流体酸化剤供給、排出用のマニホールドを取
付ける構成としたので、極めて安定したシール機能を維
持して信頼性の向上および長寿命化を図ることが可能な
燃料電池が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a fluorine-based rubber paint is applied to the stacked end faces and the stacked interface ends of the unit cell, and a heat-resistant and electrolyte-resistant uneven absorbing coating is applied thereon. A smooth seal is formed with putty material, and a manifold for supplying and discharging fluid fuel and fluid oxidizer is attached via a gasket, maintaining extremely stable sealing function, improving reliability and long life. It is possible to provide a fuel cell that can be used for various purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a )は本発明の一実施例を示す断面図、第1
図(1)電解質>は従来法によるシール部の構成を示す
断面図、第2図は同実施例によるシール機能の変化を示
す特性図、第3図は燃料電池の単位セルの積層構成を示
す分解斜視図、第4図は同単位セルを組込んだ燃料電池
を示す斜視図である。 1・・・マトリックス、2,3・・・リプ付電極、8゜
18・・・シール材、20・・・フッ素系ゴム塗料、2
2・・・積層端面。 第 1)電解質i!!!
FIG. 1(a) is a sectional view showing one embodiment of the present invention.
Figure (1) Electrolyte> is a cross-sectional view showing the configuration of the sealing part according to the conventional method, Figure 2 is a characteristic diagram showing changes in sealing function according to the same example, and Figure 3 shows the stacked structure of the unit cell of the fuel cell. FIG. 4 is an exploded perspective view showing a fuel cell incorporating the same unit cell. 1... Matrix, 2, 3... Electrode with lip, 8゜18... Seal material, 20... Fluorine rubber paint, 2
2...Laminated end face. 1) Electrolyte i! ! !

Claims (4)

【特許請求の範囲】[Claims] (1)電解質を含浸したマトリックスを挾んで、流体燃
料および流体酸化剤の流通路が形成された一対のリブ付
電極を配置して成る単位セルを複数個積層して構成した
燃料電池において、前記単位セルの積層端面および積層
界面端部にフッ素系ゴム塗料を塗布処理し、その上に耐
熱、耐電解質性を有する凹凸吸収用のパテ材で平滑なシ
ール部を形成し、ガスケットを介して前記流体燃料およ
び流体酸化剤供給、排出用のマニホールドを取付ける構
成としたことを特徴とする燃料電池。
(1) In a fuel cell constructed by stacking a plurality of unit cells each comprising a pair of ribbed electrodes in which flow paths for fluid fuel and fluid oxidizer are formed, sandwiching a matrix impregnated with an electrolyte, A fluorine-based rubber paint is applied to the stacked end faces and the stacked interface ends of the unit cell, and a smooth seal is formed on top of this using a heat-resistant and electrolyte-resistant putty material for absorbing unevenness. A fuel cell characterized by having a structure in which a manifold for supplying and discharging fluid fuel and fluid oxidizer is attached.
(2)フッ素系ゴム塗料はポリアミン加硫ゴムであるこ
とを特徴とする特許請求の範囲第(1)項記載の燃料電
池。
(2) The fuel cell according to claim (1), wherein the fluorine-based rubber paint is polyamine vulcanized rubber.
(3)フッ素系ゴム塗料はパーオキサイド加硫ゴムであ
ることを特徴とする特許請求の範囲第(1)項記載の燃
料電池。
(3) The fuel cell according to claim (1), wherein the fluorine-based rubber paint is peroxide vulcanized rubber.
(4)フッ素系ゴム塗料はポリオール加硫ゴムであるこ
とを特徴とする特許請求の範囲第(1)項記載の燃料電
池。
(4) The fuel cell according to claim (1), wherein the fluorine-based rubber paint is polyol vulcanized rubber.
JP60026753A 1985-02-14 1985-02-14 Fuel cell Pending JPS61185869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026753A JPS61185869A (en) 1985-02-14 1985-02-14 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026753A JPS61185869A (en) 1985-02-14 1985-02-14 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61185869A true JPS61185869A (en) 1986-08-19

Family

ID=12202042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026753A Pending JPS61185869A (en) 1985-02-14 1985-02-14 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61185869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528862A (en) * 1998-10-21 2002-09-03 インターナショナル フュエル セルズ,エルエルシー Fuel cell with seal between individual membrane assembly and plate assembly
JP2002529890A (en) * 1998-10-30 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Improved membrane electrode assembly for PEM fuel cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528862A (en) * 1998-10-21 2002-09-03 インターナショナル フュエル セルズ,エルエルシー Fuel cell with seal between individual membrane assembly and plate assembly
JP2002529890A (en) * 1998-10-30 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Improved membrane electrode assembly for PEM fuel cells

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
US6066409A (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
KR20010104645A (en) Improved membrane electrode assembly for pem fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2008171613A (en) Fuel cells
JP4069039B2 (en) Fuel cell
JPS61185869A (en) Fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2018098190A (en) Membrane-electrode assembly for fuel battery and method for manufacturing the same
JPH06260193A (en) Fuel cell stack with solid highpolymer electrolyte
JPS63205060A (en) Fuel cell
JPS61256570A (en) Fuel cell
JPS61256569A (en) Fuel cell
KR20230087706A (en) Fuel cell for preventing water blister generation and method for manufacturing the same
JP3496819B2 (en) Polymer electrolyte fuel cell
JPS6388759A (en) Fuel cell
JPH0473268B2 (en)
JPS62223974A (en) Unit cell stacking method for fuel cell
JPS6266577A (en) Fuel cell
JPH0252390B2 (en)
JPS61292859A (en) Manufacture of fuel cell
JPS625571A (en) Fuel cell
JPS61173465A (en) Fuel cell
JPS61285674A (en) Fuel cell
JPS6095863A (en) Fuel cell