JPS58112082A - Evaporation - Google Patents

Evaporation

Info

Publication number
JPS58112082A
JPS58112082A JP21408481A JP21408481A JPS58112082A JP S58112082 A JPS58112082 A JP S58112082A JP 21408481 A JP21408481 A JP 21408481A JP 21408481 A JP21408481 A JP 21408481A JP S58112082 A JPS58112082 A JP S58112082A
Authority
JP
Japan
Prior art keywords
evaporator
water
heat
engine
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21408481A
Other languages
Japanese (ja)
Inventor
Kazuharu Takada
和治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP21408481A priority Critical patent/JPS58112082A/en
Publication of JPS58112082A publication Critical patent/JPS58112082A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)

Abstract

PURPOSE:To systematically effectively utilize necessary supplied energy, by supplying the power of an engine to the compressor of an evaporator and then together with the heat of water for cooling the jacket of the engine to a heat exchanger provided in the evaporator to evaporate salt water. CONSTITUTION:Salt water reserved in a spreading means 14 is spread to the bundle 18 of heat-transmitting pipes and evaporated therein. The formed steam is compressed to about 76 deg.C by a compressor 17, recycled for heat exchange, condensed itself and received in the condensed water reservoir 25 of a header 24 at the outlet side. Slightly concentrated salt water dropping from the bundle 18 of heat-transmitting pipes is evaporated by heat exchange with the bundle 19 of heating pipes through which water of about 85 deg.C for cooling a jacket is circulated, and the formed steam is mixed with the formed steam from the bundle 18 of heat-transmitting pipes thereabove. The jacket-cooling water becomes at about 78 deg.C and returns to the engine. The condensed water of about 76 deg.C gathered in the condensed water reservoir 25 is let flow through a pipe 26, heated and evaporated by a waste heat boiler 27 of about 400 deg.C, and then introduced as steam of about 76 deg.C to a header 23 at the inlet side.

Description

【発明の詳細な説明】 本発明は将来の石油供給の逼迫に備え、所要供給エネル
ギーを総合的に有効に利用して、ランニングコストを低
減することを目的とした溶液の蒸発法に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to a solution evaporation method aimed at reducing running costs by comprehensively and effectively utilizing the required supply energy in preparation for future oil supply shortages. .

即ち、蒸気lf縮蒸発器、多段蒸発器、さらにはエンジ
ン、圧縮機、熱交換器及び真空ポンプ倉組合せ、従来装
置で試みられた方法よりもエネルギー消費量の少ない方
式とし、海水、地下水、かん木、その他不純な水から純
水を分離し、あるいは所定一度の溶液を収得できる蒸発
法を提供するためになされたものである。蒸気圧NiJ
蒸発器は高温で蒸発、圧縮、凝縮の作#をさせると蒸気
のイ度が高く圧縮しやすいし、比容積が小さいため装置
が小さくてよく、伝熱係数も高くなるので高温作動の方
法が採用されている。ところが常温の原料水を直接蒸発
器に導入すると蒸発器を所定の高温に維持することがで
きないので、高温になった排出水と熱交換させて予熱す
る方法が採られる。
In other words, the system uses a steam LF condensing evaporator, a multi-stage evaporator, an engine, a compressor, a heat exchanger, and a vacuum pump storage combination, which consumes less energy than the methods attempted with conventional equipment, and is suitable for seawater, groundwater, This method was developed to separate pure water from wood and other impure water, or to provide an evaporation method that can obtain a solution at a given time. Vapor pressure NiJ
When an evaporator performs evaporation, compression, and condensation at a high temperature, the steam becomes more intense and can be easily compressed, and the specific volume is small, so the equipment can be small, and the heat transfer coefficient is high, so high-temperature operation is preferred. It has been adopted. However, if raw water at room temperature is directly introduced into the evaporator, the evaporator cannot be maintained at a predetermined high temperature, so a method of preheating by exchanging heat with high temperature discharged water is adopted.

本発明の一つはこの予熱段階に於ける熱交換を利用して
蒸発、凝縮を行わせ総合的に蒸留水量を増加させるもの
1である。
One aspect of the present invention is to use heat exchange in this preheating stage to perform evaporation and condensation, thereby increasing the total amount of distilled water.

従来の蒸気圧縮蒸発器は圧M機が多くの動力を消費して
いたので、この動力に相当する発熱によって該蒸発器の
作動温度を高温に維持することができた。ところが蒸発
器の性能を向上させ切刃消費を減らす方法を採用した場
合の問題点は、作wノ温度維持のため外部から多量の熊
を尋人せねばならぬ点にある。
In conventional vapor compression evaporators, the pressure M machine consumes a lot of power, so the operating temperature of the evaporator can be maintained at a high temperature by generating heat corresponding to this power. However, the problem with adopting a method of improving the performance of the evaporator and reducing the consumption of cutting blades is that a large amount of heat must be added from outside in order to maintain the crop temperature.

本発明の、他の一つはエンジンから発生する動力を蒸気
圧縮に用い、該エンジンから排出される冷却水の熱と排
ガスの熱を蒸発器の作動温度の維持に利用し、エンジン
の助平と蒸発器の温度を効率よくバランスさす、動力消
費が少なくても作11!1度を十分高温に維持できるよ
うにするものである。
Another aspect of the present invention is to use the power generated by the engine for vapor compression, and use the heat of the cooling water and exhaust gas discharged from the engine to maintain the operating temperature of the evaporator. This system efficiently balances the temperature of the evaporator and maintains a sufficiently high temperature of 11.1 degrees Celsius even with low power consumption.

蒸発器の作動温度を高温に維持したときの利点は前述の
通りであるが、あまり温度が高すぎると原水からスケー
ルが発生したり、機器材料のtK食が増加する弊害があ
るので、100℃以下の適当な温度で作動させるのが好
ましい。ところか100℃以下で蒸発、させるには温度
に応じた真空度に維持しなければならない。
The advantages of maintaining the operating temperature of the evaporator at a high temperature are as mentioned above, but if the temperature is too high, there are disadvantages such as scale generation from raw water and increased tK corrosion of equipment materials, so It is preferred to operate at a suitable temperature below. However, in order to evaporate at temperatures below 100°C, the degree of vacuum must be maintained in accordance with the temperature.

本発明の他の一つは真空ポンプに入るガスおよび水蒸気
の体積を減らし、該ポンプの所要動力を減少させる方法
を与える。
Another aspect of the invention provides a method for reducing the volume of gas and water vapor entering a vacuum pump, thereby reducing the power requirements of the pump.

本発明は上記の問題を解決し、省エネルギーに合致した
蒸発法に関するものであり、その実施例ヲ嵩付の図面に
よって説明する。
The present invention solves the above-mentioned problems and relates to an evaporation method that meets energy saving, and an embodiment thereof will be explained with reference to the accompanying drawings.

第1図において、約20℃15.ろooh/hの海水は
ポンプ1によって汲み上げられ、分岐して一方は管2を
経て熱交換器6で約300まで加熱されたのら、薬剤タ
ンク4より管5を経て、5ば硫酸9重合燐酸塩のごとき
スケール防止剤が添加され、管6を通り、多段フラッシ
ュ蒸発器のごとき多段蒸発器7の凝縮管束8を順次通過
して約72.5℃まで温度上昇したのち、管9を通過し
脱ガス槽10に至る。
In Figure 1, approximately 20°C 15. Seawater at a rate of 000/h is pumped up by a pump 1, branched into one side, passed through a pipe 2, heated to about 300 ℃ in a heat exchanger 6, and then passed from a chemical tank 4 to a pipe 5, where it is heated to a temperature of 5. A scale inhibiting agent such as phosphate is added, and the mixture passes through tube 6 and successively through a condensing tube bundle 8 of a multi-stage evaporator 7, such as a multi-stage flash evaporator, to raise the temperature to about 72.5° C., and then passes through tube 9. and reaches the degassing tank 10.

この原料海水はノズル11より噴射して溶存ガスを放出
したのち、管12を経て蒸気圧84発器16の牧布装置
14に溜まる。
This raw material seawater is injected from a nozzle 11 to release dissolved gas, and then passes through a pipe 12 and accumulates in the pasting device 14 of the steam pressure 84 generator 16.

この蒸気圧縮蒸発器16はエンジン15駆動発電機16
による電力の供給を受ける圧縮機17を具えており、散
布装置14の下方に伝熱管束18が位置し、さらにその
下方には加熱管束19が設けられ、圧Mk17の入口管
20がケーシング21に開口し、出口管22が前記伝熱
管束18の入口側ヘッダー26に連絡しており、出口側
ヘッダ−24下部の#細水溜25は管26゜エンジンの
排熱ボイラー27.及び管28ヲ経て前記入口側ヘッダ
ー26に連絡している。加熱管束19してはエンジン1
5のジャケット冷却水m項管路29とポンプ60が連絡
して、高温となったジャケット冷却水が加熱源となる。
This vapor compression evaporator 16 is driven by an engine 15 and a generator 16.
A heat transfer tube bundle 18 is located below the dispersion device 14, and a heating tube bundle 19 is provided further below. The outlet pipe 22 is open and connected to the inlet header 26 of the heat transfer tube bundle 18, and the thin water reservoir 25 at the bottom of the outlet header 24 is connected to the exhaust heat boiler 27 of the engine. It is connected to the inlet header 26 via a pipe 28. Heating tube bundle 19 and engine 1
The jacket cooling water m-line pipe 29 of No. 5 is connected to the pump 60, and the high temperature jacket cooling water becomes a heating source.

エンジン15には給油管57が設けられている。The engine 15 is provided with an oil supply pipe 57.

前述のとおり散布装置14に溜まった海水は伝熱管束1
8に散布°され、管内の圧縮蒸気の高温によって蒸発し
、発生蒸気は圧縮機17で約76Cまで圧縮され、再v
N環して熱交換し、自らは凝縮し出口側ヘッダー24の
凝縮水溜25に溜まる。伝熱管束18から落下するやや
濃縮された海水は次いで約850のジャケット冷却水が
#i項する加熱管束19で熱交換して蒸発し、発生蒸気
は上方の伝熱管束18の発生邊蒸気と混合する。約74
Cの4M海水は下部のC製麺プラインff1A51に溜
まる。ジャケット冷却水は約78℃となってエンジンに
戻入する。−万、凝縮水溜25に溜まった約760の凝
縮水は管26を通り、約400℃の排熱ボイラ27で加
熱されて蒸発し、約760の蒸気となって管28ヲ経て
入口側ヘラグー26に導入され、圧縮機17による圧m
A気と混合し伝熱管束18に入る。上記のとおり蒸気圧
縮蒸発器15においては、エンジン駆動による発生゛電
力と、ジャケット冷却水及び排ガスの保有燕は有効に利
用されている。
As mentioned above, the seawater accumulated in the spraying device 14 is transferred to the heat transfer tube bundle 1.
8°, and evaporated by the high temperature of the compressed steam in the pipe. The generated steam is compressed to about 76°C by the compressor 17, and then re-vaporized.
The N-ring exchanges heat, and it condenses itself and collects in the condensed water reservoir 25 of the outlet header 24. The slightly concentrated seawater that falls from the heat transfer tube bundle 18 is then evaporated through heat exchange in the heating tube bundle 19 with about 850 jacket cooling water, and the generated steam is evaporated with the generated steam in the heat transfer tube bundle 18 above. Mix. Approximately 74
The 4M seawater of C accumulates in the lower C noodle making line ff1A51. The jacket cooling water returns to the engine at approximately 78°C. - About 760 ml of condensed water collected in the condensed water reservoir 25 passes through the pipe 26, is heated by the waste heat boiler 27 at about 400°C, evaporates, becomes about 760 ml of steam, and passes through the pipe 28 to the inlet Heragu 26. and the pressure m by the compressor 17
It mixes with A gas and enters the heat exchanger tube bundle 18. As described above, in the vapor compression evaporator 15, the electric power generated by the engine drive and the jacket cooling water and exhaust gas are effectively utilized.

蒸気圧縮蒸発器15の、41Mブライン溜61に溜まっ
た約74℃の濃縮プラインは、管32を経て多段蒸発器
7の最高温蒸発段66の下部に導入される。多段蒸発器
7はオリフィス64倉有する垂直の隔壁65によって多
段に区画形成されており、下部にはin記凝縮水が流れ
る管26から分岐管36によって連絡する浸管型管束6
7が液面68下に設けられ、出口管69は最低温蒸発段
40の#細氷受皿41上方に連絡している。この浸管型
管束67には約76Cの凝縮水が導入され、各段におい
て下部の4縮プラインは加熱蒸発するとともに、オリフ
ィス64より順次低温段へフラッシュ蒸発し、発生蒸気
は共に上方の凝縮管束8で凝縮して受皿41に溜ま゛す
、順次カスケードして管42より約540となって収出
される。この凝縮水は造水ポンプ45を通り熱交換a6
に入り、冷い原海水と熱交換し、約24℃となって管4
4より6.250に9/hの割合で取出され、適宜使用
に供される。一方、−細ブラインは最低温蒸発段40よ
り収出され、プラインポンプ45.・熱交換器6を通過
し、約24Cとなって管46から7,750Kg/hの
割合で収出される。
The approximately 74° C. condensed prine stored in the 41M brine reservoir 61 of the vapor compression evaporator 15 is introduced into the lower part of the hottest evaporation stage 66 of the multi-stage evaporator 7 via the pipe 32. The multi-stage evaporator 7 is divided into multiple stages by a vertical partition wall 65 having 64 orifices, and at the bottom there is an immersion pipe bundle 6 connected by a branch pipe 36 from a pipe 26 through which condensed water flows.
7 is provided below the liquid level 68, and the outlet pipe 69 communicates with the #fine ice tray 41 above the lowest temperature evaporation stage 40. Approximately 76C of condensed water is introduced into this immersion type tube bundle 67, and in each stage, the four condensing plines at the bottom are heated and evaporated, and flash evaporated from the orifice 64 to the lower temperature stages in sequence, and the generated steam is both transferred to the upper condensing tube bundle. 8, it condenses and accumulates in the saucer 41, and is sequentially cascaded and collected from the pipe 42 in the amount of about 540. This condensed water passes through a fresh water generation pump 45 and heat exchanges a6.
It exchanges heat with the cold raw seawater, reaching a temperature of about 24°C and flowing into tube 4.
It is taken out at a rate of 9/h from 4 to 6.250/h and used as appropriate. On the other hand, -fine brine is extracted from the lowest temperature evaporation stage 40, and is extracted from the prine pump 45. - It passes through the heat exchanger 6, becomes about 24C, and is recovered from the pipe 46 at a rate of 7,750 kg/h.

蒸気圧縮蒸発器16で発生した不凝縮性ガスは出口側ヘ
ッダー24より管47を通過し次のち多段J重器7から
の抽気と合流し管48を通りデ轡赫キ4抽気冷却器49
に入り、管2より分岐管5oを通って導入された、熱交
換e、6に流入する前の、約20Cの海水と直接接触し
て同伴する水蒸気は凝縮し、しかも低温になって体積の
減少した不凝縮性ガスを水封式真空ポンプ51によって
大気へ放出するので真空ポンプを小型化できる。油気冷
却器49の排水は管52に経て嬢゛細プラインに混入排
秦する。なお各種ポンプの電力は発電機16より供給さ
れることは勿論である。
The non-condensable gas generated in the vapor compression evaporator 16 passes through the pipe 47 from the outlet side header 24, and then merges with the bleed air from the multi-stage J-heavy equipment 7, passes through the pipe 48, and enters the bleed air cooler 49.
The water vapor that is brought into direct contact with seawater at about 20C, which is introduced from pipe 2 through branch pipe 5o and flows into heat exchanger e, 6, condenses and becomes lower in temperature, reducing its volume. Since the reduced non-condensable gas is discharged to the atmosphere by the water ring vacuum pump 51, the vacuum pump can be downsized. The waste water from the oil cooler 49 passes through the pipe 52 and is mixed into the fine line and discharged. It goes without saying that the power for the various pumps is supplied from the generator 16.

上記の説明では多段蒸発器7を多段フラッシュ蒸発器と
したが、フラッシュを伴う多重効用蒸発器などの他の形
式も使用でき、また圧縮機17はエンジン直結で、もよ
く、なお管28を通過する蒸気は場合によっては入口側
ヘッダー26の代りに蒸発器16の管束外側に導入して
もよい。さらに、エンジンの設備がなく電力のみ得られ
る場合、例えば第2図のように熱源を集熱器56によっ
て太陽熱に求める場合にも、上記蒸気圧N蒸発器16.
多段蒸発器7.熱交換器乙の組合せは適用でき、夜間は
蓄熱槽541に利用して連続運転を可能ならしめる。こ
の際、昼間集熱器56で集められた太陽熱はt1熱槽5
4に蓄えられ、蒸気として管55より取出して蒸気圧N
蒸発器15の加熱管束(図示せず)に供給され、熱は蒸
発に利用され、ドレンは管56により蓄熱槽54に戻入
して#i項使用される。この場合前記排熱ボイラ、発電
機のないことは勿論である。
In the above description, the multi-stage evaporator 7 is a multi-stage flash evaporator, but other types such as a multiple effect evaporator with flash can also be used, and the compressor 17 can be directly connected to the engine, and still pass through the pipe 28. Optionally, the steam may be introduced outside the tube bundle of the evaporator 16 instead of the inlet header 26. Furthermore, when there is no engine equipment and only electric power is obtained, for example, when the heat source is solar heat using a heat collector 56 as shown in FIG. 2, the vapor pressure N evaporator 16.
Multi-stage evaporator7. The combination of heat exchanger B can be applied and can be used in the heat storage tank 541 at night to enable continuous operation. At this time, the solar heat collected in the daytime heat collector 56 is transferred to the t1 heat tank 5.
4 and taken out as steam through a pipe 55 to a steam pressure of N.
The heat is supplied to a heating tube bundle (not shown) of the evaporator 15, and the heat is used for evaporation, and the drain is returned to the heat storage tank 54 through the tube 56 and used in the #i term. In this case, of course, there is no exhaust heat boiler or generator.

またエンジンによってはジャケット冷却水の温度が低い
場合がある。この場合はジャケット冷却水を第6図に示
すようにポンプ60により順次低温となっている多段蒸
発器7の熱交換に適した温度の蒸発室、例えば第2段蒸
発室以下の浸管型管束67に導いて熱交換させ、発生蒸
気によって凝Mf束8を流れる給水を予熱し、自らは凝
縮してl#細水の増量に役立ち、このようにジャケット
冷却水が低温の場合でも熱の有効利用がoT能となる。
Also, depending on the engine, the temperature of the jacket cooling water may be low. In this case, as shown in FIG. 6, the jacket cooling water is pumped into an evaporation chamber at a temperature suitable for heat exchange in the multistage evaporator 7, which is successively brought to a low temperature by a pump 60, for example, an immersion tube bundle below the second stage evaporation chamber. 67 for heat exchange, the generated steam preheats the feed water flowing through the condensing Mf bundle 8, and it condenses itself, helping to increase the amount of l# fine water, thus making the heat effective even when the jacket cooling water is at a low temperature. Utilization becomes OT ability.

このジャケット冷却水の温度が低い場合、#!縮細氷増
量を望まなければ、該ジャケット冷却水を11M水受皿
41上において#−水、ζ鳩交換させてもよい。なおこ
のように外部から該多段蒸発器に導かれる熱水はジャケ
ット冷却水に限らず、太陽熱−集熱水、工場温排水など
にも適用できる。
If the temperature of this jacket cooling water is low, #! If it is not desired to increase the amount of shredded ice, the jacket cooling water may be exchanged with # water and ζ water on the 11M water tray 41. Note that the hot water introduced from the outside to the multistage evaporator is not limited to jacket cooling water, but can also be applied to solar heat-collected water, factory heated wastewater, and the like.

本発明においては、蒸気圧縮蒸発器に用いる圧縮機にエ
ンジン駆動発電機の電力を供給し、ジャケット冷却水を
加熱管法に循環導入して加熱源とし、そのうえエンジン
排ガスの保有する熱で該蒸j発器を高温に維持させたか
ら、圧縮機助力が小さくてもエンジンの熱バランス上該
蒸発器作#l1m度を十分高温に保ち得て、供給エネル
ギーを無駄なく利用できる。
In the present invention, electric power from an engine-driven generator is supplied to the compressor used in the vapor compression evaporator, jacket cooling water is circulated through a heating tube method to serve as a heating source, and the heat contained in the engine exhaust gas is used to produce the vapor. Since the generator is maintained at a high temperature, even if the compressor assistance is small, the evaporator operation can be kept at a sufficiently high temperature due to the heat balance of the engine, and the supplied energy can be used without wasting it.

また蒸気圧N蒸発器に多段蒸発器を連絡し、該蒸気圧縮
蒸発器の#縮プラインを多段蒸発器で順次フラッシュ蒸
発させた蒸気と、外部から多段蒸発器に導かれた熱水に
よって発生した蒸気により凝縮管束を流れる給水を予熱
したから給水温度はより高温になると同時に凝縮水量は
大となり性能は向上する。外部から多段蒸発器に導かれ
る熱水として蒸気圧縮蒸発器の高温の凝縮水を利用した
第1図の実施例の場合は該凝縮水の保有装置を十分、に
回収でき熱効率が向上すると同時に造水量を増徴できる
In addition, a multistage evaporator is connected to the vapor pressure N evaporator, and the #condensation line of the vapor compression evaporator is generated by flash evaporation of steam sequentially in the multistage evaporator and hot water led from the outside to the multistage evaporator. Since the feed water flowing through the condensing tube bundle is preheated by steam, the temperature of the feed water becomes higher and at the same time the amount of condensed water increases, improving performance. In the case of the embodiment shown in Fig. 1, in which the high-temperature condensed water of the vapor compression evaporator is used as the hot water led to the multi-stage evaporator from the outside, the equipment holding the condensed water can be sufficiently recovered, improving thermal efficiency and improving production efficiency. Water volume can be increased.

さらに蒸気圧縮蒸発器と熱交換器を作動温度が高い順に
並べ、原水を該熱交換器全通−して予熱する蒸発法にお
いて、蒸発器から出た不凝縮性ガスを抽気冷却器に導き
、最も低温の原水によって冷の不凝縮性ガス最に対し水
蒸気量は大幅に減少する。即ち冷却器内は蒸発器内の圧
力と等しい圧力に維持さ′−れるのに対し、冷却によっ
て水蒸気分圧が減少するので混り度が小さくなる。よっ
て真空ポンプは極く小さくてき消費電力は少なくてすむ
Furthermore, in an evaporation method in which a vapor compression evaporator and a heat exchanger are arranged in descending order of operating temperature, and the raw water is passed through the heat exchanger to preheat it, the non-condensable gas discharged from the evaporator is guided to a bleed air cooler. The raw water at the lowest temperature significantly reduces the amount of water vapor compared to the cold non-condensable gas. That is, while the pressure inside the cooler is maintained at the same pressure as the pressure inside the evaporator, the water vapor partial pressure decreases due to cooling, so the degree of mixing becomes smaller. Therefore, the vacuum pump is extremely small and consumes less power.

以上要するに本発明によれば、高性能化により圧M機の
動力を減らしたときエンジンが小さくなるので、小さく
なったエンジン、の発生エネルギーを十分回収利用しミ
さらに多段蒸発器の一組プライン温度を蒸気圧縮蒸発器
より導入した高温の凝縮水と熱交換して蒸気を発生させ
る作動とフランシュ蒸発とを併用して造水量の増加をは
かり、そのうえ抽気量を減じて抽気用エネルギーを最少
に抑えるなど、単位造水量当りの省エネルギーに徹した
蒸発法であり、将来石油事情の逼迫に対処でき、その効
果は大であ−る。
In summary, according to the present invention, when the power of the pressure M machine is reduced due to improved performance, the engine becomes smaller. The water is exchanged with high-temperature condensed water introduced from a vapor compression evaporator to generate steam, and Franche evaporation is used in combination to increase the amount of water produced, and in addition, the amount of extracted air is reduced to minimize the energy used for extraction. This is an evaporation method that conserves energy per unit amount of water produced, and it will be able to cope with the tight oil situation in the future, and its effects will be great.

実施例 20℃の海水より1日当り150トンの造水上行ったあ
り、一般に言われている逆浸透圧去の8.5 KWH/
トンに較べて大幅に省エネルギーとなっている。
Example 2: 150 tons of fresh water was produced per day from seawater at 20°C, and 8.5 KWH/day of reverse osmosis pressure was used.
Significant energy savings compared to tons.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるフローシート、第2
図は詳細部分を省略し概念図で示した他の実施例であり
、第6図は更に他の実施例でエンジン排熱利用の要部の
フローシートである。 1・・・海水ポンプ  6・・・熱交換器  4・・・
薬剤タンク  7・・・多段蒸発器  8・・・#細管
束10・・・脱ガス槽  13・・・蒸気圧縮蒸発器1
4・・・散布装置  15・・・エンジン  16・・
・発電機17・・・圧縮機  18・・・伝熱管束  
19・・・加熱管束20・・・入口管  22・・・出
口管  26・・・入口側へツタ。 −24・・・出口側ヘッダー  25・・・凝縮水溜2
7・・・排熱ボイラー  29・・・ジャケット冷却水
錨環管路  61・・・−縮プライン溜  36・・・
最高温蒸発段  57・・・浸管型管束  40・・・
最低温蒸発段46・・・造水ポンプ  45・・・プラ
インポンブト9・・・抽気冷却器  51・・・真空ポ
ンプ  56・・・集熱器  54・・・蓄熱槽  5
7・・・給油管特許出願人 株式会社笹倉機l製作所 手続補正書 昭和58年2月9日 1・事件の表示 昭和56年特許順第214084号 2、発明の名称 蒸発法 3、補正?する者 事件との関係 特許出願人 住 所  〒555 大阪市西淀用区御vlf島6丁目7番5号5・桶正によ
り増加する発明の数  06、補正の対重 1、特許請求の範囲を次のとおり補正する。 tl)  蒸気圧縮蒸発器とエンジン?組合せて蒸留水
r得る装置に於いて、エンジンの動力を蒸発器の圧1M
機に供給し、エンジンのジャケット冷却水の熱ト、エン
ジンの排熱ボイラで回収され比熱全蒸発器に供給するよ
うにした蒸発法。 (2)  蒸気圧縮蒸発器に蒸発器を連絡し、該蒸気圧
縮蒸発器の濃縮プライン全蒸発器でフラッシュ蒸発させ
た蒸気と、外部から蒸発器に導かnfc熱水によって発
生した蒸気により該蒸発器の′#細管を流れる給水を予
熱するようにした蒸発法。 (3)蒸気圧N蒸発器に蒸発器を連絡し、該蒸気圧M蒸
発器の#縮プライン?蒸発器でフラッシュ蒸発させると
共に、蒸気圧縮蒸発器から導かfした蒸餉水が流れる伝
熱管と熱交換して蒸発させるようにした蒸発法。 (4)蒸気圧m4発器と外交換器i作動部度が高い順に
並べ、原水を該熱交換器を通して予熱する蒸発法に於い
て、蒸発器から出た不凝縮性ガスを、該熱交換器に流入
する前の沿い原水と直接接触に工って冷却したのち真空
ポンプに導き排出するようにした蒸発法。
Figure 1 is a flow sheet in one embodiment of the present invention;
The figure shows another embodiment shown in a conceptual diagram with detailed parts omitted, and FIG. 6 is a flow sheet of the main part of engine exhaust heat utilization in still another embodiment. 1...Seawater pump 6...Heat exchanger 4...
Chemical tank 7...Multi-stage evaporator 8...#tube bundle 10...Degassing tank 13...Vapor compression evaporator 1
4... Spraying device 15... Engine 16...
・Generator 17... Compressor 18... Heat exchanger tube bundle
19... Heating tube bundle 20... Inlet pipe 22... Outlet pipe 26... Ivy to the inlet side. -24...Outlet side header 25...Condensed water reservoir 2
7...Exhaust heat boiler 29...Jacket cooling water anchor ring pipe line 61...-Condensation prine reservoir 36...
Highest temperature evaporation stage 57... Immersion tube type tube bundle 40...
Lowest temperature evaporation stage 46... Fresh water pump 45... Prine pump 9... Extraction cooler 51... Vacuum pump 56... Heat collector 54... Heat storage tank 5
7... Refueling pipe patent applicant Sasakura Machinery Co., Ltd. Procedural amendment February 9, 1982 1. Indication of the case 1982 Patent Order No. 214084 2. Name of the invention Evaporation method 3. Amendment? Relationship with the case involving a person who makes a claim Patent applicant address: 6-7-5 Govlf-jima, Nishiyodoyo-ku, Osaka 555 Number of inventions increased by Okemasa: 06, Weight of amendment: 1, Scope of claims shall be corrected as follows. tl) Vapor compression evaporator and engine? In an apparatus for obtaining distilled water by combining the power of the engine with the pressure of the evaporator of 1M
In this evaporation method, the heat of the engine jacket cooling water is recovered by the engine exhaust boiler and supplied to the specific heat total evaporator. (2) Connect the evaporator to a vapor compression evaporator, and use the vapor flash-evaporated in the concentrating line total evaporator of the vapor compression evaporator and the vapor generated by NFC hot water led to the evaporator from the outside to evaporate the evaporator. '# Evaporation method that preheats the feed water flowing through a thin tube. (3) Connect the evaporator to the vapor pressure N evaporator, and connect the # compression line of the vapor pressure M evaporator? An evaporation method in which flash evaporation is performed in an evaporator, and evaporation is performed by exchanging heat with a heat exchanger tube through which steamed water led from a vapor compression evaporator flows. (4) In the evaporation method in which the vapor pressure m4 generator and the external exchanger i are arranged in descending order of operating temperature and the raw water is preheated through the heat exchanger, the non-condensable gas emitted from the evaporator is An evaporation method in which the raw water is brought into direct contact with the raw water before it flows into the vessel, cooled, and then introduced into a vacuum pump and discharged.

Claims (1)

【特許請求の範囲】 (1)  蒸気圧゛縮蒸発器とエンジンを組合せて蒸留
水を得る装置に放いて、エンジンの動力を蒸発器の圧縮
機に供給し、エンジンのジャケット冷却水を蒸発器内に
設けた熱交換器に送って塩水を蒸発させ、エンジンの排
熱ボイラで回収された熱を蒸発器に供給するようにした
蒸発法。 (2蒸気圧縮蒸発器に蒸発器を連絡し、該蒸気圧縮蒸発
器の#縮プラインを蒸発器でフラッシュ蒸発させた蒸気
と、外部から蒸発器に導かれた熱水によって発生した蒸
気により該蒸発器の#!細管を流れる給水を予熱するよ
うにした蒸発法。 (6)蒸気圧縮蒸発器に蒸発器を連絡し、該蒸気圧縮蒸
発器の濃縮プラインを蒸発器でフラッシュ蒸発させると
共に、蒸気圧縮蒸発器から導かれた蒸留水が流れる伝熱
管と熱交換して蒸発させるようにした蒸発法。 (4)  蒸気圧&i蒸発器と熱又換器を「1切温tV
が高い順に並べ、原水を該熱交換F4を刑して予熱する
蒸発法に於いて、蒸発器から出た不凝縮性ガス金、該熱
交換器に流入する前の冷い原水によって冷却したのち真
空ポンプに導き排出するようにし次蒸発法。
[Claims] (1) A vapor pressure condensing evaporator and an engine are combined to produce distilled water, and power from the engine is supplied to the compressor of the evaporator, and engine jacket cooling water is supplied to the evaporator. An evaporation method in which the salt water is sent to an internal heat exchanger to evaporate it, and the heat recovered by the engine's exhaust heat boiler is supplied to the evaporator. (2) The evaporator is connected to a vapor compression evaporator, and the #condensation line of the vapor compression evaporator is evaporated by the vapor flash-evaporated in the evaporator and the vapor generated by hot water led from the outside to the evaporator. An evaporation method that preheats the feed water flowing through the #! capillary of the vessel. (6) The evaporator is connected to the vapor compression evaporator, and the condensation line of the vapor compression evaporator is flash-evaporated in the evaporator, and the vapor compression An evaporation method in which distilled water led from an evaporator is evaporated by exchanging heat with a flowing heat transfer tube. (4) Vapor pressure &i
In the evaporation method in which the raw water is preheated by using the heat exchanger F4, the non-condensable gas from the evaporator is cooled by the cold raw water before flowing into the heat exchanger. Then, the evaporation method is conducted to discharge the gas into a vacuum pump.
JP21408481A 1981-12-24 1981-12-24 Evaporation Pending JPS58112082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21408481A JPS58112082A (en) 1981-12-24 1981-12-24 Evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21408481A JPS58112082A (en) 1981-12-24 1981-12-24 Evaporation

Publications (1)

Publication Number Publication Date
JPS58112082A true JPS58112082A (en) 1983-07-04

Family

ID=16649967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21408481A Pending JPS58112082A (en) 1981-12-24 1981-12-24 Evaporation

Country Status (1)

Country Link
JP (1) JPS58112082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032813A1 (en) * 2000-10-21 2002-04-25 Pb Power Ltd. Process and plant for multi-stage flash desalination of water
JP2012236176A (en) * 2011-05-13 2012-12-06 Ihi Corp System and method for deionizing seawater
JP2013188665A (en) * 2012-03-13 2013-09-26 Ihi Corp Seawater desalination device, and seawater desalination method using the same
CN104165350A (en) * 2014-07-30 2014-11-26 湖州荣胜生物科技股份有限公司 Cooling water recycling device of concentrating boiler
JP2017523027A (en) * 2014-06-30 2017-08-17 上海伏波▲環▼保▲設備▼有限公司 Indirect low-temperature multi-effect seawater desalination system using exhaust heat from ship engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032813A1 (en) * 2000-10-21 2002-04-25 Pb Power Ltd. Process and plant for multi-stage flash desalination of water
KR100783686B1 (en) * 2000-10-21 2007-12-10 파슨스 브린커호프 리미티드 Process and plant for multi-stage flash desalination of water
JP2012236176A (en) * 2011-05-13 2012-12-06 Ihi Corp System and method for deionizing seawater
JP2013188665A (en) * 2012-03-13 2013-09-26 Ihi Corp Seawater desalination device, and seawater desalination method using the same
JP2017523027A (en) * 2014-06-30 2017-08-17 上海伏波▲環▼保▲設備▼有限公司 Indirect low-temperature multi-effect seawater desalination system using exhaust heat from ship engines
CN104165350A (en) * 2014-07-30 2014-11-26 湖州荣胜生物科技股份有限公司 Cooling water recycling device of concentrating boiler
CN104165350B (en) * 2014-07-30 2016-01-13 湖州荣胜生物科技股份有限公司 Concentration pan cooling water recycling device

Similar Documents

Publication Publication Date Title
US7225620B2 (en) Diffusion driven water purification apparatus and process
US6919000B2 (en) Diffusion driven desalination apparatus and process
CA1140888A (en) Energy conversion method and system
US4420373A (en) Energy conversion method and system
US20110266132A1 (en) Air flow-circulation seawater desalination apparatus
CN105923676A (en) Efficient solar seawater desalination and air conditioner refrigeration combined operation method and system thereof
US3869351A (en) Evaporation system as for the conversion of salt water
CN101865357A (en) The natural gas vaporization method of low emission
JPH02306067A (en) Absorption type freezing
EP0114830B1 (en) De-salinator for brackish or salt water
AU2005284554A1 (en) Seawater desalination plant
US4882907A (en) Solar power generation
US4138851A (en) Apparatus and method of geothermal energy conversion
CN106196718B (en) Absorption type heat pump system and its round-robin method
CN206001743U (en) Absorption type heat pump system
JPS58112082A (en) Evaporation
US4617800A (en) Apparatus for producing power using concentrated brine
WO2001072638A1 (en) Desalination device
CN1306942A (en) Method and apparatus for preparing fresh water from sea water
US4694658A (en) Method and equipment for utilization of the freezing heat of water as a source of heat of a heat pump
US4691522A (en) Solar power generation
US5027601A (en) Low boiling point medium recovery apparatus
CN103435117A (en) Heat pump type atmospheric pressure vapor compression distillation sea water desalination and water and salt combined production device
WO2004060812A1 (en) Diffusion driven desalination apparatus and process
US1134269A (en) Refrigerating apparatus.