JPS58111667A - Method and apparatus for heat-treatment of granular substance - Google Patents

Method and apparatus for heat-treatment of granular substance

Info

Publication number
JPS58111667A
JPS58111667A JP56211084A JP21108481A JPS58111667A JP S58111667 A JPS58111667 A JP S58111667A JP 56211084 A JP56211084 A JP 56211084A JP 21108481 A JP21108481 A JP 21108481A JP S58111667 A JPS58111667 A JP S58111667A
Authority
JP
Japan
Prior art keywords
heating
raw material
heat treatment
superheated steam
heating medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56211084A
Other languages
Japanese (ja)
Other versions
JPS6411274B2 (en
Inventor
Takeshi Akao
剛 赤尾
Yoshiro Yamanaka
山中 良郎
Toshio Sakasai
逆井 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Kikkoman Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp, Kikkoman Shoyu KK filed Critical Kikkoman Corp
Priority to JP56211084A priority Critical patent/JPS58111667A/en
Publication of JPS58111667A publication Critical patent/JPS58111667A/en
Publication of JPS6411274B2 publication Critical patent/JPS6411274B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the heat sterilization, heat denaturation, etc. of granular substance, by heating the granular substance with a heat medium such as superheated steam, hot air, etc. under pressure. CONSTITUTION:The raw material is introduced from the hopper 5 to the heating pipe 3, and heat-treated. After the first heat-treatment in the air-flow heater 1, the raw material is introduced into the cyclone 4 to separate the superheated steam, and fed through the intermediate valve 7 to the heating chamber 8, in which it is fluidized and heated with superheated steam introduced through the perforated plate 15 and transferred to the raw material outlet 12 by the action of the raw material transferring means 16. The raw material subjected to the second heat-treatment in the fluidized heating apparatus 6 is discharged through the valve 9 to the atmosphere having lower pressure, e.g. in open air, and recovered as the product.

Description

【発明の詳細な説明】 本発明は穀物、食品、化粧品等の粉粒物質原料を過熱蒸
気、高温空気等の加熱媒体で以って加圧加熱処理し、こ
れら粉粒物質の加熱殺菌、加熱変性等を行うようにした
粉粒物質の加熱処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves pressurizing and heating raw materials such as grains, foods, cosmetics, etc. using a heating medium such as superheated steam or high-temperature air, and heat-sterilizing and heating these powder and granular materials. The present invention relates to a method and apparatus for heat treatment of powdery substances for denaturation, etc.

本tkJH人は、先に原料を流動化させながら加熱処理
する[膨化食品の製造装置(特公昭45−26695号
)]、或は原料を気流に乗せて加熱処理する[気流加熱
方式に依る膨化食品製造方法及び装置(特公昭46−3
4747号)]を出願して特許を得た。
In this tkJH method, the raw materials are first heat-treated while being fluidized [Puffed food manufacturing equipment (Special Publication No. 45-26695)], or the raw materials are heat-treated by being placed in an air stream [Puffing using the air flow heating method]. Food manufacturing method and equipment
No. 4747)] and obtained a patent.

しかし、上記装置は何れも一段式であるため、加熱媒体
の川口温度、即ち加熱媒体と原料とに分離した直後にお
ける加熱媒体の温度を成る温度以上に設定すると、混合
比(=原料重量/加熱媒体重量)、或は原料の比熱にも
よるが、一般的に加熱媒体の入口温度、即ち加熱媒体が
原料と接触する直前における加熱媒体の温度を高く設定
せざるを得なくなる。
However, since all of the above devices are single-stage devices, if the temperature of the heating medium is set at a temperature higher than the mouth temperature of the heating medium, that is, the temperature of the heating medium immediately after separation into the heating medium and the raw material, the mixing ratio (= weight of raw material / heated Generally speaking, the inlet temperature of the heating medium, that is, the temperature of the heating medium immediately before it comes into contact with the raw material, must be set high, although it depends on the specific heat of the raw material (weight of the medium) or the specific heat of the raw material.

一例として前記気流加熱方式で小麦を処理する場合につ
いて述べるに、蒸気圧力6.5atg 加熱媒体の川口
温度を22 o C,混合比を1.0に設定すると、本
加熱系内の最高温度である加°熱媒体の入口温度は33
0C以上にも設定する必要がある。斯る場合、熱変性に
敏感な原料を処理するには好都合とは言えず、又加熱媒
体の温度が高過ぎると、原料水分が蒸発して減少し、製
品の膨化度(=原料の見掛密度/製品の見掛密度)も低
下し不都合である。尚例えば小麦を加熱処理し、これを
醤油にも構成部材特にシール材の耐熱性の点から加熱媒
体は低温の方が好ましい。
As an example, when wheat is processed using the air current heating method, if the steam pressure is 6.5 atg, the temperature at the mouth of the heating medium is set to 22 o C, and the mixing ratio is set to 1.0, the maximum temperature in the main heating system is The inlet temperature of the heating medium is 33
It is also necessary to set it above 0C. In such a case, it is not convenient to treat raw materials that are sensitive to thermal denaturation, and if the temperature of the heating medium is too high, the moisture content of the raw material will evaporate and decrease, resulting in a decrease in the degree of swelling of the product (= the apparent appearance of the raw material). Density/apparent density of product) also decreases, which is inconvenient. For example, when wheat is heat-treated and used to make soy sauce, it is preferable that the heating medium be at a low temperature in view of the heat resistance of the constituent members, especially the sealing material.

又本出願人は、前記発明の改良方法として過熱蒸気、次
いで飽和蒸気により順次原料を加熱処理する[穀類の膨
化処理法(特公昭55−42814号)」を出願して特
許を得た。
The present applicant also applied for and obtained a patent for a method for improving the above-mentioned invention, ``Cereal Puffing Treatment Method (Japanese Patent Publication No. 42814/1983)'' in which raw materials are sequentially heat-treated with superheated steam and then with saturated steam.

しかし、上記方法にて処理した製品は水分を多量に保存
せしめる点に関して難点があった。
However, the products treated by the above method have a drawback in that they retain a large amount of water.

そこで本発明者は上述した現況に鑑み、鋭意研究の結果
、前記装置(特公昭45−26695号、特公昭46−
34747号のもの)を各々単独、或は適宜組み合わせ
て多段式の加熱系に構成し、該装置の最終段で使用する
加熱媒体の温度を最高にして順次前段装置での使用加熱
媒体の温度が低くなるように設定して原料を加熱処理す
れば、最終段装置の出口における加熱媒体の温度を例え
従来方法と同程度の温度に設定しても、本願加熱系内に
おける加熱媒体の最高温度を従来方法による場合に比し
より低く設定することができるという知見を得て本発明
を成したものである。
Therefore, in view of the above-mentioned current situation, the inventor of the present invention, as a result of intensive research, has found
No. 34747) can be used alone or in appropriate combinations to form a multi-stage heating system, and the temperature of the heating medium used in the final stage of the device is maximized, and the temperature of the heating medium used in the previous stage devices is increased sequentially. Even if the temperature of the heating medium at the exit of the final stage device is set to the same temperature as in the conventional method, the maximum temperature of the heating medium in the heating system of the present application can be lowered by heating the raw material. The present invention was made based on the knowledge that it is possible to set the temperature lower than when using conventional methods.

即ち、本発明は粉状、或は粒状物質を加圧下において加
熱媒体で加圧加熱処理し、次いでより高温の加熱媒体で
少くとも1回加圧加熱処理した後、低圧下に放出するこ
とを特徴とする。
That is, the present invention involves subjecting powdered or granular materials to pressure and heat treatment with a heating medium under pressure, then pressure and heat treatment at least once with a higher temperature heating medium, and then releasing the material under low pressure. Features.

そして本発明は特に蛋白質の過変性が生じ易い脱脂大豆
、ビタミン類の破壊の痺れのある玄米、或は野菜等の如
、き熱変性に敏感き原料処理及び小麦、トウモロコシ等
の穀類で特に膨化度が要求される原料処理に好適である
The present invention is particularly applicable to raw materials that are sensitive to thermal denaturation, such as defatted soybeans, which are susceptible to protein hyperdenaturation, brown rice, which is susceptible to vitamin destruction, and vegetables, and grains, such as wheat and corn. Suitable for raw material processing that requires high precision.

以下本発明を詳述する。The present invention will be explained in detail below.

本発明に用いられる粉粒物質原料としては特に限定され
ることはなく、大豆、脱脂大豆、大豆ミール、小麦、大
麦、米、玄米、とうもろこし等の穀類及びこれらの粉粒
化物、魚粉、野菜等の細片、パ/ 粉、テンプン粉、コ
シヨー、ブラックヘハー、カレー粉等の食品原料、或は
薬品又は薬品原料及びその増量材、更には飼料や化粧品
原料等が挙けられ、又必要に応じて通常の手段により加
水された前記夫々の原料が用いられる。
The granular material raw material used in the present invention is not particularly limited, and includes grains such as soybeans, defatted soybeans, soybean meal, wheat, barley, rice, brown rice, and corn, and granulated products thereof, fishmeal, vegetables, etc. These include food raw materials such as powder, starch powder, koshiyo, black hazel, and curry powder, or drugs or drug raw materials and their fillers, as well as feed and cosmetic raw materials, etc. Accordingly, the above-mentioned raw materials added with water by conventional means are used.

上記原料を加熱処理するに際して利用できる加熱媒体と
しては、高温空気、高温ガス等が考えられるが、原料の
酸化防止、或は取扱いの便等の見地から特に過熱水蒸気
が好ましい。
As the heating medium that can be used to heat-treat the raw material, high-temperature air, high-temperature gas, etc. can be considered, but superheated steam is particularly preferred from the viewpoint of preventing oxidation of the raw material or convenience of handling.

又加熱処理の条件としては1.、、まア原料の殺菌処理
を目的とする場合は、比較的低圧が好ましく、過熱水蒸
気処理の場合で圧力4 atg以下、温度260C以下
で3秒乃至5分間、好ましくは圧力0.5乃至3.5a
tg、温度240C以下で5秒乃至1分間加熱処理する
Also, the conditions for heat treatment are 1. When the purpose is to sterilize raw materials, a relatively low pressure is preferable, and in the case of superheated steam treatment, the pressure is 4 atg or less and the temperature is 260C or less for 3 seconds to 5 minutes, preferably a pressure of 0.5 to 3. .5a
tg, and heat treatment at a temperature of 240C or less for 5 seconds to 1 minute.

一方、原料の変性処理を目的とする場合は、原料として
特に穀類が取り扱われる場合が多いが、過熱水蒸気の場
合で圧力2〜10 atg、温度310C以下で3秒乃
至5分間、好ましくは圧力4乃至8atg、温度290
C以下で5秒乃至1分間加熱処理する。
On the other hand, when the purpose is to modify raw materials, grains are often used as raw materials, but in the case of superheated steam, the treatment is carried out at a pressure of 2 to 10 atg and a temperature of 310C or less for 3 seconds to 5 minutes, preferably at a pressure of 4. ~8atg, temperature 290
Heat treatment is performed for 5 seconds to 1 minute at a temperature below C.

本発明において使用する加熱手段は、気流式加熱手段、
流動式加熱手段で、気流式加熱手段は高温高圧の加熱媒
体、例えば過熱水蒸気を加熱パイプに通気し、該パイプ
に原料を投入して所謂気流輸送をしながら短時間滞留さ
せて加熱し、次いでサイクロン等で捕集して低圧下に放
出させる加熱処理方法である。一方、流動式加熱手段は
原料を密閉容器内の多数の孔を有する多孔板上に均等な
層を形成するように供給し、該層に下方より加熱媒体、
例えば過熱水゛:1蒸気、高温空気等を通気して流動化
し、一定時間′滞留後、低圧下へ放出させる加熱処理方
法である。
The heating means used in the present invention includes airflow heating means,
The airflow heating means is a fluid heating means, in which a high-temperature and high-pressure heating medium, such as superheated steam, is passed through a heating pipe, the raw material is put into the pipe, and the raw material is allowed to stay there for a short time while being transported by airflow, and then heated. This is a heat treatment method in which the particles are collected using a cyclone or the like and released under low pressure. On the other hand, the fluid heating means supplies the raw material to form an even layer on a perforated plate having a large number of holes in a closed container, and adds a heating medium and a heating medium to the layer from below.
For example, this is a heat treatment method in which superheated water (1:1 steam), high-temperature air, etc. is aerated and fluidized, and after residence for a certain period of time, it is released under low pressure.

以下添付図面に基づいて本発明の実施例を詳述する。Embodiments of the present invention will be described in detail below based on the accompanying drawings.

まず第1図に原料を最初は気流式加熱手段で、次いで流
動式加熱手段で処理するための加熱処理装置の模式図を
示す。
First, FIG. 1 shows a schematic diagram of a heat treatment apparatus for treating raw materials first with an air flow heating means and then with a fluid heating means.

図中1は気流式加熱装置で、これは原料を装置1内へ供
給する投入バルブ2と、加熱媒体としての過熱水蒸気が
通気される加熱、Cイブ3と、過熱水蒸気と原料とに分
離するサイクロン4と力1ら構成され、加熱バイブロの
上流部3aは投入ノ(ル)。
In the figure, 1 is an airflow type heating device, which includes an input valve 2 for supplying raw materials into the device 1, a heating valve 3 through which superheated steam as a heating medium is vented, and separation into superheated steam and raw materials. It is composed of a cyclone 4 and a force 1, and the upstream part 3a of the heating vibro is an input nozzle.

2のガス出口2aと、下流部6bはサイクロン4のガス
人口4aと夫々連通している。
The gas outlet 2a of No. 2 and the downstream portion 6b are in communication with the gas port 4a of the cyclone 4, respectively.

前記投入パルプ2としては本出願人による[粉粒体の搬
送供給装置](特公昭52−9917号、以下気流式バ
ルブと称す。)が好適であるが、或をマ本出願人による
[強制排出装置を有する移送装置」(特公昭48−89
27号、以下強制排出弐ノクルブと称す。)も利用でき
、更には通常のロータIJ−/<ルブも使用できる。第
1図においては、投入ノ(ルプ2としては気流式)(ル
ブを用いた。尚投入)(ルプ2に強制排出式バルブを用
いた場合は、第2図に示す如く該バルブを加熱)くイブ
6へ逆T字状に設置すればよい。
As the input pulp 2, it is preferable to use the [Powder and Granule Conveying and Feeding Device] (Japanese Patent Publication No. 52-9917, hereinafter referred to as an airflow type valve) by the present applicant; "Transfer device with ejection device"
No. 27, hereinafter referred to as Forced Ejection 2 Nokurubu. ) can also be used, and even a normal rotor IJ-/<lub can also be used. In Figure 1, the input valve (air flow type for loop 2) (a lube was used. In addition, the input valve was used) (if a forced discharge type valve was used for loop 2, the valve was heated as shown in Figure 2). It is sufficient to install it in an inverted T-shape on the pipe 6.

又図中5は原料を保有しておく原料ホツノシであり、6
は流動式加熱装置であって、これは前記サイクロン4で
分離された原料を該装置6へ誘導する中間バルブ7と、
原料を流動させながら加熱処理する加熱缶8と、加熱処
理された原料を低圧部へ放出させる排出バルブ9とから
構成される。
In addition, 5 in the figure is a raw material hotsunoshi that holds raw materials, and 6
is a fluidized heating device, which includes an intermediate valve 7 for guiding the raw material separated by the cyclone 4 to the device 6;
It is composed of a heating can 8 that heat-processes the raw material while flowing it, and a discharge valve 9 that discharges the heat-treated raw material to a low-pressure section.

上記加熱缶8は上部に原料投入口10及び過熱蒸気出口
11、下部に原料排出口12及び過熱水蒸気人口13を
夫々備え、前記中間バルブ7は原料投入口10に、排出
バルブ9は原料排出口12に夫々設置されている。尚こ
れらバルブ7.9は前記強制排出式バルブが好適である
The heating can 8 has a raw material inlet 10 and a superheated steam outlet 11 at the upper part, and a raw material outlet 12 and a superheated steam outlet 13 at the lower part, the intermediate valve 7 is connected to the raw material input port 10, and the discharge valve 9 is connected to the raw material outlet. 12 are installed respectively. It should be noted that these valves 7.9 are preferably the forced discharge type valves described above.

又加熱缶8の内部には第3図に示す如く多数の通気孔1
4・・・を有・し、原料が積層される多孔板15を水平
に設置し、該多孔板15の一部には落日20を前記原ザ
排出口12に臨ませて設けて“る。
Also, inside the heating can 8, there are many ventilation holes 1 as shown in FIG.
A perforated plate 15 on which the raw materials are stacked is installed horizontally, and a part of the perforated plate 15 is provided with a sunset 20 facing the raw material discharge port 12.

一方、16は投入された原料を多孔板15上において移
送する原料移送装置で、加熱臼8の中心部に垂直に設け
られた軸17及び該軸17に放射状に設けられた平板状
の垂直壁18から成り、これ16は軸17を中心として
回転自在に構成されている。
On the other hand, 16 is a raw material transfer device that transfers the input raw material on a perforated plate 15, which includes a shaft 17 provided perpendicularly to the center of the heating mortar 8 and a flat plate-shaped vertical wall provided radially around the shaft 17. 18, and this 16 is configured to be rotatable around a shaft 17.

又19は加熱臼8の内周に設けられている内壁で、これ
は原料の保温を効果的にする装置で−あり、これの下部
は多孔板15の円周部と固定され一体化されている。そ
して前記垂直壁18の外周面18a及び下端面18bは
内壁19及び多孔板15と夫々略々摺接する如く構成さ
れている。
Reference numeral 19 denotes an inner wall provided on the inner periphery of the heating mortar 8, which is a device for effectively keeping the raw material warm.The lower part of this wall is fixed and integrated with the circumferential part of the perforated plate 15. There is. The outer circumferential surface 18a and lower end surface 18b of the vertical wall 18 are constructed so as to be in approximately sliding contact with the inner wall 19 and the perforated plate 15, respectively.

21は不図示のモータに連結されて原料移送装置t16
を駆動するプーリ、或は歯車等の動力伝達装置であり、
22は原料を原料排出口12へ誘導するシュートである
21 is connected to a motor (not shown) and is connected to a raw material transfer device t16.
A power transmission device such as a pulley or gear that drives the
22 is a chute that guides the raw material to the raw material discharge port 12.

又26は過熱水蒸気を系内、で循環せしめるだめの送風
機であり、24は温□度が低下した蒸気を再加熱するだ
めの過熱器である。
Further, 26 is a blower for circulating superheated steam within the system, and 24 is a superheater for reheating the steam whose temperature has decreased.

更に25は過熱水蒸気補充パイプで、これは排出バルブ
12より系外へ原料の排出に伴い放出される蒸気を補充
するもので、不図示のボイラに連通し、上記過熱器24
で所定の温度まで加熱された過熱水蒸気を系内に導入す
る。
Furthermore, 25 is a superheated steam replenishment pipe, which replenishes the steam released from the discharge valve 12 when the raw material is discharged outside the system, and is connected to a boiler (not shown), and is connected to the superheater 24.
Superheated steam heated to a predetermined temperature is introduced into the system.

次に以上述べた各機器間の連結について説明する。Next, the connection between the devices described above will be explained.

加熱臼8の過熱水蒸気出口11は循環パイプ26及び投
入バルブ2を介して加熱パイプ3の上流部3aと連通連
結され、又サイクロン4の原料排出口4bは原料投入口
10と中間バルブ7を介して連通連結されている。
The superheated steam outlet 11 of the heating mill 8 is connected to the upstream portion 3a of the heating pipe 3 via the circulation pipe 26 and the input valve 2, and the raw material outlet 4b of the cyclone 4 is connected to the raw material input port 10 and the intermediate valve 7 through the are connected in communication.

一方、サイクロン4のガス出口4cは循ml tZイブ
27を介して送風機23め吸引口と、送風機23の吐出
口は循環パイプ28を介して蒸気人口13と夫々連通連
結され、循環パイプ28は過熱器24を通り、該パイプ
28中を流通する過熱水蒸気を加温するよう構成されて
いる。
On the other hand, the gas outlet 4c of the cyclone 4 is connected to the suction port of the blower 23 via the circulation pipe 27, and the discharge port of the blower 23 is connected to the steam port 13 via the circulation pipe 28. The superheated steam flowing through the pipe 28 through the vessel 24 is heated.

以下に本加熱処°理装置の作用について述べる。The operation of this heat treatment apparatus will be described below.

まず、ボイラで発生した飽和水蒸気は過熱器24で加熱
されて過熱水蒸気となシ、過熱水蒸気補充パイプ25を
通って系内へ導入される。この過熱水蒸気は送風機23
の作用により循環パイプ28、加熱臼8、循環パイプ2
6、投入バルブ2、加熱パイプ3、サイクロン4、循環
パイプ27、送風機26の順で系内を循環する。
First, saturated steam generated in the boiler is heated by the superheater 24 to become superheated steam, which is introduced into the system through the superheated steam replenishment pipe 25. This superheated steam is transferred to the blower 23.
Due to the action of the circulation pipe 28, heating mill 8, circulation pipe 2
6. Circulate within the system in the following order: input valve 2, heating pipe 3, cyclone 4, circulation pipe 27, and blower 26.

−方、原料ホッパ5内の原料は投入バルブ2を介してま
ず最初に加熱パイプ3に導入され、ここで加熱処理され
る。この加熱パイプ3において使用される過熱水蒸気は
後述する加熱臼8で一度使用されたものであり、従って
これ□は加熱臼8で使用された場合より低温になってい
る。
- On the other hand, the raw material in the raw material hopper 5 is first introduced into the heating pipe 3 via the input valve 2 and is heated there. The superheated steam used in this heating pipe 3 has been used once in a heating mill 8, which will be described later, and therefore the temperature of this steam is lower than when it was used in the heating mill 8.

気流式加熱装置1で第1段目の加熱処理をされた原料は
サイクロン4に導入され、該サイクロン4において過熱
水蒸気と分離された後、中間バルブ7を通り加熱臼8に
投入される。投入された原料は、多孔板15を通して通
気される過熱水蒸気により流動化して加熱処理されつつ
原料移送装置16の作用でI順次原料排出口12の方へ
移送される。
The raw material subjected to the first stage heat treatment in the airflow heating device 1 is introduced into the cyclone 4, where it is separated from superheated steam, and then passed through the intermediate valve 7 and fed into the heating mill 8. The input raw material is fluidized by superheated steam vented through the perforated plate 15 and is heat-treated, and is sequentially transferred toward the raw material discharge port 12 by the action of the raw material transfer device 16.

流動式加熱装置6で使用される過熱水蒸気は過熱器24
で加熱された直後のものを用いるため、前記気流式加熱
装置1における過熱水蒸気より高温になっている。
The superheated steam used in the fluidized heating device 6 is supplied to the superheater 24.
Since the steam is used immediately after being heated, the temperature is higher than the superheated steam in the airflow heating device 1.

流動式加熱装置6で第2段目の加熱処理をされた原料は
、排出バルブ9を通ってより低圧下、例えば大気圧下へ
放出され、製品として回収される。
The raw material subjected to the second stage heat treatment in the fluidized heating device 6 is discharged through the discharge valve 9 to a lower pressure, for example, atmospheric pressure, and is recovered as a product.

尚本実施例において、気流式加熱装置111による処理
は、流動式加熱装置6における処理よりも低温の過熱水
蒸気が使用されるが、加熱パイプ3において処理する原
料によってはこの過熱水蒸気が飽和水蒸気に変化しても
何ら差し支えない。
In this embodiment, superheated steam at a lower temperature is used in the treatment by the airflow heating device 111 than in the treatment in the fluidized heating device 6, but depending on the raw material to be treated in the heating pipe 3, this superheated steam may turn into saturated steam. There is no harm in changing.

次に第4図に別実施例を示す。Next, FIG. 4 shows another embodiment.

本実施例は上記第一実施例とは逆にまず第1段目に流動
式加熱装置6を、第2段目に気流式加熱袋@1を夫々配
置し、原料を加熱処理する例である。
In this embodiment, contrary to the first embodiment described above, a fluid heating device 6 is placed in the first stage, and an air flow heating bag @1 is placed in the second stage, and the raw material is heat-treated. .

従って、加熱臼8の原料投入口10に強制排出式投入バ
ルブ60を;原料排出口12には気流式中間バルブ31
を夫々設置し、又サイクロン4のガス出口4Cと加熱臼
8の蒸気人口13とを、加熱缶8の蒸気出口11と送風
機23の吸引口とを夫々連通連結している。
Therefore, a forced discharge type input valve 60 is installed at the raw material input port 10 of the heating mill 8; an airflow type intermediate valve 31 is installed at the raw material discharge port 12.
The gas outlet 4C of the cyclone 4 is connected to the steam outlet 13 of the heating mortar 8, and the steam outlet 11 of the heating can 8 and the suction port of the blower 23 are connected to each other.

一方、送風機26の吐出口と加熱パイプ乙の上流部3a
とを循環パイプ36及び中間バルブ31を介して連通連
結し、循環パイプ33は過熱器24を通り、該パイプ3
3を流通している過熱水蒸気を加温する。そして加熱直
後の過熱水蒸気が第2段目である気流式加熱装置1に供
給されるよう構成されている。
On the other hand, the discharge port of the blower 26 and the upstream part 3a of the heating pipe B
are connected to each other via a circulation pipe 36 and an intermediate valve 31, and the circulation pipe 33 passes through the superheater 24,
The superheated steam flowing through 3 is heated. The superheated steam immediately after heating is then supplied to the second stage airflow type heating device 1.

次に第5図の実施例は第1段、第2段とも気流式加熱装
置を配置した例で、第1段の気流式加熱装置11aにお
ける投入バルブ40及び第2段の気流式加熱装置1bに
おける投入バルブ41として気流式バルブを用い、又第
2段の加熱装置1bの排出バルブ42として強制排出式
バルブを用いている。そして第2段気流式加熱装置1b
におけるサイクロン44のガス出口44□bと加熱パイ
プ3の上流部3a’に投入バルブ40”1介して連通し
、又第1段気流式加熱装置1aにおけるサイクロン43
のガス出口43bと送風機23の吸引口とを、送風機2
3の吐出口と加熱パイプ3dの上流部3eとを中間バル
ブ41を介して夫々連通し、本実施例装置を構成する。
Next, the embodiment shown in FIG. 5 is an example in which airflow heating devices are arranged in both the first stage and the second stage, and the input valve 40 in the first stage airflow heating device 11a and the second stage airflow heating device 1b An airflow type valve is used as the input valve 41 in , and a forced discharge type valve is used as the discharge valve 42 of the second stage heating device 1b. And the second stage airflow heating device 1b
The gas outlet 44□b of the cyclone 44 is connected to the upstream part 3a' of the heating pipe 3 via the input valve 40"1, and the cyclone 43 in the first stage airflow heating device 1a
The gas outlet 43b of the blower 23 and the suction port of the blower 23 are
3 and the upstream portion 3e of the heating pipe 3d are communicated with each other via an intermediate valve 41 to constitute the apparatus of this embodiment.

次に第6図の実施例は気流式加熱装置1を3段配設した
例で、以下同様な構成で何段でも実施できる。本実施例
においては、まず過熱器24で加熱した直後の過熱水蒸
気を最終段の気流式加熱装置1Cへ導き、以下順次前段
へ送気して該過熱水蒸気を繰り返し使用し、第1段の気
流式加熱装置1aで最も低い過熱水蒸気を用いるよう構
成している。
Next, the embodiment shown in FIG. 6 is an example in which the airflow type heating device 1 is arranged in three stages, and the following embodiments can be implemented in any number of stages with the same configuration. In this embodiment, first, the superheated steam immediately after being heated by the superheater 24 is guided to the final stage airflow heating device 1C, and then the superheated steam is repeatedly used by sequentially sending air to the previous stage, and the first stage airflow The system is configured to use the lowest superheated steam in the type heating device 1a.

最終段以外に気流式加熱装置が配置されている第5図及
び第6図の実施例において、第1図の実施例と同様に原
料の種類によっては最終段以外の加熱パイプにおいて、
過熱水蒸気が飽和蒸気に変化してもよく、又飽和水蒸気
の状態で加熱パイプに導入されても加熱処理は可能であ
る。
In the embodiments shown in FIGS. 5 and 6 in which the airflow heating device is disposed at a stage other than the final stage, similar to the embodiment shown in FIG.
The superheated steam may be changed to saturated steam, and even if the saturated steam is introduced into the heating pipe, heat treatment is possible.

次に第7図、第8図は流動式加熱装置を夫々2段、3段
配設した実施例を示すが、これらの実施例においては、
バルブは全て強制排出式バルブが使用されている。  
    ゛ 尚前記第1図及び第4図に示す実施例において、第3段
目、或はそれ以上の段に気流式加熱装置又は流動式加熱
装#を適宜選択して用いてもよい。
Next, FIGS. 7 and 8 show embodiments in which fluid heating devices are arranged in two stages and three stages, respectively. In these embodiments,
All valves are forced discharge type valves.
In the embodiments shown in FIGS. 1 and 4, an air current heating device or a fluid heating device may be appropriately selected and used for the third stage or higher stages.

次に第9図乃至第16図に他の流動式加熱装置の実施例
を示す。
Next, FIGS. 9 to 16 show embodiments of other flow type heating devices.

まず第9図に示す装置は、第1図に示す実施例における
垂直壁18を固定させ、該壁18の下端と多孔板15の
上面との間に隙間91を設けたものである。尚この場合
、投入部92と排出部93とは隔壁94によって分割さ
れている。
First, in the apparatus shown in FIG. 9, the vertical wall 18 in the embodiment shown in FIG. 1 is fixed, and a gap 91 is provided between the lower end of the wall 18 and the upper surface of the perforated plate 15. In this case, the input section 92 and the discharge section 93 are separated by a partition wall 94.

面して原料投入口10から加熱缶8へ投入された原料は
、過熱水蒸気人口16から導入され、過熱水蒸気量[]
11から排出される蒸気により垂直壁間95にて流動し
つつ加熱処理される。そして原料は隙間91を通過して
順次原料排出口12へ導かれ、加熱缶8外へ排出される
The raw material input into the heating can 8 from the raw material input port 10 is introduced from the superheated steam volume 16, and the amount of superheated steam []
The steam discharged from 11 flows between the vertical walls 95 and is heated. Then, the raw materials pass through the gap 91, are sequentially guided to the raw material discharge port 12, and are discharged to the outside of the heating can 8.

一方、第12図に示す装置は、第9図に示す装置におい
て多孔板15を可動式とし、原料排出口12を加熱缶8
の側部に設けたものである。尚図中121は多孔板15
を回転駆動するだめのモータである。
On the other hand, in the apparatus shown in FIG. 12, the perforated plate 15 is made movable in the apparatus shown in FIG.
It is installed on the side of the In addition, 121 in the figure is the perforated plate 15.
This is the motor that drives the rotation.

又第14図に示す装置は、第9図に示す装置において軸
17の下部に放射状に設けられ、隙間91内を回転する
回転翼141を設置したものである。この装置において
は、原料は回転翼141により強制的に原料排出口12
へと導かれる。
The device shown in FIG. 14 is the same as the device shown in FIG. 9 except that rotary blades 141 are provided radially below the shaft 17 and rotate within the gap 91. In this device, the raw material is forced to the raw material outlet 12 by the rotary blade 141.
be led to.

更に第15図に示す装置は流動式加熱装置の更に他の実
施例を示し、多孔板151を・(ネ159を介して加熱
缶158に固定し、該多孔板151をモータ152等に
よって振動させ、原料投入口156より投入された原料
を振動により原料排出口154へと移送させながら、且
つ加熱媒体で流動させつつ加熱処理するものである。尚
加熱媒体は加熱媒体人口155から導入され、加熱媒体
出口156から外部へ排出される。
Furthermore, the apparatus shown in FIG. 15 shows yet another embodiment of the fluidized heating apparatus, in which a perforated plate 151 is fixed to a heating can 158 via screws 159, and the perforated plate 151 is vibrated by a motor 152 or the like. , the raw material input from the raw material input port 156 is transferred to the raw material discharge port 154 by vibration and heat-treated while being fluidized by a heating medium.The heating medium is introduced from the heating medium port 155, and the heating medium is heated. It is discharged to the outside from the medium outlet 156.

本実施例において、多孔板1511水平であっても原料
は原料排出口154へ移送される力ぶ、第15図に示す
如く原料排出口154の方力;イ氏くなるように傾斜し
て設置すれば、原料の移送!t′!効果的に行われる。
In this embodiment, even if the perforated plate 1511 is horizontal, the raw material is transferred to the raw material outlet 154.As shown in FIG. Then, transfer the raw materials! t'! done effectively.

ここで本発明による加熱処理方法が製品の消化率、α化
度、ビタミンの残存等について、或は醤油の製造に用い
た場合に如何に有効であるかを従来法、即ち気流式加熱
処理方法(特公昭46−34747号)及び流動式加熱
処理方法(特公昭45−26695号)との比較におい
て実験例により以下に示す。
Here, we will examine how effective the heat treatment method according to the present invention is in terms of product digestibility, degree of gelatinization, residual vitamins, etc., and how effective it is when used in the production of soy sauce. (Japanese Patent Publication No. 46-34747) and a fluidized heat treatment method (Japanese Patent Publication No. 45-26695) are shown below using experimental examples.

実験例1: まず小麦を加熱処理した場合についての実験結果を第1
表に示す。
Experimental example 1: First, the experimental results for the case where wheat was heat treated were
Shown in the table.

第1表の結果より、従来方法は本発明方法より可成り高
温の過熱水蒸気を必要とし、過度の加熱に起因して原料
は過変性して麹菌酵素によって分解され難くなり、消化
率、α化度、或は窒素溶解利用率が本発明方法のそれら
より低く、又膨化度も低い。
From the results in Table 1, it is clear that the conventional method requires superheated steam at a considerably higher temperature than the method of the present invention, and due to excessive heating, the raw material is overdenatured and becomes difficult to be decomposed by the Aspergillus enzyme. The degree of nitrogen dissolution or utilization of nitrogen is lower than that of the method of the present invention, and the degree of swelling is also lower.

これに対して、本発明方法により処理された小麦は、蛋
白質の過変性もなく、又未変成蛋白質を残さず、適度の
加熱による消化率、α化度、窒素溶解利用率等に優れた
ものである。
In contrast, the wheat processed by the method of the present invention does not have excessive denaturation of protein, does not leave any undenatured protein, and has excellent digestibility, degree of gelatinization, nitrogen dissolution utilization rate, etc. by moderate heating. It is.

尚第1表中の消化率の測定は次の操作で成される。即ち
、加熱処理後の変性小麦を低温で減圧乾燥した後粉砕し
、この粉末1gを振盪式試験管に採り、Q、 5 モに
のリン酸緩衝液(pH7,2)10 ml 、酵素液2
0m1及びトリ′オール1ml  を添付して密栓する
。この試験管をゆるやかに振盪しなから37Cで7日間
保って酵素分解させる。次いで分離液に蒸留水を加えて
全容積を100m1 とし、遠心分離によって液相と固
相とに分ける。液相部30m1に1.2モルのトリクロ
ル酢酸15m1i加え、沈殿(未分解蛋白質)を濾別し
、濾液5ml f採ってケルプール法により窒素含量を
測定する。別に前記粉末試料を加えないで、同様に処理
して盲試験を行い、前者の値から後者の値を差し引いた
値をAとする。一方粉末試料1g中の窒素含量をケルプ
ール法で測定してその値をBとし、次式により消化率を
算出する。
The digestibility shown in Table 1 is measured by the following procedure. That is, denatured wheat after heat treatment is dried under reduced pressure at low temperature and then crushed, 1 g of this powder is taken into a shaking test tube, and 10 ml of phosphate buffer (pH 7.2) of Q.
Attach 0 ml and 1 ml of tri'ol and seal. The test tube was kept at 37C for 7 days with gentle shaking to allow enzymatic degradation. Next, distilled water is added to the separated liquid to make a total volume of 100 ml, and the separated liquid is separated into a liquid phase and a solid phase by centrifugation. Add 15 ml of 1.2 mol trichloroacetic acid to 30 ml of the liquid phase, filter off the precipitate (undegraded protein), take 5 ml of the filtrate, and measure the nitrogen content by the Kelpool method. A blind test is conducted in the same manner without adding the powder sample, and the value obtained by subtracting the latter value from the former value is defined as A. On the other hand, the nitrogen content in 1 g of the powder sample is measured by the Kelpool method, the value is designated as B, and the digestibility is calculated using the following formula.

X30 消化率(咽=7×lo。X30 Digestibility (throat = 7 x lo.

又α化度の測定は以下による。The degree of gelatinization is measured as follows.

即ち、調製試料t150ml容三角フラスコ2本に50
0mgずつ採取し、各々に水40m1を加えてよく攪拌
する。そして一方を測定区として測定用緩衝液を加え、
他方を完全α化して2 N @NaOH5mlを加え、
次にIM酢酸16m1を加える。
That is, 50 mL of prepared sample t was added to two 150 ml Erlenmeyer flasks.
Collect 0 mg each, add 40 ml of water to each, and stir well. Then, add the measurement buffer to one side as the measurement area, and
Completely gelatinize the other side and add 5ml of 2N @NaOH.
Then add 16 ml of IM acetic acid.

次に恒温槽中で両検液に酵素5 ml  を加えて反応
させ、60分後2 N−NaOHm1を加えて反応を停
止する。その後反応物を100m1メスフラスコに洗い
込め定容とし、濾紙で濾過する。濾液8 mlについて
80M0GYI  女性により生成糖を定量する。
Next, 5 ml of enzyme was added to both test solutions in a constant temperature bath to react, and 60 minutes later, 2N-NaOHml was added to stop the reaction. Thereafter, the reaction product was washed into a 100 ml volumetric flask to a constant volume, and filtered through a filter paper. The sugar produced is determined by a 80M0GYI female on 8 ml of filtrate.

結果は次式によりパーセントで表わされる。The results are expressed in percentages according to the following formula:

更に窒素溶解利用率とは、醤油醸造用原料の大豆及び小
麦に含有されている蛋白質等の全窒素に対する熟成諸味
液社中に溶解している全窒素量の開会を言う。
Furthermore, the nitrogen dissolution utilization rate refers to the total amount of nitrogen dissolved in the aged moromi liquid relative to the total nitrogen contained in the proteins, etc. contained in soybeans and wheat, which are raw materials for soy sauce brewing.

実験例2: 次に玄米(全粒)を加熱処理した場合、該原料に含有さ
れているビタミンの残存率等についての結果を第2表に
示す。
Experimental Example 2: Next, when brown rice (whole grains) was heat-treated, Table 2 shows the results regarding the residual rate of vitamins contained in the raw material.

前記実験例1で述べた如く本発明においては、従来法よ
り低温の過熱水蒸気で原料を処理することができるため
、第2表より明らかな如く原料に含有されているビタミ
ンは破壊され難く、製品においてその残存率が高く、栄
養i富な製品を得ることができる。
As mentioned in Experimental Example 1, in the present invention, the raw materials can be treated with superheated steam at a lower temperature than the conventional method, so as is clear from Table 2, the vitamins contained in the raw materials are difficult to destroy, and the product It is possible to obtain a highly nutritious product with a high residual rate.

又α化度、膨化度についても本発明方法は従来方法以上
の結果が得られる。
The method of the present invention also provides better results than conventional methods regarding the degree of gelatinization and the degree of swelling.

以上述べた如く本発明は複数回に分けて原料を順次加熱
処理するため、加熱媒体の最高温度を下げることができ
る。
As described above, in the present invention, the raw material is sequentially heat-treated in multiple steps, so that the maximum temperature of the heating medium can be lowered.

従って、本発明は熱変性に敏感な原料に対する加熱処理
に対して有効であり、又微細な粒子の酸化防止及び均一
な加熱ができ、更に原料に含有されている水分の飛散が
防止できるため、膨化度が高くなり、例えば醤油原料に
用りられる脱脂大豆、或は小麦について・1.言えば、
窒素利用率が向上する等の利点がある。
Therefore, the present invention is effective for heat treatment of raw materials that are sensitive to thermal denaturation, and can prevent oxidation of fine particles and uniformly heat them, and can also prevent water contained in the raw materials from scattering. Regarding defatted soybeans or wheat that have a high swelling degree and are used as raw materials for soy sauce, for example: 1. In other words,
There are advantages such as improved nitrogen utilization rate.

更に装置的な見地からすれば一11使用機器の耐熱負担
が軽減され、詩に投入及び排出パルプのパツキン類の寿
命を増加させたり、装置全体として熱横失を減少させる
ことができる。或は原料の処理条件によっては゛送風機
の圧縮熱だけで熱負荷を補うことができ、又゛加熱媒体
の温度が低い方が効率が高い等の利点が得られる。
Furthermore, from the standpoint of equipment, the heat resistance burden on the equipment used is reduced, the life of the packings for inputting and discharging pulp can be increased, and heat loss from the equipment as a whole can be reduced. Alternatively, depending on the processing conditions of the raw material, advantages such as ``the heat load can be compensated by the compression heat of the blower alone,'' or ``lower temperature of the heating medium results in higher efficiency, etc.'' can be obtained.

以下に本発明の実施例を定量的に考察する。尚以下実施
例1乃至実施例6は加熱変性に関する例を示す。
Examples of the present invention will be quantitatively discussed below. Note that Examples 1 to 6 below show examples regarding heat denaturation.

実施例1: 小麦(水分11.2%へ、全粒)を2000kg/hの
割合で6.5 atgの過熱水蒸気が通気されている気
流式加熱装置に投入して加熱処理した後、流動式加熱装
置に供給して更に加熱処理する。次いで原料を大気中に
放出して消化率95,8%、α化度78%、膨化度2.
7倍、水分71%の製品を得た。
Example 1: Wheat (total moisture content: 11.2%, whole grain) was heated at a rate of 2000 kg/h into an airflow heating device in which 6.5 atg of superheated steam was aerated, and then heated. It is supplied to a heating device for further heat treatment. The raw material was then released into the atmosphere to achieve a digestibility of 95.8%, a degree of gelatinization of 78%, and a degree of swelling of 2.
A product with a moisture content of 71% was obtained.

上記夫々の加熱装置における過熱水蒸気の入口−及び出
口の温度は、気流式加熱装置で夫々200a170Cで
あり、流動式加熱装置で夫々260 C。
The inlet and outlet temperatures of the superheated steam in each of the above-mentioned heating devices are 200 C and 170 C in the air flow type heating device, and 260 C in each of the flow type heating devices.

20Orであった。過熱水蒸気の循環量は4750kg
/i1、補充量は450kVhであり、又加熱処理時間
は18秒であった。  。
It was 20 Or. Circulation amount of superheated steam is 4750kg
/i1, the replenishment amount was 450 kVh, and the heat treatment time was 18 seconds. .

実施例2: どうもろζしく水分10゜5%へ、全粒)を1500k
Qの割合で7、Q atHの過熱水蒸気が通気されてい
る気流式加熱装置に投入加熱処理した後、。流動式加熱
装置に供給して更に加熱処理する。次いで原料を大気中
に放出し、α化度81%、膨化度5.6倍、水分5,8
%の製品を得た。
Example 2: 1500k of whole grains with a moisture content of 10°5%
After heat treatment, the mixture was heated at a rate of 7 and Q atH in an airflow heating device through which superheated steam was vented. It is supplied to a fluidized heating device for further heat treatment. Next, the raw material is released into the atmosphere, and the degree of gelatinization is 81%, the degree of swelling is 5.6 times, and the moisture content is 5.8%.
% product was obtained.

上記夫々の加熱装置における過熱水蒸気の入口及び出口
での温度は、気流式加熱装置で夫々2201T、175
rであり、流動式加熱装置で夫々280C,220Cで
あった。又過熱水蒸気の循環量は5100に慣い補充量
は480 kg/hであり、加熱処理時間は20秒であ
った。
The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are 2201T and 175T, respectively, for the airflow heating device.
r, and the temperatures were 280C and 220C, respectively, using a fluidized heating device. The circulating amount of superheated steam was 5100 kg/h, the replenishment amount was 480 kg/h, and the heat treatment time was 20 seconds.

実施例3: 本実施例は前記実施例1.2とは異なり、気流式加熱装
置を3段設置した装置により原料を処理した場合の結果
を示す。
Example 3: This example differs from Example 1.2 and shows the results when raw materials were treated using an apparatus in which three stages of airflow heating apparatuses were installed.

まず脱脂大豆(水分11.5%へ、粒度16乃至24メ
ツシユ)33ookVhの割合テロ、’ 5 atg 
cF) 、il熱水蒸気が通気されている第1気流式加
熱装置に投入した。以下順次第2及び第3気流式加熱装
置で加熱処理し、その後大気中に放出して消化率95.
2%、水分7.8%の変性脱脂大豆を得た。
First, defatted soybeans (moisture 11.5%, particle size 16 to 24 mesh) 33ookVh ratio terror,' 5 atg
cF), il hot steam was introduced into the first airflow heating device through which it was ventilated. After that, heat treatment is performed in the second and third airflow heating devices in order, and then released into the atmosphere to achieve a digestibility of 95.
Modified defatted soybeans with a moisture content of 2% and a moisture content of 7.8% were obtained.

上記夫々の加熱装置における過熱水蒸気の入口及び出口
での温度は、第1気流式加熱装置で夫々190C,16
8C,第2気流式加熱装置で夫々210C,190C,
第3気流式加熱装置で夫々220r、210Cであった
。又過熱水蒸気の循環量Gi 7800”/h、補充量
ハ450 ”/h−’c−、s リ、加熱処理時間は約
8秒であった。
The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are 190C and 16C in the first airflow heating device, respectively.
8C, 210C and 190C with the second airflow heating device, respectively.
The temperatures were 220 r and 210 C in the third airflow heating device, respectively. The circulation amount Gi of superheated steam was 7800"/h, the replenishment amount Gi was 450"/h-'c-, s, and the heat treatment time was about 8 seconds.

実施例4: 割砕大豆(水分127%〜、粒度8乃至16メツシユ)
を3000 ”/hの割合で9 atgの過熱水蒸気が
通気されている第1流動式加熱装置に投入して加熱処理
した後、第2流動式加熱装置に供給して更に加熱処理し
た。次い、で・1原料を大気中に放出して消化率946
%、水分7.5%の製品を得た。
Example 4: Crushed soybeans (moisture 127%~, particle size 8 to 16 mesh)
was heated at a rate of 3000''/h into a first fluidized heating device through which 9 atg of superheated steam was vented, and then supplied to a second fluidized heating device for further heat treatment. , Digestibility of 1 raw material released into the atmosphere is 946
%, a product with a moisture content of 7.5% was obtained.

上記夫々の加熱装置における過熱水蒸気の入口及び出口
の温度は、第1流動式加熱装嵩で夫々220C,182
Cであシ、第2流動式加熱装置で夫々260C,220
cであった。又過熱水蒸気の循環量ハ850 oK7h
 、補充量は620に$/hであり、処理時間は20秒
であった。
The temperatures at the inlet and outlet of the superheated steam in each of the heating devices are 220C and 182C, respectively, in the first fluidized heating device.
260C and 220C respectively with the second fluidized heating device
It was c. Also, the circulation amount of superheated steam is 850 oK7h.
The replenishment amount was 620 $/h, and the processing time was 20 seconds.

実施例5: 加水した脱脂大豆(水分; 25.3%%、粒度;16
〜24メツシユ)を1590に11/h1割砕小麦(水
分; 11.2%%、粒度;16〜24メツシユ)を1
420/hの割合で混合供給し6.5 atgの過熱水
蒸気が通気されている第1気流式加熱装置に投入して加
熱処理した後、第2気流式加熱装置に供給して更に加熱
処理する。次いで原料を大気中に放出し両者平均して水
分17.5%の製品を得た。
Example 5: Hydrated defatted soybean (moisture: 25.3%%, particle size: 16
-24 mesh) to 1590 11/h1Cracked wheat (moisture: 11.2%%, particle size: 16-24 mesh) to 1
Mixed and supplied at a rate of 420/h, superheated steam of 6.5 atg is charged into the first airflow heating device, which is aerated, and heat-treated, and then supplied to the second airflow heating device, where it is further heat-treated. . Next, the raw materials were released into the atmosphere to obtain a product with an average moisture content of 17.5%.

この製品に18454/hの割合で加水して冷却後、通
常の手段により製麹、仕込を行い風味良好な醤油諸味を
得た。
Water was added to this product at a rate of 18454/h, and after cooling, koji was made and prepared by conventional means to obtain soy sauce moromi with good flavor.

第1気流式加熱装置における過熱水蒸気の入口及び出口
の温度はそれぞれ186c、175rであり、第2気流
式加熱装置でそれぞれ197c。
The inlet and outlet temperatures of the superheated steam in the first airflow heating device are 186c and 175r, respectively, and the temperatures in the second airflow heating device are 197c, respectively.

186Cであった。過熱水蒸気の循環量は4800”/
h s水蒸気補充量は520に9/hであり、又加熱処
理時間は8秒であった。
It was 186C. The circulation amount of superheated steam is 4800”/
The amount of water vapor replenishment was 520/h, and the heat treatment time was 8 seconds.

実施例6: 玄米(水分13.0%へ、全粒、ビタミン0.42”/
100g)を3000 ’/H(D 割合テロa t 
g (D iM 熱水蒸気が通気されている気流式加熱
装置に投入して加熱処理した後、流動式加熱装置に供給
して更に加熱処理した。次いで原料を大気中に放出して
α化度92%、膨化度75倍、水分35%、ビタミン0
.35シ100g の製品を得た。
Example 6: Brown rice (moisture 13.0%, whole grain, vitamin 0.42"/
100g) to 3000'/H (D rate terror a t
g (D iM After heat treatment by putting hot steam into an airflow heating device that is ventilated, the raw material was supplied to a fluidization heating device and further heat-treated.The raw material was then released into the atmosphere and heated to a degree of gelatinization of 92. %, swelling degree 75 times, moisture 35%, vitamin 0
.. A product weighing 100 g of 35 pieces was obtained.

前記それぞれの加熱装置における過熱水蒸気の入口及び
出口の温度は、気流式加熱装置でそれぞれ21Or、1
67C,流動式加熱装置でそれぞれ250C,210C
であった過熱水蒸気の循環量は440Kg/h、水蒸気
補充量は380に9/hであり、本実施例による加熱処
理時間は8秒であった。
The temperatures at the inlet and outlet of the superheated steam in each of the heating devices are 21 Or and 1 Or, respectively, in the air flow heating device.
67C, 250C and 210C respectively with fluidized heating device
The circulation rate of superheated steam was 440 kg/h, the rate of steam replenishment was 380 kg/h, and the heat treatment time according to this example was 8 seconds.

以下実施例7乃至実施例9に殺菌効果に関する例を示す
Examples regarding the bactericidal effect will be shown in Examples 7 to 9 below.

実施例7: ふすま(水分10.8%%、粒度28メツシユ以下)を
200に9/hの割合で3 atHの過熱水蒸気が通気
されている第1気流式加熱装置に投入しぞ加熱処理した
後、第2気流式加熱装置に供給して更に加熱処理する。
Example 7: Bran (moisture 10.8%, particle size 28 mesh or less) was heated at a rate of 200 to 9/h into the first airflow heating device through which superheated steam of 3 atH was vented. Thereafter, it is supplied to a second airflow heating device for further heat treatment.

次いで原料を大気中に放出して水分3.5%の製品を得
た。そして原料中に3,1・×106個/gあった一般
生菌数は0になった。
The raw material was then released into the atmosphere to obtain a product with a moisture content of 3.5%. The number of general viable bacteria, which was 3,1·×10 6 cells/g in the raw material, decreased to 0.

上記夫々の加熱装置における加熱水蒸気の入口及び出口
での温度は、第1気流式加熱装置で夫々200tZ’、
148rであり、第2気流式加熱装置で夫々232C,
’200Cであった。又過熱水蒸気の循環量は410シ
h、補充量は120KP/hであり、加熱処理時間は6
秒であった。
The temperatures at the inlet and outlet of the heated steam in each of the above heating devices are 200 tZ' and 200 tZ' respectively in the first air flow heating device.
148r, and 232C and 232C respectively with the second airflow heating device.
'It was 200C. In addition, the circulation amount of superheated steam is 410 shh, the replenishment amount is 120 KP/h, and the heat treatment time is 6
It was seconds.

実施例8: カツオ節粉砕物(水分14.8%%、粒度8乃至12メ
ツシユ)を900Kg/hの割合で2 atgの過熱水
蒸気が通気されている第1流動式加熱装置に投入して加
熱処理した後、第2流動式加熱装置に供給して更に加熱
処理した。次いで原料を大気中に放出して水分9.7%
の製品を得た。そして原料中に2.8X10’個/gあ
った一般生菌数は0になった。
Example 8: Pulverized bonito flakes (moisture 14.8%, particle size 8 to 12 mesh) were heated at a rate of 900 kg/h into the first fluidized heating device through which 2 atg of superheated steam was vented. After that, it was supplied to a second fluidized heating device for further heat treatment. The raw material is then released into the atmosphere to reduce the moisture content to 9.7%.
products were obtained. The number of general viable bacteria, which was 2.8 x 10' cells/g in the raw material, became 0.

上記夫々の加熱装置における過熱水蒸気の入口及び川口
での温度は、第1流動式加熱装置で夫々1751:’、
135Cであり、第2流動式加熱装置で夫々24Or、
175Cであった。又過熱水蒸気の循環量は1200 
”/h、補充量は240 K9/hであり、加熱処理時
間は25秒であった。
The temperatures at the inlet and river mouth of the superheated steam in each of the above heating devices are 1751:', respectively in the first fluidized heating device.
135C, and 24Or, respectively, in the second fluidized heating device.
It was 175C. Also, the circulation amount of superheated steam is 1200
”/h, the replenishment amount was 240 K9/h, and the heat treatment time was 25 seconds.

実施例9: ブラックペラパー(水分128%−1全粒)を820 
’/hの割合1.5 atgの過熱水蒸気が通気されて
いる流動式加熱装置に投入して加熱処理した後、気流式
加熱装置に供給して更に加熱処理した。次いで原料を大
気中に放出して水分7.1%の製品を得た。そして原料
中に1.7X107個/gあった一般生菌数は0になっ
た。
Example 9: Black perapa (moisture 128% - 1 whole grain) 820%
After heat treatment was performed by introducing superheated steam at a ratio of 1.5 atg/h into a fluidized heating device, the mixture was supplied to an air current heating device for further heat treatment. The raw material was then discharged into the atmosphere to obtain a product with a moisture content of 7.1%. The number of general viable bacteria, which was 1.7 x 107 cells/g in the raw material, became 0.

上記夫々の加熱装置における過熱水蒸気の入口及び出口
での温度は、流動式加熱装置で夫々182r、130t
l’であり、気流式加熱装置で夫々210r、182C
であった。又過熱水蒸気の循環量は980に9/h1補
充量は1 s o ”/j1であり、加熱処理時間は2
0秒であった。
The temperatures at the inlet and outlet of the superheated steam in each of the above heating devices are 182r and 130t, respectively, in the fluidized heating device.
l', respectively 210r and 182C using an airflow heating device.
Met. In addition, the circulation amount of superheated steam is 980 9/h1, the replenishment amount is 1 s o ”/j1, and the heat treatment time is 2
It was 0 seconds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例ケ示す加熱処理装置の模式図、
第2図は投入バルブとして強制排出式バルブを用いた実
施例図、第3図は第1図A−A@断面図、第4図乃至第
8図は本発明の他の実施例を示す加熱処理装置の模式図
、第9図は流動式加熱装置の他の実施例図、第10図は
第9図B−B線断面図、第11図は第9図C−C線展開
図、第12図は流動式加熱装置の他の実施例図、第13
図は第12図D−D線展開図、第14図及び第15図は
夫々流動式加熱装置の他の実施例図である。 尚図面中1は気流式加熱装置、3は加熱パイプ、4はサ
イクロン、6は流動式加熱装置、8は加熱缶、16は原
料夢、送装置、23は送風機、24は過熱器である。 第5図 第6図 第7図 第12図 第13図
FIG. 1 is a schematic diagram of a heat treatment apparatus showing an embodiment of the present invention;
Fig. 2 is an embodiment using a forced discharge valve as the input valve, Fig. 3 is a sectional view taken along the line A-A in Fig. 1, and Figs. 4 to 8 are heating examples showing other embodiments of the present invention. A schematic diagram of the processing device, FIG. 9 is a diagram of another embodiment of the fluidized heating device, FIG. 10 is a sectional view taken along the line B-B in FIG. 9, and FIG. Figure 12 is another embodiment of the fluidized heating device, Figure 13
FIG. 12 is a developed view taken along the line D-D in FIG. 12, and FIGS. 14 and 15 are views showing other embodiments of the fluidized heating device. In the drawings, 1 is an air flow heating device, 3 is a heating pipe, 4 is a cyclone, 6 is a fluid heating device, 8 is a heating can, 16 is a raw material, a feeding device, 23 is a blower, and 24 is a superheater. Figure 5 Figure 6 Figure 7 Figure 12 Figure 13

Claims (1)

【特許請求の範囲】 fil  粉粒物質を郭定下において加熱媒体で以って
加熱処理し、次いでより高温の加熱媒体で以って少なく
とも1回加圧加熱処理した後、低圧下に放出するように
したことを特徴とする粉粒物質の加熱処理方法。 (鋤 前記加熱媒体は過熱水蒸気である前記特許請求の
範囲第1項記載の粉粒物質の加熱処理方法、(3)  
加熱媒体が通気されている加熱パイプ、該加熱パイプの
上流部においてこれに連結され、且つ原料を気密的に供
給する投入バルブ及び上記加熱パイプの下流部において
連結され、且つ加熱媒体と原料とに分離する捕集装置と
から成る気流式加熱装置と、原料投入口及び排出口、加
熱媒体入口及び出口を有するとともに、内部に多孔板を
備え、該多孔板上にて原料の流動層を形成させながら該
原料を加圧加熱する加熱罐及び該加熱罐の原料排出口に
設けられた排出バルブから成る流動式加熱装置とから構
成され、前記加熱臼と加熱パイプ上流側とを連通し、又
前記捕集装置と加熱臼とを中間バルブを介して連通した
ことを特徴とする粉粒物質の加熱処理装置。 (4)  原料投入口及び排出口、加熱媒体入口及び出
口を有するとともに、内部に多孔板を備え、該多孔板に
て原料の流動層を形成させながら該原料を加圧加熱する
加熱臼及び該加熱臼の原料排出口に設けられた排出バル
ブとから成る流動式加熱装置と、加熱媒体が通気されて
いる加熱パイプ、該加熱パイプの上流部においてこれに
連結された中間バルブ、上記加熱パイプの下流部におい
てこれに連結され、加熱媒体と原料と、に分離する捕集
装置及び該捕集装置に設置された排出バルブとから構成
され、前記捕集装置と加熱臼とを連通し、又加熱臼と前
記加熱パイプ上流側とを前記中間バルブを介して連通し
たことを特徴とする粉粒物質の加熱処理装置。 (5)  加熱媒体が通気されている加熱パイプ、該ル
プ、該加熱パイプの下流部においてこれに連結され、加
熱媒体と原料とに分離する捕集装置とから成る気流式加
熱装置を複・数段備え、成る任意の段における捕集装置
と前段における加熱パイプの上流部とを連通し、又上記
捕集装置と次段における加熱パイプの上流部とを中間バ
ルブを介して連通ずるとともに、最終段における捕集装
置に排出バルブを設置したことを特徴とする粉粒物質の
加熱処理装置。 (6)原料投入口及び排出口、加熱媒体入口及び出口を
有するとともに、内部に多孔板を備え、該多孔板上にて
原料の流動層を形成させながら該原料を加圧加熱する加
熱缶及び該加熱缶の原料排出口に設けられたバルブから
成る流動式加熱装置を複数段備え、成る任意の段及びそ
の前段と次段における加熱缶の加熱媒体出口と入口同志
を連通させ、且つ原料投入口と排出口同志を中間バルブ
を介して連通ずるとともに、最終段における加熱缶の原
料排出口に排出バルブを設置したことを特徴とする粉粒
物質の加熱処理装置。
[Claims] fil The granular material is heat-treated with a heating medium under definition, then pressure-heated at least once with a higher-temperature heating medium, and then discharged under low pressure. A method for heat treatment of powdery material, characterized in that: (Plow) The method for heat treatment of granular material according to claim 1, wherein the heating medium is superheated steam, (3)
A heating pipe through which a heating medium is ventilated, an input valve connected to the upstream part of the heating pipe and supplying the raw material in an airtight manner, and a heating pipe connected to the downstream part of the heating pipe and connected to the heating medium and the raw material. It has an airflow heating device consisting of a separating collecting device, a raw material inlet and a discharge port, a heating medium inlet and an outlet, and is equipped with a perforated plate inside, and a fluidized bed of the raw material is formed on the perforated plate. It is composed of a heating can that pressurizes and heats the raw material, and a flow type heating device consisting of a discharge valve provided at the raw material discharge port of the heating can, and communicates the heating mill with the upstream side of the heating pipe. 1. A heat treatment device for granular materials, characterized in that a collection device and a heating mill are communicated through an intermediate valve. (4) A heating mill having a raw material inlet and outlet, a heating medium inlet and an outlet, and a perforated plate therein, which pressurizes and heats the raw material while forming a fluidized bed of the raw material with the perforated plate; A fluid heating device consisting of a discharge valve provided at a raw material discharge port of a heating mill; a heating pipe through which a heating medium is vented; an intermediate valve connected to the heating pipe at an upstream portion thereof; It is connected to this in the downstream part and consists of a collection device that separates the heating medium and the raw material, and a discharge valve installed in the collection device, and communicates the collection device and the heating mill. 1. A heat treatment apparatus for granular materials, characterized in that the mortar and the upstream side of the heating pipe are communicated through the intermediate valve. (5) A plurality of pneumatic heating devices each consisting of a heating pipe through which a heating medium is vented, the loop, and a collection device connected to the loop at the downstream portion of the heating pipe to separate the heating medium and the raw material. The collecting device in any stage is connected to the upstream part of the heating pipe in the previous stage, and the collecting device and the upstream part of the heating pipe in the next stage are communicated via an intermediate valve, and A heat treatment device for particulate matter, characterized in that a discharge valve is installed in a collection device in a stage. (6) A heating can that has a raw material inlet and outlet, a heating medium inlet and an outlet, and is equipped with a perforated plate inside, and pressurizes and heats the raw material while forming a fluidized bed of the raw material on the perforated plate; The heating can is equipped with a plurality of stages of flow-type heating devices consisting of valves provided at the raw material discharge port, and the heating medium outlet and inlet of the heating can in any stage, the previous stage, and the next stage are communicated with each other, and the raw material is inputted. 1. A heat treatment apparatus for granular materials, characterized in that the mouth and discharge port are communicated with each other via an intermediate valve, and a discharge valve is installed at the raw material discharge port of the heating can in the final stage.
JP56211084A 1981-12-26 1981-12-26 Method and apparatus for heat-treatment of granular substance Granted JPS58111667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211084A JPS58111667A (en) 1981-12-26 1981-12-26 Method and apparatus for heat-treatment of granular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211084A JPS58111667A (en) 1981-12-26 1981-12-26 Method and apparatus for heat-treatment of granular substance

Publications (2)

Publication Number Publication Date
JPS58111667A true JPS58111667A (en) 1983-07-02
JPS6411274B2 JPS6411274B2 (en) 1989-02-23

Family

ID=16600144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211084A Granted JPS58111667A (en) 1981-12-26 1981-12-26 Method and apparatus for heat-treatment of granular substance

Country Status (1)

Country Link
JP (1) JPS58111667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257450A (en) * 1988-04-08 1989-10-13 Mitsubishi Heavy Ind Ltd Sterilizing device of powdery or granular raw material with superheated steam
US6350409B1 (en) 1996-04-12 2002-02-26 Svenska Lantmännen, riksförbund ek. för. Heat disinfection of seeds
JP2010534466A (en) * 2007-07-26 2010-11-11 カーギル インコーポレイテッド Method for modifying starch
JP2011212007A (en) * 2010-03-18 2011-10-27 Nisshin Seifun Group Inc Method for producing sterilized cereal grain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612090A (en) * 1979-07-12 1981-02-05 Shin Meiwa Ind Co Ltd Squeeze pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612090A (en) * 1979-07-12 1981-02-05 Shin Meiwa Ind Co Ltd Squeeze pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257450A (en) * 1988-04-08 1989-10-13 Mitsubishi Heavy Ind Ltd Sterilizing device of powdery or granular raw material with superheated steam
JPH07114675B2 (en) * 1988-04-08 1995-12-13 三菱重工業株式会社 Apparatus for sterilization of powdered material by superheated steam
US6350409B1 (en) 1996-04-12 2002-02-26 Svenska Lantmännen, riksförbund ek. för. Heat disinfection of seeds
JP2010534466A (en) * 2007-07-26 2010-11-11 カーギル インコーポレイテッド Method for modifying starch
JP2011212007A (en) * 2010-03-18 2011-10-27 Nisshin Seifun Group Inc Method for producing sterilized cereal grain

Also Published As

Publication number Publication date
JPS6411274B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US4463022A (en) Method of grinding and cooking whole grain
US5558886A (en) Extrusion apparatus for the preparation of instant fresh corn dough or masa
US7169432B2 (en) Toasted soybean flakes and method of making same
US5532013A (en) Method for the preparation of instant fresh corn dough or masa
JPH0553B2 (en)
US20230189855A1 (en) Process for improving the organoleptic and nutritional properties of legume meal and components and derivatives thereof
EP0524329A1 (en) Process for the production of precooked cereal foods
JP6092515B2 (en) Improved manufacturing method for food
EP1814404A1 (en) Process for granulation of low-moisture processed foods and use thereof
EP1079694B1 (en) Method for sterlising cereal and legumous products
JPS6352845A (en) Production of cereal rolled flake and apparatus therefor
JPS5842743B2 (en) How do you know what to do?
JPS58111667A (en) Method and apparatus for heat-treatment of granular substance
JPS6225020B2 (en)
JPS6247500B2 (en)
FI72257B (en) FOERFARANDE FOER FRAMSTAELLNING AV BEHANDLADE SPANNMAOLSPRODUKTER OCH APPARAT FOER UTFOERANDE AV FOERFARANDET
JPH07100138B2 (en) Method for removing the hull of bean seeds and apparatus for carrying out the method
JPS6152657B2 (en)
JP2904779B1 (en) Granule sterilizer
JP2000135273A (en) Continuous agitating sterilizer of powder and grain
WO2006049828A1 (en) Process for granulation of wet processed foods and use thereof
KR100455452B1 (en) Producing Method Of High-Bio Full Fat Activated Soybean Flour By Electron Wave Drying Soybean With Far-infrared
JP3431809B2 (en) Method and apparatus for heat treatment of granular material
JPH03112458A (en) Method and device for removing bitterness from soybean
JP3979738B2 (en) Method and apparatus for sterilization of granular material