JPS58110929A - Microwave heating apparatus - Google Patents

Microwave heating apparatus

Info

Publication number
JPS58110929A
JPS58110929A JP21346381A JP21346381A JPS58110929A JP S58110929 A JPS58110929 A JP S58110929A JP 21346381 A JP21346381 A JP 21346381A JP 21346381 A JP21346381 A JP 21346381A JP S58110929 A JPS58110929 A JP S58110929A
Authority
JP
Japan
Prior art keywords
surface temperature
temperature
frozen food
stage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21346381A
Other languages
Japanese (ja)
Inventor
Akihisa Takano
晃久 高野
Akiko Mori
森 章子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21346381A priority Critical patent/JPS58110929A/en
Publication of JPS58110929A publication Critical patent/JPS58110929A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To prevent over-rise of the surface temperature of a frozen food and to enable to achieve semi-thawing of the frozen food automatically in a short while, by measuring the surface temperature of the frozen food, and controlling the output of a microwave heating apparatus according to the surface temperature thus detected. CONSTITUTION:The surface temperature of a frozen food 2 put in a heating chamber 1 is detected by a detector 10, and a controller 11 controls the effective output of a high-frequency oscillator 5 at least in three stages of P1, P2 and P3 according to the surface temperature of the frozen food detected by the detector 10. That is, in the first stage of thawing of a frozen food, the oscillator 5 is made to operate at its maximum effective output P1 until the surface temperature of the frozen food is raised to a first predetermined reference temperature T1. In the second stage of thawing, the effective output of the osicllator 5 is controlled at P2 until the surface temperature is lowered to a second reference temperature T2. In the third stage, the effective output of the oscillator 5 is controlled at P3. In the above control, the following relationships, P1>P3>P2>=0 and T1>T2, are satisfied.

Description

【発明の詳細な説明】 本発明は高周波加熱装置の特に自動解凍機能(・(=関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to an automatic defrosting function of a high-frequency heating device.

一般に生ものの冷凍食品の解凍、たとえば、さしみ用の
魚肉あるいは冷凍肉を小さく切るために包rが通る程度
に解凍する場合などは、食品の表面温度は6°C〜1’
O’C以下で、かつ中心部には、わずかの冷凍状態が残
るか残らない程度の解凍を行う必要がある。このような
解凍を半解凍と呼んでいる。
In general, when thawing perishable frozen foods, for example, when thawing fish for sashimi or frozen meat to the extent that the wrapper can pass through, the surface temperature of the food is 6°C to 1'.
It is necessary to thaw at a temperature below O'C and to such an extent that only a slight frozen state remains in the center. This kind of thawing is called half-thawing.

従来、電子レンジで上記半解凍を行う場合には、第1図
に示すように200W程度の低い一定の電波出力で加熱
していたが、その場合の表面温度は第1図の表面温度を
示す曲線aのように10’Cを越え15°C〜20’C
にも達してしまい、いわゆる過加熱となる。また、加熱
時間の設定は経験に頼るところが多く、設定をまちがう
と表面が煮えてしまったり、あるいは全熱解凍が行われ
ていないなどの失敗をするという問題がある。
Conventionally, when performing the above-mentioned half-thawing in a microwave oven, heating was done with a low constant radio wave output of about 200W as shown in Figure 1, but the surface temperature in that case is as shown in Figure 1. As shown in curve a, over 10'C and 15°C to 20'C
This results in so-called overheating. Furthermore, setting the heating time often depends on experience, and if the setting is incorrect, there is a problem that the surface may be boiled or failures may occur, such as not fully thawing the food.

また表面温度の上昇を抑えるためには電波出力を小さく
すれば良いが、時間が長くかかるという問題が生じる。
Furthermore, in order to suppress the rise in surface temperature, it is possible to reduce the radio wave output, but this poses the problem of taking a long time.

さらに、表面温度の上昇割合は、冷凍食品の大きさによ
っても変化するために、電波出力をたとえば1oo9の
冷凍食品の場合に最適にしておいても、5oopになる
と強すぎるというような問題がある。
Furthermore, the rate of increase in surface temperature also changes depending on the size of the frozen food, so even if the radio wave output is optimized for a frozen food of 1oo9, for example, it will be too strong for a 5oop. .

これらの問題を解決する方法として、解凍終了時の表面
温度を測定して、解凍ヶ終了させるという方法も提案さ
れているが、第1図から理解されるように、表面温度a
が中心部温度すよりも1゜°C以上も高くなってしまう
ような加熱を行う限り、表面温度によって解凍終了を検
知するのは無意味であり、正確な制(財)が困難である
1、本発明は」−記従来の問題を解決するもので、イ1
を練食品の表面温度を測定し該表面温度に基ずいて電波
出力を制御することによって、冷凍食品の表面温度の過
上昇を防止すると共に短時間に冷凍食品の半解凍を自動
的に行うことが出来る。自動解凍電子レンジを提供する
ことを[1的とする1、本発明は上記目的を達するため
に、冷凍食品を収能する加熱室と、前記加熱室の内部に
収能されたjiff詑冷凍食品の表面部の温度を検出す
る表面温度検出器と、前記加熱室の内部に^“訂1男波
を給電する高周波発振器と、前記表面温度検出器の検出
する前記表面部の温度に従って前記高周波発振a1)の
実効的な出力をあらかじめ設定したPl、P2.P5の
少くとも3段階に制御する制御部とを備え、4」IJ記
全冷凍食品解凍時の第1段階においては冷凍食品の表面
温度検出値があらかじめ定められた第1の所定温度T1
に達するまでの間は、前記高周波発振器のほぼ最高出力
である実効出力P1で加熱し、ついで第2段階において
は、表面温度検出値が第2の所定温度T2に低下するま
で実効出力P2とし、ついで第3段階において実効出力
PSとするとともに、 P+ >P3 >P2≧0 および TI>T2 なる関係を満たす制御を行なう構成とした高周波加熱装
置であり、失敗の少ないより確実な自動解凍を可能とす
るとともに解凍加熱時間を短縮することができるもので
ある。
As a method to solve these problems, a method has been proposed in which the surface temperature at the end of thawing is measured and thawing is completed, but as can be understood from Fig. 1, the surface temperature a
As long as heating is carried out in such a way that the core temperature is 1°C or more higher than the core temperature, it is meaningless to detect the end of thawing based on the surface temperature, and it is difficult to accurately control the temperature. , the present invention solves the problems of the prior art.
By measuring the surface temperature of the frozen food and controlling the radio wave output based on the surface temperature, the surface temperature of the frozen food is prevented from rising excessively, and the frozen food is automatically half-thawed in a short time. I can do it. It is an object of the present invention to provide an automatic defrosting microwave oven.1. In order to achieve the above objects, the present invention provides a heating chamber for storing frozen food, and a jiffy frozen food stored in the heating chamber. a surface temperature detector that detects the temperature of the surface portion of the heating chamber; a high frequency oscillator that supplies power to the inside of the heating chamber with a high frequency oscillator; a1) is equipped with a control unit that controls the effective output of the product in at least three stages of preset Pl, P2, and P5; First predetermined temperature T1 with a predetermined detected value
Heating is performed at effective output P1, which is approximately the maximum output of the high-frequency oscillator, until the temperature reaches T2, and then in the second stage, the effective output is set at P2 until the detected surface temperature value decreases to a second predetermined temperature T2, Then, in the third stage, the effective output PS is set, and the high frequency heating device is configured to perform control that satisfies the relationships P+ > P3 > P2 ≧ 0 and TI > T2, making it possible to perform more reliable automatic defrosting with fewer failures. At the same time, the thawing and heating time can be shortened.

以下、本発明の一実施例について図面に基づき説明する
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図において、自動解凍機能を有する電子レンジを示
す。1は冷凍食品を収納し加熱する加熱室、2は冷凍食
品で受皿3の上に置かれた網4の」;におかれている。
In FIG. 2, a microwave oven with an automatic defrosting function is shown. 1 is a heating chamber for storing and heating frozen foods; 2 is a frozen food placed on a screen 4 placed on a saucer 3;

5は加熱室1内に高周波を給電する高周波発振器のマグ
ネトロンである。6は冷凍食品2の表面 ・温度を測定
する赤外線放射温度計であり、その前方にはモータ7で
駆動されるチョッパー8が配設され、加熱室1に設けた
穴9を11n−・で入射する+1r凍食品20表面から
放射される赤外線が、チョッパー8によって断続される
ことによって、赤外線放射温度計6は、冷凍食品の表面
温度を検出することができる。」−配光外線放射温度計
6.モータ7、チョッパー8および穴9とから表面温度
検出a:÷10を構成するわけである。11は制E1回
路を有する制脚部で、前記表面温度検出1.: 10が
測定した食器の表面温度が入力されると共に、スタート
スイイチ(図示せず)等の他の入力が人力され、以下に
詳述するような制御を行って、マグネトロノロ、冷却フ
ァン(図示せず)など電子レンジ1゛体を制御するもの
である。
A magnetron 5 is a high frequency oscillator that supplies high frequency power into the heating chamber 1. Reference numeral 6 denotes an infrared radiation thermometer that measures the surface temperature of the frozen food 2. In front of the infrared radiation thermometer, a chopper 8 driven by a motor 7 is installed. By intermittent infrared rays emitted from the surface of the frozen food 20 by the chopper 8, the infrared radiation thermometer 6 can detect the surface temperature of the frozen food. ”-Light distribution external radiation thermometer6. The motor 7, chopper 8, and hole 9 constitute a surface temperature sensor a:÷10. Reference numeral 11 denotes a restraining section having a restraining circuit E1, which detects the surface temperature 1. : The surface temperature of the tableware measured by No. 10 is input, and other inputs such as a start switch (not shown) are input manually, and the control described in detail below is performed to turn on the magnetron and the cooling fan (not shown). (not shown) and other microwave ovens.

以下、」−記構成における動作について第3図に基づき
説明する。
Hereinafter, the operation in the configuration shown in "-" will be explained based on FIG.

図において、曲線dは表面温度の変化で、曲線eは中心
部の温度変化である。
In the figure, curve d represents the change in surface temperature, and curve e represents the change in temperature at the center.

まず加熱室1のドアが閉成されている事など安全性のチ
ェックを従来の操作手順に従って行な−。
First, a safety check is carried out according to conventional operating procedures, such as making sure that the door of heating chamber 1 is closed.

たのちに、解凍スタートスイッチ(図示せず)を押し、
解凍加熱を開始する。このとき前記表面温度測定器1o
によって冷凍食品2の表面温度を測定し、−2°C以下
、もしくは他のあらかじめ定めた温度以下である事を確
認することによって、冷凍食品2が配置されている事を
確認する。そして解凍を開始するわけであるが、先ず最
初は実効電波出力をPlとして加熱を開始する。このP
lはマグネトロン6の最高出力とすることにより全体の
解凍時間を短くすることができる。この出力P1で加熱
しながら、冷凍食品2の表面温度を測定しつづけて、こ
の表面温度があらかじめ寓。めた所定温度T1に達する
までこの実効電波出力P1で加熱をつづける。
After that, press the defrost start switch (not shown) and
Start defrosting and heating. At this time, the surface temperature measuring device 1o
By measuring the surface temperature of the frozen food 2 and confirming that it is below -2°C or another predetermined temperature, it is confirmed that the frozen food 2 is placed. Then, thawing is started, and first, heating is started with the effective radio wave output set to Pl. This P
By setting l to the maximum output of the magnetron 6, the entire defrosting time can be shortened. While heating with this output P1, the surface temperature of the frozen food 2 is continuously measured, and this surface temperature is determined in advance. Heating is continued at this effective radio wave output P1 until the predetermined temperature T1 is reached.

この所定温度T1は6°C以下に設定することが望まし
い。冷凍食品20表面は比較的速く温度は上昇するが、
その中心部は図のように一5°C−0°Cの範囲にとど
まって、氷の融解熱として吸収したエネルギーを消費し
ている。この期間を第1段階と呼ぶ。
This predetermined temperature T1 is desirably set to 6°C or less. The temperature of the surface of frozen food 20 rises relatively quickly,
As shown in the figure, the temperature in the center remains in the range of 15°C to 0°C, consuming the energy absorbed as heat of melting of the ice. This period is called the first stage.

そして表面温度がT1に達した時点、時間tτ1におい
て実効電波出力をP2に9ノリ替えて第2段階に入る。
Then, when the surface temperature reaches T1, the effective radio wave output is changed to P2 by 9 times at time tτ1, and the second stage is entered.

この段階では、T+ まで1−昇した表面温度をまた凍
っている冷凍食品2の内部の熱吸11ノによって引き下
げて、第2のあらかじめ定めた1シ1定温度T2まで低
下するのを待つのであるから、T1’、>T2であると
共にP2<PIであり、P2はむしろ零、すなわち電波
発振は停止させる力が望ましい1.そして、第2の所定
温度T2は2′(:〜−3℃ぐらいのかなり低い温度に
設定するのが望ましい。また、第2段階の始まりでは表
面と内部の温度差が大きいので表面から内部への熱伝導
を早くすることができる。
At this stage, the surface temperature, which has risen by 1- to T+, is lowered again by the heat absorption 11 inside the frozen food 2, and waits for it to drop to the second predetermined constant temperature T2. Therefore, T1', > T2 and P2 < PI, and P2 is preferably zero, that is, a force that stops radio wave oscillation.1. It is desirable to set the second predetermined temperature T2 to a fairly low temperature of about 2' (~-3℃).Also, at the beginning of the second stage, there is a large temperature difference between the surface and the inside, so can speed up heat conduction.

表面温度が前記第2の所定温度T2になると、次は第3
段階となり、実効電波出力はP3として加熱を行う。こ
こでP3<PI なので表面の温度上昇はゆるやかに」
1昇する。第3段階での実(IJ ’+l+:波出力は
300W〜100W程度の出力が望ましく、全体の温度
上昇がゆるやかなので、中心部と表面の温度差も比較的
小さく保つことが出来る。
When the surface temperature reaches the second predetermined temperature T2, the third
stage, the effective radio wave output is P3, and heating is performed. Here, P3<PI, so the temperature rise on the surface is gradual.
Increase by 1. The actual (IJ'+l+) wave output in the third stage is preferably about 300 W to 100 W, and since the overall temperature rise is gradual, the temperature difference between the center and the surface can be kept relatively small.

解凍は、表面温度は所定温度T3に達した時点で終了す
る。
Thawing ends when the surface temperature reaches a predetermined temperature T3.

また」−記第3段階において、数段階の設定温度を設け
、各段階に達した時点で実効電波出力を例えば300W
から2ooWへ、そしてさらに1oOWへと変更するよ
うにすれば、更に良好な解凍を行うことができる。
In addition, in the third stage, several temperature settings are set, and when each stage is reached, the effective radio wave output is set to 300W, for example.
By changing from 2ooW to 1oOW, even better decompression can be achieved.

このように本実施例によれば、第1段階に電波出力を大
きくして、多くのエネルギーを与えるために全体の解凍
時間を短くすることができる。また表面温度を監視して
いるので、表面温度が」1昇しすぎる事も防止できる。
As described above, according to this embodiment, the radio wave output is increased in the first stage to provide a large amount of energy, thereby shortening the entire defrosting time. Also, since the surface temperature is monitored, it is possible to prevent the surface temperature from rising too high.

よって、従来実現が困難と言われていた、表面温度を低
く保ったまま短時間で解凍することが可能となる。
Therefore, it becomes possible to defrost food in a short time while keeping the surface temperature low, which was previously said to be difficult to achieve.

次に第4図は他の実施例を示し、特に上記第3段階にお
ける実効電波出力P3を断続出力するものである。
Next, FIG. 4 shows another embodiment, in which the effective radio wave output P3 in the third stage is output intermittently.

第4図において、解凍開始から表面温度が第1の所定温
度T1に達するまでは、マグネトロ/6箋最高出力P・
で加熱を行うという第4段階は第3図の例と同じである
。穴に第21ソ階では、マグネトロ/6の電波発振を冷
凍食品20表面幅H91が第2の所定温度T2に低下す
る寸で停止する4、すなわち、第3図に示す前述の実施
例におけるP2−〇の場合である。さて表面温度がT2
まで低1すると第3段階に移る。この実施例の特徴は、
第3段階に訃けるマグネトロン6の制御にある。111
1述の実施例ではマグネトロン6の電波出力P5をP3
〈Pl として一定出力で連続発振させたが、本実施例
ではこのP5なる電波出力を得るために、時間toff
  の間マグネトロン6の発振を停止し、ついで時間t
on  の間マグネトロン5を発振させるという風に、
周間的にマグネトロン6の発振の停止をくり返す。
In FIG. 4, from the start of thawing until the surface temperature reaches the first predetermined temperature T1, the maximum output P
The fourth step of heating is the same as in the example of FIG. At the 21st floor in the hole, the radio wave oscillation of the magnetro/6 is stopped when the surface width H91 of the frozen food 20 drops to the second predetermined temperature T2, that is, P2 in the above-described embodiment shown in FIG. − This is the case of 〇. Now, the surface temperature is T2
When it reaches low 1, it moves to the third stage. The features of this embodiment are:
The third stage is the control of magnetron 6. 111
In the first embodiment, the radio wave output P5 of the magnetron 6 is set to P3.
Although continuous oscillation was performed with a constant output as <Pl, in this example, in order to obtain the radio wave output of P5, the time toff
The oscillation of the magnetron 6 is stopped for a time t, and then the oscillation of the magnetron 6 is stopped for a time t.
By making the magnetron 5 oscillate while it is on,
The oscillation of the magnetron 6 is repeatedly stopped periodically.

すなわち時間ton  の間マグネトロ/6は、その最
高出力P1で発振するので、表面温度は比較的早く」1
昇する。ついで時間toff  の間発振が停止するの
で、表面温度は低下する。表面温塵は第3図の場合にく
らべて、マグネトロン6が発振している間は高くなるの
で、表面と内部の温1(差が大きくなり、発振が停止し
ている間は表面から内部への熱伝導もより多く行われる
という特長を有している。また第3段階の開始をマグネ
トロノロの発振停止すなわちtoff  時間だけ延遅
しで開始すると、実際にマグネトロ15が発振を開始す
る時には、表面温度は第2段階の所定温度T2よりも低
くなっているので所定温度T1とT2の温度差を第3図
の例に比較して、比較的小さく設定することが出来るの
で、温度測定部10に簡単なヒステリシス付コンパレー
ターヲ用いることもできる。また第3段階の一周期(t
off+ton)における実効電波出力をP’s とす
ればOn P’3 = −−−−−P 1 toff+ton となるから、時間ton  とtoffの比を選べば、
第3図の場合と同じような実効電波出力P’sを得るこ
とができる。上記時間ton  は実験では3秒以上と
した方が良い解凍結果が得られた。
In other words, since the magnetro/6 oscillates at its maximum output P1 for a period of time ton, the surface temperature decreases relatively quickly.
rise The oscillation then stops for a period of time toff, so that the surface temperature decreases. Compared to the case shown in Figure 3, the surface temperature of the dust becomes higher while the magnetron 6 is oscillating, so the temperature difference between the surface and the inside (1) increases, and while the oscillation is stopped, the temperature increases from the surface to the inside. Furthermore, if the start of the third stage is delayed by the toff time, that is, the oscillation of the magnetron is stopped, when the magnetron 15 actually starts oscillating, the surface temperature is lower than the predetermined temperature T2 of the second stage, so the temperature difference between the predetermined temperatures T1 and T2 can be set relatively small compared to the example in FIG. It is also possible to use a comparator with hysteresis.Also, one period of the third stage (t
If the effective radio wave output at (off + ton) is P's, On P'3 = -------P 1 toff + ton, so if you choose the ratio of time ton and toff,
An effective radio wave output P's similar to that shown in FIG. 3 can be obtained. In experiments, better thawing results were obtained when the time ton was set to 3 seconds or more.

以」−のように、上記2つの実施例によれば次の効果を
得る。
According to the above two embodiments, the following effects can be obtained.

(1)第1段階に、電波発振器の最高出力P1を印加す
るので解凍時間が短くなる。この時、表面1Vli度が
第1の所定値に達した時、+:、iyで電波発4)](
器の出力を最低(停止も含む)とするので、表面温度の
過上昇がない。
(1) Since the maximum output P1 of the radio wave oscillator is applied in the first stage, the defrosting time is shortened. At this time, when the surface 1Vli degree reaches the first predetermined value, radio waves are emitted at +:,iy4)](
Since the output of the device is set to the minimum (including when stopped), there is no excessive rise in surface temperature.

(2)第2段階では、電波発振器の出力を値低にするの
で表面温度を低下させ、かつ、表面TA、X度が第2の
所定値T2になるまでこれをつづけるので、表面に蓄え
られた熱エネルギーを中心部に移動させることができる
と共に、表面の温度を低くできる。また、第1段階の終
り、すなわち、第2段階の始りにおける表面IT;A度
が中心部よりかなり高いので、表面から内部への熱伝導
を早く行うことができる。
(2) In the second stage, the output of the radio wave oscillator is lowered to lower the surface temperature, and this is continued until the surface TA, X degrees reach the second predetermined value T2, so that the surface temperature is Thermal energy can be transferred to the center, and the surface temperature can be lowered. Furthermore, since the surface IT;A degree at the end of the first stage, that is, at the beginning of the second stage, is considerably higher than that at the center, heat can be quickly conducted from the surface to the inside.

(3)第3段階では、電波出力を小さくするので、表面
と内部の温度差を小さく保ったま斗1リイ凍できる。
(3) In the third stage, the radio wave output is reduced, so it is possible to freeze the mattress while keeping the temperature difference between the surface and the inside small.

(4)更に第4図のように第3段階のP3をPlの発振
、停止とすることによって、表m1温度の脈動が生じる
ので、脈動のない場合にくらべて、表面から内部への熱
伝導がより早く行うことが出来る。
(4) Furthermore, as shown in Figure 4, by setting P3 in the third stage to oscillation and stopping of Pl, pulsations in the temperature of table m1 occur, so compared to the case without pulsations, heat conduction from the surface to the inside is reduced. can be done faster.

以」−のように本発明によれば、第1段階を最高出力で
加熱するとともに冷凍食品が所定温度に達したことを自
動測定することにより冷凍食品の屯縫を計量することな
く解凍加熱ができる。また第2段階の出力を最も小さく
設定し、さらに第3段階において第2段階よりも大きく
かつ第1段階8よりも小さい出力で所定温度まで加熱す
ることによって自動解凍加熱を可能とし、従来の半解凍
に要した時間を短縮することができるとともに食品表面
の過加熱のないすぐれた高周波加熱装置を提供するもの
である。
As described above, according to the present invention, by heating the first stage at maximum output and automatically measuring when the frozen food has reached a predetermined temperature, it is possible to thaw and heat the frozen food without weighing it. can. In addition, automatic defrosting and heating is possible by setting the output of the second stage to the lowest level, and then heating to a predetermined temperature in the third stage with an output higher than that of the second stage and lower than that of the first stage. An object of the present invention is to provide an excellent high-frequency heating device that can shorten the time required for thawing and does not overheat the surface of food.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波加熱装置による解凍時の食品の温
度変化特性図、第2図は本発明の一実施例である高周波
加熱装置の側面断面図、第3図は同装置の解凍時の食品
の温度変化特性図、第4図は本発明の他の実施例におけ
る食品の温度変化時1図である。 1・・・・・・加熱室、2・・・・・・冷凍食品、6・
・・・・・高周波発振a:)、6”’ ”’ 表1rl
l IAA I’f r!l、10 ”’ ”’ fE
 tffi jfF、度付1出a臥11・・・・・・制
怜(1部、Pl、P2.P5・・・・・・高□□□波発
振8gの実効的な出プハT1.T2・・・・・・所定j
71A ’(R: +代理人の氏名 弁用11:  中
 尾 敏 男 ほか1名第1図 第2図 第3図 @r 1う735 第4図
Fig. 1 is a temperature change characteristic diagram of food during thawing using a conventional high-frequency heating device, Fig. 2 is a side sectional view of a high-frequency heating device which is an embodiment of the present invention, and Fig. 3 is a diagram showing the temperature change characteristics of food during thawing using the same device. FIG. 4 is a temperature change characteristic diagram of food, which is a diagram showing temperature change of food in another embodiment of the present invention. 1...Heating chamber, 2...Frozen food, 6.
...High frequency oscillation a:), 6'''''' Table 1rl
l IAA I'f r! l, 10 ”'”' fE
tffi jfF, degree 1 output a 11... control (1 part, Pl, P2.P5...... effective output of high □□□ wave oscillation 8g T1.T2.・・・・・・Predetermined j
71A' (R: + Name of agent Benyo 11: Toshio Nakao and 1 other person Figure 1 Figure 2 Figure 3 @r 1735 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)冷凍食品を収納する加熱室と、前記加熱室の内部
に収納された前記冷凍食品の表面部の温度を検出する表
面温度検出器と、前記加熱室の内部に高周波を給電する
高周波発振器と、前記表面温度検出器の検出する前記表
面部の温度に従って前記高周波発振器の実効的な出力を
あらかじめ設定したPl、P2.P3の少くとも3段階
に制御する制御部とを備え、前記冷凍食品の解凍時の第
1段階においては冷凍食品の表面温度検出値があらかじ
め定められた第1の所定温度T1に達するまでの間は、
前記高周波発振器のほぼ最高出力である実効出力P1で
加熱し、ついで第2段階においては、表面温度検出値が
第2の所定温度T2に低下する壕で実効出力P2とし、
ついで第3段階において実効出力P3とするとともに、 P +  > P’ 3  二2P2 ;ヒ二〇および T1ンT2 なる関係を満たす制(財)を行なう構成とした高周波加
熱装置。
(1) A heating chamber that stores frozen food, a surface temperature detector that detects the temperature of the surface of the frozen food stored inside the heating chamber, and a high-frequency oscillator that supplies high frequency power to the inside of the heating chamber. and Pl, P2 ., which set the effective output of the high frequency oscillator in advance according to the temperature of the surface portion detected by the surface temperature detector. P3, and in the first stage when the frozen food is thawed, until the surface temperature detection value of the frozen food reaches a predetermined first predetermined temperature T1. teeth,
Heating is performed at an effective output P1, which is approximately the maximum output of the high frequency oscillator, and then, in a second stage, the effective output is set to P2 at a trench where the detected surface temperature value decreases to a second predetermined temperature T2,
Next, in the third stage, the effective output is set to P3, and the high-frequency heating apparatus is configured to perform a control that satisfies the following relationships: P+>P'322P2;H20 and T1-T2.
(2)第3段階においては、最高出力P1を断線的に出
力させて実効出力P3としてなる特a’l’ il’f
氷の範囲第1項記載の高周波加熱装置。
(2) In the third stage, the maximum output P1 is output in a disconnected manner to become the effective output P3.
Ice range: The high-frequency heating device according to item 1.
JP21346381A 1981-12-25 1981-12-25 Microwave heating apparatus Pending JPS58110929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21346381A JPS58110929A (en) 1981-12-25 1981-12-25 Microwave heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346381A JPS58110929A (en) 1981-12-25 1981-12-25 Microwave heating apparatus

Publications (1)

Publication Number Publication Date
JPS58110929A true JPS58110929A (en) 1983-07-01

Family

ID=16639620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346381A Pending JPS58110929A (en) 1981-12-25 1981-12-25 Microwave heating apparatus

Country Status (1)

Country Link
JP (1) JPS58110929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919389A (en) * 1997-03-18 1999-07-06 Sanyo Electric Co. Ltd. Cooking apparatus including infrared ray sensor
US6198084B1 (en) * 1999-07-12 2001-03-06 Samsung Electronics Co., Ltd. Defrosting method for a microwave oven using an infrared sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561484A (en) * 1979-06-19 1981-01-09 Matsushita Electric Ind Co Ltd Method of controlling heat of food with infrared detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561484A (en) * 1979-06-19 1981-01-09 Matsushita Electric Ind Co Ltd Method of controlling heat of food with infrared detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919389A (en) * 1997-03-18 1999-07-06 Sanyo Electric Co. Ltd. Cooking apparatus including infrared ray sensor
CN1106535C (en) * 1997-03-18 2003-04-23 三洋电机株式会社 Cooking apparatus
US6198084B1 (en) * 1999-07-12 2001-03-06 Samsung Electronics Co., Ltd. Defrosting method for a microwave oven using an infrared sensor

Similar Documents

Publication Publication Date Title
JPS6364870B2 (en)
JPH0211229B2 (en)
JPS58110929A (en) Microwave heating apparatus
JPH07269868A (en) Heating and cooking device
JPH0395312A (en) High frequency heating device
JP3434646B2 (en) microwave
JP2001340215A (en) Electric cooking range
JPS5927133A (en) High-frequency heater
JPS58138928A (en) Oven range
JPS5927494A (en) Electronic range
JP2890661B2 (en) High frequency heating equipment
JPH0454136B2 (en)
JPH0425447B2 (en)
JPH0539929A (en) High frequency heater
JP2966295B2 (en) Cooking device
JPS62296391A (en) Radio frequency heater
JPH0493520A (en) Microwave oven
JPS5875630A (en) Microwave oven with heater
JPS6380125A (en) High frequency heater
JP2001292754A (en) Method and apparatus for thawing food
JPH02616B2 (en)
JPH0645061A (en) High frequency heating device
JPH02140514A (en) High frequency heater device
JPH0443593A (en) High frequency heating device
JPH0139640B2 (en)