JPS5811010B2 - Electromagnetic flowmeter using fluid noise - Google Patents

Electromagnetic flowmeter using fluid noise

Info

Publication number
JPS5811010B2
JPS5811010B2 JP4899378A JP4899378A JPS5811010B2 JP S5811010 B2 JPS5811010 B2 JP S5811010B2 JP 4899378 A JP4899378 A JP 4899378A JP 4899378 A JP4899378 A JP 4899378A JP S5811010 B2 JPS5811010 B2 JP S5811010B2
Authority
JP
Japan
Prior art keywords
fluid
signal
electromagnetic flowmeter
electrodes
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4899378A
Other languages
Japanese (ja)
Other versions
JPS54139756A (en
Inventor
栗田良夫
柴田至剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Works Ltd
Priority to JP4899378A priority Critical patent/JPS5811010B2/en
Publication of JPS54139756A publication Critical patent/JPS54139756A/en
Publication of JPS5811010B2 publication Critical patent/JPS5811010B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、流体ノイズを利用した電磁流量計に関し、特
に、流体ノイズによって誘起された起電力の検出に、空
間フィルタの概念をとり入れた電磁流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic flowmeter that uses fluid noise, and more particularly to an electromagnetic flowmeter that incorporates the concept of a spatial filter for detecting electromotive force induced by fluid noise.

流体ノイズを利用した電磁流量計に、第1図に示される
相関式電磁流量計がある。
An example of an electromagnetic flowmeter that utilizes fluid noise is a correlation type electromagnetic flowmeter shown in FIG.

第1図によれば、管路1の管軸方向zに直角をなすy方
向に、磁石21,22による磁場を与えて、zと1両方
向に直角をなすx方向で対向する一対の電極31゜31
’(31’は図示せず)と32.32’(32’は図示
せず)をz方向に距離dをなして配置し、これら一対の
電極間から得られる流体ノイズによる信号のうち、交流
成分のみを増幅器51,52で増幅し、その増幅信号を
相関計6に与え、相互相関Φxyを計算し、そのピーク
を与える遅延時間(流量)を得るようになっている。
According to FIG. 1, a magnetic field by magnets 21 and 22 is applied in the y direction that is perpendicular to the tube axis direction z of the pipe line 1, and a pair of electrodes 31 that face each other in the x direction that is perpendicular to the z and 1 directions are applied.゜31
'(31' is not shown) and 32.32'(32' is not shown) are arranged at a distance d in the z direction, and among the signals due to fluid noise obtained between these pair of electrodes, AC Only the components are amplified by amplifiers 51 and 52, and the amplified signals are given to a correlator 6 to calculate the cross-correlation Φxy and obtain the delay time (flow rate) that gives its peak.

上記従来装置は、現在工業用に多用されている電磁流量
計のオンラインにおける校正手段として実用されている
が、相関計を用い、演算された出力のピークを読みとる
手段を具えることから、構成は複雑となり、かつ相関演
算時間の有限性による統計的誤差が存在するなど、幾つ
かの問題を有している。
The above-mentioned conventional device is in practical use as an online calibration means for electromagnetic flowmeters, which are currently widely used in industrial applications. It is complicated and has several problems, such as the presence of statistical errors due to the finite correlation calculation time.

本発明は、上述の背景を勘案してなされたものであり、
その目的は、簡単な構成で精度の高い流量信号を得る電
磁流量計を提供するにある。
The present invention has been made in consideration of the above background,
The purpose is to provide an electromagnetic flowmeter that obtains a highly accurate flow rate signal with a simple configuration.

以下図面を参照して詳細に説明する。A detailed explanation will be given below with reference to the drawings.

第3図は、本発明の一実施例による電磁流量計の構成説
明図である。
FIG. 3 is an explanatory diagram of the configuration of an electromagnetic flowmeter according to an embodiment of the present invention.

第3図において、管路1に具えて対をなす電極の対向方
向は、第1図におけると同様x方向をなしてなり、かつ
その対をなす電極はz方向に等間隔dをなして複数個配
設されている。
In FIG. 3, the opposite direction of the pair of electrodes provided in the conduit 1 is in the x direction as in FIG. Individually arranged.

図にあっては、電極31,31’(これで対をなしてい
る。
In the figure, electrodes 31 and 31' (these form a pair) are shown.

以下同じ)、32,32’〜3636′(ダッシュ符号
材の電極は図示せず)の配列が示されている。
The same applies hereinafter), 32, 32' to 3636' (the electrodes of the dash code material are not shown).

電極間で得る起電力は、以下の構成をなす信号演算・処
理手段で演算処理されて流量信号を得るようになってい
る。
The electromotive force obtained between the electrodes is processed by a signal calculation/processing means having the following configuration to obtain a flow rate signal.

7は信号加算器で、電極31,31’、32,32’〜
36,36’からの起電力の交流成分のみを加算する。
7 is a signal adder, which connects electrodes 31, 31', 32, 32' to
Only the alternating current components of the electromotive force from 36 and 36' are added.

8はトラッキング・バンドパスフィルタ、9は波形整形
回路、10は周波数電圧変換回路である。
8 is a tracking bandpass filter, 9 is a waveform shaping circuit, and 10 is a frequency-voltage conversion circuit.

トラッキング・バンドパスフィルタ8の中心周波数fo
1は、外部制御信号(アナログ信号)で制御されるよう
になっており、その制御信号として、信号加算器7の出
力信号fo’を波形整形して得る流量信号fo(周波数
信号で本装置の出力信号)を周波数電圧変換回路10で
変換されたものが与えられる。
Center frequency fo of tracking bandpass filter 8
1 is controlled by an external control signal (analog signal), and as the control signal, the flow rate signal fo (frequency signal of this device) obtained by waveform shaping the output signal fo' of the signal adder 7 is used. (output signal) converted by the frequency-voltage conversion circuit 10 is given.

上記構成における動作について以下説明する。The operation in the above configuration will be explained below.

いま、導電性の被測定流体が管路1を流れることによっ
て対をなす電極間には、被測定流体の流速vと磁束密度
Bに比例する起電力が得られるが、この起電力には被測
定流体に含まれる流体ノイズ(小過や微小ゆらぎ等、こ
れらも流速vで流れている)による影響も含まれている
Now, as the conductive fluid to be measured flows through the conduit 1, an electromotive force proportional to the flow velocity v and the magnetic flux density B of the fluid to be measured is obtained between the pair of electrodes. It also includes the influence of fluid noise (such as small overflow and minute fluctuations, which also flow at a flow velocity v) contained in the measured fluid.

流体ノイズは高域制限された一種の白色雑音である。Fluid noise is a type of high-frequency limited white noise.

(第5図参照、第5図流体ノイズの周波数スペクトル図
)。
(See Fig. 5, Fig. 5 is a frequency spectrum diagram of fluid noise).

したがって、対象となる起電力は、流体ノイズに起因す
る交流成分のみとなる。
Therefore, the target electromotive force is only the alternating current component caused by fluid noise.

しかるに、対をなす電極31,31’〜36,36’は
2方向に等間隔dをもって配設されているので、起電力
の交流成分の加算は、空間フィルタを介して得る信号で
あるといえる。
However, since the pair of electrodes 31, 31' to 36, 36' are arranged at equal intervals d in two directions, the addition of the alternating current components of the electromotive force can be said to be a signal obtained through a spatial filter. .

すなわち、信号fo´はN/dv(N:0゜1.2・・
・・・・)に対応する周波数成分のみ選択された信号を
得ることができる。
That is, the signal fo' is N/dv (N: 0°1.2...
It is possible to obtain a signal in which only the frequency components corresponding to (...) are selected.

しかも、各電極間から得る信号周波数は、高域部が減衰
しているので、加算器7から信号を得るようにすること
ができる。
Moreover, since the signal frequency obtained from between each electrode is attenuated in the high frequency region, the signal can be obtained from the adder 7.

したがって、周波数fo1を計測して流速v(流量)を
知ることができる。
Therefore, the flow velocity v (flow rate) can be known by measuring the frequency fo1.

第3図の実施例においては、信号加算器7の出力fo′
を、中心周波数fo1のトラッキング・バンドパスフィ
ルタ8で非信号成分を除去し、波形整形回路9を介して
信号fo(周波数fo1)として出力される。
In the embodiment of FIG. 3, the output fo' of the signal adder 7 is
A tracking bandpass filter 8 with a center frequency fo1 removes non-signal components, and the signal is output as a signal fo (frequency fo1) via a waveform shaping circuit 9.

トラッキング・バンドパスフィルタ8は、中心周波数f
o1を、信号foに対応する信号eoに追随させている
ので、流速が変動してもバンドパスフィルタの機能を常
に保持することができる。
The tracking bandpass filter 8 has a center frequency f
Since o1 is made to follow the signal eo corresponding to the signal fo, the function of the bandpass filter can always be maintained even if the flow velocity changes.

上記実施例において、各電極間の起電力の信号処理は、
交流成分のみを加算する信号加算器7を具えてなしたが
、本考案はこれに限定するものではない。
In the above embodiment, the signal processing of the electromotive force between each electrode is as follows:
Although the signal adder 7 that adds only AC components is included, the present invention is not limited to this.

信号加算器7に代えて信号加減算器を具えてもよい。The signal adder 7 may be replaced with a signal adder/subtracter.

信号加減算器は、複数の+入力端子および一入力端子を
具えてなり、+入力端子に与えられる信号および一入力
端子に与えられる信号を個々に加算すると共に、両加算
信号の減算をなし、その減算信号を送出する機能を具え
ておればよい。
The signal adder/subtractor is equipped with a plurality of + input terminals and one input terminal, and individually adds the signal applied to the + input terminal and the signal applied to the one input terminal, and also subtracts the two added signals. It is only necessary to have a function of sending out a subtraction signal.

そして、各電極との接続は、奇数番を付してなる電極か
ら得る起電力が+入力端子に、偶数番を付してなる電極
から得る起電力が一入力端子に与えられるようになせば
よい(その逆であってもよい)。
Then, the connection with each electrode is such that the electromotive force obtained from the odd numbered electrodes is given to the + input terminal, and the electromotive force obtained from the even numbered electrodes is given to the one input terminal. Good (or vice versa).

そうすることによって、信号加減算器に対応する周波数
成分のみ選択されたものとなっている。
By doing so, only the frequency components corresponding to the signal adders/subtracters are selected.

しかも、各電極間から得る信号周波数は、高域部が減衰
しているので、N=0の信号foo=v/2dが最も強
調された形で信号加減算器から得るようにできる。
Moreover, since the signal frequency obtained from between each electrode is attenuated in the high frequency region, the signal foo=v/2d of N=0 can be obtained from the signal adder/subtractor in the most emphasized form.

したがって、トラッキング・バンドパスフィルタ8の中
心周波数がfoo=v/2dとなるように、信号foに
対応する信号で追随させてやれば、上記実施例における
と同様に、流速v(流量)に比例する周波数信号を得る
ことができる。
Therefore, if the center frequency of the tracking bandpass filter 8 is foo = v/2d, if the signal corresponding to the signal fo is used to track the signal fo, it will be proportional to the flow velocity v (flow rate) as in the above embodiment. It is possible to obtain a frequency signal that

なお、上記実施例において、磁場は直流磁場として図示
説明したが、本発明はこれに限定する必要はない。
In the above embodiments, the magnetic field is illustrated as a DC magnetic field, but the present invention does not need to be limited to this.

以上、詳しく説明したように、本発明による電磁流量計
は、被測定流体に含まれる流体ノイズによって誘起され
た起電力を、空間フィルタを構成する電極を介して検出
して、交流成分の特定周波数成分を選択して流量信号と
なすようにしているため、以下の特徴を挙げることがで
きる。
As described in detail above, the electromagnetic flowmeter according to the present invention detects the electromotive force induced by fluid noise contained in the fluid to be measured through the electrodes that constitute the spatial filter, and Since the components are selected to form the flow rate signal, the following features can be mentioned.

(■) 流量信号は周波数信号として得られるので、
その読み取り、表示手段に簡単な構成で、かつ精度の高
いものを得ることが容易である。
(■) Since the flow rate signal is obtained as a frequency signal,
It is easy to obtain a reading and display means with a simple structure and high accuracy.

(■) 直流磁場を用いた場合であっても、電極近傍に
おける電気化学的ノイズの影響を無視し得る(電気化学
的ノイズの時定数が大きい。
(■) Even when using a DC magnetic field, the influence of electrochemical noise near the electrode can be ignored (the time constant of electrochemical noise is large).

)(■) 流量信号の零点は本質的に安定である。) (■) The zero point of the flow signal is essentially stable.

(■) 流量信号には、磁場の強度変化などの影響が現
われない。
(■) The influence of changes in magnetic field strength does not appear on the flow rate signal.

(■) 電極の設置間隔dを正確に知っておけば、実流
量を管路に流すことなく電気的回路の構成のみで、電磁
流量計の校正ができる。
(■) If the electrode installation spacing d is known accurately, an electromagnetic flowmeter can be calibrated simply by configuring the electrical circuit without passing the actual flow rate through the pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の相関式電磁流量計の構成説明図、第2
図は、相関関数の説明図、第3図は、本発明の一実施例
による電磁流量計の構成説明図、第4図は、流体ノイズ
の周波数スペクトル図である。 1・・・管路、21,22・・・磁石、31〜36・・
・電極、7・・・信号加算器、8・・・トラッキング、
バンドパスフィルタ、9・・・波形整形回路、10・・
・周波数電圧変換器。
Figure 1 is an explanatory diagram of the configuration of a conventional correlation type electromagnetic flowmeter;
FIG. 3 is an explanatory diagram of a correlation function, FIG. 3 is an explanatory diagram of the configuration of an electromagnetic flowmeter according to an embodiment of the present invention, and FIG. 4 is a frequency spectrum diagram of fluid noise. 1... Pipe line, 21, 22... Magnet, 31-36...
・Electrode, 7... Signal adder, 8... Tracking,
Bandpass filter, 9... Waveform shaping circuit, 10...
・Frequency voltage converter.

Claims (1)

【特許請求の範囲】 1 被測定流体が流れる管路の管軸方向2に直角をなす
y方向に磁場を与えて、zと1両方向に直角をなすx方
向に配置した一対の電極間の起電力から被測定流体の流
量を知る電磁流量計において、z方向に等間隔dをなし
て複数個配設した前記電極と、該各電極の起電力のうち
交流成分のみを加算する回路とを備え、この加算する回
路からの波数成分の信号から被測定流体の流量を知るこ
とを特徴とする流体ノイズを利用した電磁流量計。 2 被測定流体が流れる管軸方向zに直角をなすy方向
に磁場を与えて、zと1両方向に直角をなすx方向に配
置した一対の電極間の起電力から被測定流体の流量を知
る電磁流量計において、2方向に等間隔dをなして複数
個配設した前記電極と前記電極の設置順位にそって(上
流側から)付した連番符号(1,2,3・・・・・・)
に基づいて、奇数番の電極から得る起電力群を一括加算
し、偶数番の電極から得る起電力群を一括加算すると共
に、両加算信号の減算をなす信号加減算器を備え、こ0
.1,2・・・)の周波数成分の信号から被測定流体の
流量を知ることを特徴とする流体ノイズを利用した電磁
流量計。
[Scope of Claims] 1 A magnetic field is applied in the y direction perpendicular to the pipe axis direction 2 of the pipe through which the fluid to be measured flows, and the magnetic field is generated between a pair of electrodes arranged in the x direction perpendicular to both the z and 1 directions. An electromagnetic flowmeter that determines the flow rate of a fluid to be measured from electric power, comprising a plurality of the electrodes arranged at equal intervals d in the z direction, and a circuit that adds only the alternating current component of the electromotive force of each electrode. An electromagnetic flowmeter using fluid noise, characterized in that the flow rate of the fluid to be measured is determined from the wave number component signal from the adding circuit. 2 Apply a magnetic field in the y direction, which is perpendicular to the axial direction z of the tube through which the fluid to be measured flows, and determine the flow rate of the fluid to be measured from the electromotive force between a pair of electrodes arranged in the x direction, which is perpendicular to both z and 1. In an electromagnetic flowmeter, a plurality of electrodes are arranged at equal intervals d in two directions, and serial numbers (1, 2, 3...・・)
Based on this, a signal adder/subtractor is provided which collectively adds the electromotive force groups obtained from the odd numbered electrodes, collectively adds the electromotive force groups obtained from the even numbered electrodes, and subtracts both added signals.
.. An electromagnetic flowmeter using fluid noise, characterized in that the flow rate of a fluid to be measured is determined from signals of frequency components (1, 2, . . . ).
JP4899378A 1978-04-21 1978-04-21 Electromagnetic flowmeter using fluid noise Expired JPS5811010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4899378A JPS5811010B2 (en) 1978-04-21 1978-04-21 Electromagnetic flowmeter using fluid noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4899378A JPS5811010B2 (en) 1978-04-21 1978-04-21 Electromagnetic flowmeter using fluid noise

Publications (2)

Publication Number Publication Date
JPS54139756A JPS54139756A (en) 1979-10-30
JPS5811010B2 true JPS5811010B2 (en) 1983-03-01

Family

ID=12818730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4899378A Expired JPS5811010B2 (en) 1978-04-21 1978-04-21 Electromagnetic flowmeter using fluid noise

Country Status (1)

Country Link
JP (1) JPS5811010B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192620A (en) * 1986-02-20 1987-08-24 Tokico Ltd Electromagnetic correlation flow meter
GB2236394B (en) * 1989-09-26 1994-08-24 Foxboro Co Improvements in and relating to electromagnetic flowmeters
DE102006014679A1 (en) * 2006-03-28 2007-10-04 Endress + Hauser Flowtec Ag Magnetic-inductive flow meter for volumetric medium flow measurement, has two sets of measuring electrodes positioned and moved with respect to each other in direction of measuring pipe axis, and circuit summing induced measuring voltages
DE102013103211A1 (en) * 2013-03-28 2014-10-02 Endress + Hauser Flowtec Ag Magnetic-inductive flowmeter
DE102013114427A1 (en) 2013-12-19 2015-06-25 Endress + Hauser Flowtec Ag Arrangement and method for determining a flow-related measured variable

Also Published As

Publication number Publication date
JPS54139756A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
JP3263296B2 (en) Electromagnetic flow meter
US5417118A (en) Magnetic flowmeter determining flow rate from phase angle difference
JP3031096B2 (en) Capacitive electromagnetic flowmeter
JPH0712607A (en) Electromagnetic flowmeter
JPS61500276A (en) Charge detection type flowmeter
KR100637979B1 (en) Impedance measuring circuit and capacitance measuring circuit
JPS5811010B2 (en) Electromagnetic flowmeter using fluid noise
JPH10170317A (en) Electromagnetic flowmeter
RU2591260C1 (en) Electromagnetic flowmeter of liquid metals
JP2856521B2 (en) Electromagnetic flow meter
CN204421980U (en) Numerical model analysis filtering low flow velocity electromagnetic flowmeter
SU1010468A1 (en) Electromagnetic flowmeter having capacitive signal output
CN217032618U (en) Floating differential amplification system for sensor signals
RU2159939C1 (en) Filter for voltage of reverse sequence
SU611115A1 (en) Apparatus for measuring high-electroconductivity medium flow
JP3969576B2 (en) Electromagnetic flow meter
KR102098828B1 (en) Fluidic oscillation flowmeter
SU898328A1 (en) Electromagnetic meter of liquid flow hydrodynamic characteristics
CN104596598A (en) Digital-analog hybrid filtering low-flow-velocity electromagnetic flowmeter
SU901825A1 (en) Device for touch-free measuring of flowrateof electroconductive liquid
JPH0713681A (en) Interpolation method for coordinate detector
JP3658975B2 (en) Electromagnetic flow meter
SU1030813A1 (en) Electric signal multiplier
SU1308959A1 (en) Device for checking variable field magnetic induction meters