JPS58110009A - Manufacture of metallic magnetic powder comprising iron as main component - Google Patents

Manufacture of metallic magnetic powder comprising iron as main component

Info

Publication number
JPS58110009A
JPS58110009A JP56208770A JP20877081A JPS58110009A JP S58110009 A JPS58110009 A JP S58110009A JP 56208770 A JP56208770 A JP 56208770A JP 20877081 A JP20877081 A JP 20877081A JP S58110009 A JPS58110009 A JP S58110009A
Authority
JP
Japan
Prior art keywords
reduction
magnetic powder
iron
feooh
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56208770A
Other languages
Japanese (ja)
Inventor
Tatsukiyo Otsuki
大月 立清
Shinya Takada
慎也 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56208770A priority Critical patent/JPS58110009A/en
Publication of JPS58110009A publication Critical patent/JPS58110009A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Abstract

PURPOSE:To remarkably reduce the cost of manufacture by a method wherein neutralizing oxidation is performed by adding a V compound into a ferrous salt solution to prepare alpha-FeOOH containing V. CONSTITUTION:Neutralizing oxidation is performed by adding a V compound into a ferrous salt solution, and alpha-FeOOH containing V is prepared. After performing treatment additionally adhering an oxide or a hydrate of one or more kinds of Ni, Co, Zn, Mn, Cr, Ca and Si, and a V compound, if necessary, to the alpha-FeOOH, dehydrating reduction is done under H2 gas current. In this way, metallic powder having physical and chemical stability and high magnetic characteristics and comprising iron as a main component is obtained. This manufacturing method can prepare alpha-FeOOH having good acicular and uniform particle size from a relatively impure ferrous salt solution. Furthermore, since reduction can be executed with a very small amount of H2, the cost of manufacture can be remarkably reduced.

Description

【発明の詳細な説明】 本発明は高密度記録に逸する妖を主成分とする金属磁性
粉末を経済的に製造できる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for economically producing a metal magnetic powder whose main component is a metal magnetic powder that is not suitable for high-density recording.

現在磁気記録用磁性粉末としては、一般に針状の磁性酸
化鉄粉末及びコバルト変性の磁性酸化鉄粉末が広く使用
され1いるが、近年史に磁気記録の高密度化が要望され
るよ□うになり、針状の鉄を主成分とする金属磁性粉末
かにわかに注目されるようになった。鉄を主成分とする
金属磁性粉末は保磁力(Hl)、磁束密度(σ)等の磁
気特性値が高く、為密度記録用磁性粉末として好適でめ
るが、現状の製造法によれば製造コストが極めて高く使
途拡大の上に大きな障害となっている。
Currently, needle-shaped magnetic iron oxide powder and cobalt-modified magnetic iron oxide powder are widely used as magnetic powder for magnetic recording1, but in recent years there has been a demand for higher density magnetic recording. , metal magnetic powders whose main component is acicular iron suddenly began to attract attention. Metal magnetic powder whose main component is iron has high magnetic properties such as coercive force (Hl) and magnetic flux density (σ), making it suitable as a magnetic powder for density recording, but it is difficult to manufacture using current manufacturing methods. The cost is extremely high and is a major obstacle to expanding its use.

すなわち従来法は出発原料であるα−yeoonが十分
に精製された第1鉄塩溶液から調製されたものであるこ
とが必要であシ、またNi、 Oo、 Kn。
That is, in the conventional method, the starting material α-yeon must be prepared from a sufficiently purified ferrous salt solution, and Ni, Oo, Kn.

Mn、 ar、ムt、 Oa、 MO、W、 Ei、ム
g、 8b、 Ti、 an。
Mn, ar, Mut, Oa, MO, W, Ei, Mug, 8b, Ti, an.

Ou、 At、 Siなどその他多数の成分化合物のう
ち、1穐又r!2種以上をα−?5OO)lに付着さ騒
、脱水焼きしめ等の前処理を行った後多量のH2を供給
してメタルまで還元するものである。
Among many other component compounds such as Ou, At, and Si, 1. α-? 5OO)l is subjected to pre-treatments such as adhesion, dehydration and hardening, and then a large amount of H2 is supplied to reduce it to metal.

本発明は従来法に比較し、はるかに不純な第1鉄塩溶液
から鉄を主成分とする金属磁性粉末に好適なα−1pe
oonを調製し、更に従来法に比較し大幅に少量のH2
によって還元を完結することのできる方法を提供するも
ので、製造コストを大幅に低減させることのできるもの
である。すなわち、本発明はα−7600Hの調製に当
たって第1鉄塩溶液中にバナジウム化合物を添加して中
和酸化を行い、V含°有のa −Fe0OHt−vI4
@ L、該a −?eOOHにNi、 Co、 Zn、
 Mn、 Or、 Ca、 81 の1種又は2種以上
の酸化物又は水和物及び必要に応じVの化合で脱水還元
することを特徴とするもので、更に本発明の効用を高め
るためにα−FeOOHにNi、 Co。
Compared to conventional methods, the present invention is capable of producing α-1pe suitable for producing metal magnetic powder mainly composed of iron from a much more impure ferrous salt solution.
oon was prepared, and a significantly smaller amount of H2 was added compared to the conventional method.
The present invention provides a method in which the reduction can be completed by the following steps, and the manufacturing cost can be significantly reduced. That is, in the present invention, when preparing α-7600H, a vanadium compound is added to a ferrous salt solution to perform neutralization oxidation, and V-containing a-Fe0OHt-vI4
@ L, the a -? eOOH contains Ni, Co, Zn,
It is characterized by dehydration and reduction with a compound of one or more oxides or hydrates of Mn, Or, Ca, 81 and, if necessary, V. In order to further enhance the effectiveness of the present invention, α -FeOOH with Ni and Co.

zn、 Mn、 Or、 Oa、 Siの1棟又は2徳
の酸化物又は水和物及び必要に応じてバナジウム化合物
を付着させるに当たυ、Pl(vI4整剤にアンモニア
を使用し、また該α−?eOOHの脱水還元に当たって
は温度を300〜550℃とし、脱水及びマグネタイト
までの還元時に供給されるH2菫をPa 1Kgに対し
毎時60 Ht以下とし、以後メタルまでの還元時に供
給される一量をPe1Kfに対し毎時900M1以上と
する奄のである。
When attaching one or two oxides or hydrates of Zn, Mn, Or, Oa, and Si and, if necessary, a vanadium compound, υ, Pl (vI4, ammonia is used as a precipitant, and In the dehydration and reduction of α-?eOOH, the temperature is set at 300 to 550°C, and the H2 violet supplied during dehydration and reduction to magnetite is kept below 60 Ht per hour per 1 kg of Pa. The amount is set at 900M1 or more per hour per Pe1Kf.

一般に鉄を主成分とする金属磁性粉末が高い保磁力と磁
気密度を有し、高密度記録用磁性粉末として使用される
には形状が針状であシ、適度の粒度で均一であ夛、焼結
等による粒子の凝集が生じていないことが必要であるが
、このような鉄を主成分とする金属磁性粉末を従来法に
よって製造するには十分に精製され九第1鉄塩溶液がら
lI4裏されたα−FeOO)Iを使用することが必要
であり、ま九該α−IPeOOHK%種成分によシ表面
処理を行い還元生成物の安定性を向上きせる方法を行っ
てもなお大量のH2を必要とするのである。従来法が純
度の高い第1鉄塩溶液を必要とする理由は純度の商い第
1妖塩溶液からはα−FeOOHの粒子が均一に成長し
やすく、又針状性に優れた結晶を得やすいからでめ夛、
ま九還元時に多量のE2を必要とする理由は次の反応式
において Pa30. + H2: Fe + H20少量のH2
供給量であると還元生成物の一つであるHgo(J/)
分圧の大小が反応器内に生じやすく、そのために微視的
には右向反応が進行している部分、また反応が平衡状態
にある部分、更には左向逆反応が生じている部分などが
生じ粒子の崩壊の原因になるものと考えられる。すなわ
ち大量にH2を供給することはできるだけ円滑な右向反
応を適度の速度で進行させ針状粒子の崩壊をできるだけ
防止しようとする手段の一つなのである。
In general, metal magnetic powder whose main component is iron has high coercive force and magnetic density, and in order to be used as magnetic powder for high-density recording, it must have an acicular shape, an appropriate particle size, and uniformity. Although it is necessary that no agglomeration of particles occurs due to sintering, etc., in order to produce such metal magnetic powder mainly composed of iron by the conventional method, a sufficiently purified ferrous salt solution must be used. It is necessary to use backed α-FeOO)I, and even if surface treatment is performed on the α-IPeOOHK% seed component to improve the stability of the reduction product, a large amount of It requires H2. The reason why the conventional method requires a highly pure ferrous salt solution is because of its purity.From the ferrous salt solution, it is easy to grow α-FeOOH particles uniformly, and it is also easy to obtain crystals with excellent needle shape. Karademe group,
The reason why a large amount of E2 is required during reduction is that Pa30. + H2: Fe + H20 small amount of H2
The supply amount is Hgo (J/), which is one of the reduction products.
Large and small partial pressures tend to occur in the reactor, so microscopically there are areas where the rightward reaction is progressing, areas where the reaction is in equilibrium, and even areas where the leftward reverse reaction is occurring. It is thought that this occurs and causes the particles to collapse. In other words, supplying a large amount of H2 is one means of making the rightward reaction proceed as smoothly as possible at an appropriate speed and preventing the collapse of the acicular particles as much as possible.

一方還元時に供給されるH2量は鉄を主成分とする金属
磁性粉末の製造コストの面に大きな影響があることはい
うまでもない。
On the other hand, it goes without saying that the amount of H2 supplied during reduction has a great influence on the manufacturing cost of metal magnetic powder whose main component is iron.

従来法において前述のように多数の成分化合物のうち1
種又は2種以上をα−FeOOH、a−Fe20.。
In the conventional method, one of the many component compounds as described above
The species or two or more species are α-FeOOH, a-Fe20. .

γ−’Ife@0Bに添加して還元することが提案され
ているが、これは還元時に粒子の崩壊、焼結などによる
凝集を防止し、金属磁性粉末の物理的、化学的安定性を
増大させる上に効果があるだけでなく還元時に供給する
H2量の低減化にも大きな幼未を有するものである。す
なわち適切な成分がα−7600H,、CI −Fe2
O3,又はr −Fe2O,に添加されれば高い磁気特
性を有する金属磁性粉末を比較的少なhm、供給量で製
造することがで斬るわけでめる0 本発明はα−FeOOHのl1I4製原料である第1鉄
塩溶液にバナジウム成分を添加し、比較的不純な第1鉄
塩溶液から針状性の良好で粒子の均一なα−r・oon
 1 p!製できるようにし、また還元時には111、
00. Zn、 Mn、 Or、 ca、 Eliのう
ちから選ばれた1種又は2種以上の成分の外にVを共存
させることによって、物理的、化学的に安定で高い磁気
本発明を史に拝細に説明すると次のとお9である。従来
使用されているα−7elonは鉄類の酸溶解液からI
F e 804・7H20等の結晶を晶出させ、これを
水に再溶解させるか、あるいは電解鉄粉のような高純度
の鉄類を硫酸、塩酸等に溶解して、得られる純度の高い
第1鉄塩溶液を中和酸化して作ら。
It has been proposed to add it to γ-'Ife@0B for reduction, but this prevents particle collapse and agglomeration due to sintering during reduction, increasing the physical and chemical stability of the metal magnetic powder. It is not only effective in reducing the amount of H2 supplied during reduction, but also has great potential in reducing the amount of H2 supplied during reduction. That is, the appropriate component is α-7600H, CI-Fe2
O3 or r-Fe2O, it is possible to produce metal magnetic powder with high magnetic properties in a relatively small amount of hm and supply amount. By adding a vanadium component to a ferrous salt solution that is
1 p! 111 at the time of reduction,
00. By coexisting V in addition to one or more components selected from Zn, Mn, Or, ca, and Eli, the present invention can be made physically and chemically stable and highly magnetic. The following is 9. Conventionally used α-7elon is extracted from an acid solution of iron.
Crystals of F e 804, 7H20, etc. are crystallized and redissolved in water, or high purity iron such as electrolytic iron powder is dissolved in sulfuric acid, hydrochloric acid, etc. 1.Made by neutralizing and oxidizing iron salt solution.

れている0鉄類の酸洗廃液又は一般鉄知の酸溶解液など
の第1鉄塩溶液をそのままα−FeOOHの製造原料と
するときは第1鉄塩溶液中にかなシのMnを含み、その
他(u、 Zn、 Sin、等を若干量含んでいるため
に前述のようにα−FeOOHの適度の粒度成長が妨害
され粒子が不ぞろいで微細化する傾向が生ずる。
When using a ferrous salt solution such as a pickling waste solution of 0 irons or a general acid solution as a raw material for producing α-FeOOH, the ferrous salt solution contains a large amount of Mn. , and others (u, Zn, Sin, etc.), as described above, the appropriate grain size growth of α-FeOOH is hindered, and the grains tend to become irregular and fine.

本発明者駿は前記のように比較的不純な第1鉄塩S液か
ら針状性が良好で均一な粒度を有するα−1θOOHt
−調製するために金属鉄と親和性のある多数の金属成分
についてα−7elonの結晶成長作用があるかどうか
を実験検討した結果、■が少量の添加によシ強力なα−
FeOOHの結晶成長作用を有することを発見した。第
1鉄塩中に添加されるVはバナジン酸塩又はバナジル塩
など水可溶性塩であれに1すべて有効であり、また第1
鉄塩中に添加されるVの量はWeに対し、原子重量比で
0.05〜1.096の範囲が適当で、0.05−以下
で紘はとんど効果が期待できず、1チ以上となると粒度
が過大となシ適当でない。第1図は比較例・1で述べる
ように鉄板の塩酸酸洗廃液を原料として過剰のNaOH
で中和し、生成するFe(OH)2をFeとして約1.
5〜2 b/m3・Hの速度で空気酸化して得られ九α
−PeOOHの電子顕微鏡写真であり、第2図は実施例
・1で述べるようにWeに対しVを0.296原子重量
比を塩酸酸洗廃液に添加し、l@1埒 図の場合と同様の操作で中和酸化して!られたα−1・
0OIiの電子顕微鏡写真である。図からVの結晶成長
作用が明らかに認められる。
As mentioned above, the present inventor Shun has obtained α-1θOOHt having good acicularity and uniform particle size from relatively impure ferrous salt S liquid.
- As a result of experimenting to determine whether α-7elon has a crystal growth effect on a large number of metal components that have an affinity for metallic iron, we found that
It was discovered that it has a crystal growth effect of FeOOH. The V added to the ferrous salt is effective regardless of whether it is a water-soluble salt such as vanadate or vanadyl salt;
The appropriate amount of V added to the iron salt is in the range of 0.05 to 1.096 in terms of atomic weight ratio to We. If the particle size is more than 1, the particle size becomes too large and is not suitable. Figure 1 shows excess NaOH using the waste liquid from hydrochloric acid pickling of iron plates as raw material, as described in Comparative Example 1.
The Fe(OH)2 produced is approximately 1.
9α obtained by air oxidation at a rate of 5 to 2 b/m3・H
Figure 2 is an electron micrograph of -PeOOH. As described in Example 1, 0.296 atomic weight ratio of V to We was added to the hydrochloric acid pickling waste solution, and Figure 2 is the same as in the case of l@1 diagram. Neutralize and oxidize with the operation of! α-1・
It is an electron micrograph of 0OIi. From the figure, the crystal growth effect of V is clearly recognized.

本発明者等はα−FeOOHの結晶成長剤として添加さ
れたVがHlKよる加熱還元時にどのような影響が現れ
るかを種々実験検討した結果、VはB2・による加熱還
元工程においてもVを含まないα−FeOOHを還元す
る場合に比軟し、はるかに少ないB2量で還元が実施で
きよυ嶋い磁気特性を有する金属磁性粉末が得られるこ
とを究明した。
The present inventors conducted various experiments to examine the effects of V added as a crystal growth agent for α-FeOOH during thermal reduction by HlK, and found that V is included even in the thermal reduction process by B2. It has been found that when reducing α-FeOOH, which is not present, the reduction can be carried out with a much smaller amount of B2, and a metal magnetic powder having excellent magnetic properties can be obtained.

今、までに提案さ扛た還元前の酸化鉄粒子に添加される
成分は極めて多種にわたっているが、Vの添加効果につ
いて言及されたものはいまだない・0このようなVの効
果についてはいまだ明らかにされていないが、恐ら(F
eと安定な合金を作シやすく、その上H2を活性化する
接触効果を有するためであると考えられる。■のこのよ
うな効果はNi。
Although a wide variety of components have been proposed to be added to iron oxide particles before reduction, there has been no mention of the effect of adding V.・0The effect of V is still unclear. Although it has not been set as
This is thought to be because it is easy to form a stable alloy with E and has a contact effect that activates H2. ■This kind of effect is caused by Ni.

Co、 Zn、 Mn、 Or、 Oa、 81等のう
ち1種又は2種以上をVと一緒に使用することによって
相乗的に高められる。すなわちVを含有するα−F@0
OIliにNi、 Co、 Zn、 Mn、 Or、 
Oa、 Si等のうち、1種又は2種以上の酸化物又は
水和物と必要に応じV化合物を付着させる処理を行った
後H1により加熱還元を行うようにする。これらの添加
成分量はFeに対し原子重量比で次のような範囲におい
て有効で、その範囲外てあれば不経済であったり、かえ
って磁気特性を低下させる結果となる。すなわちVo、
05〜82.0% 、 Co 1〜30%、N10.5
〜10 % 、 Or 0.05〜1.0%、 Mn 
Q、b〜5.0%。
It can be synergistically enhanced by using one or more of Co, Zn, Mn, Or, Oa, 81, etc. together with V. That is, α-F@0 containing V
OIli contains Ni, Co, Zn, Mn, Or,
After performing a process of adhering one or more oxides or hydrates of Oa, Si, etc. and, if necessary, a V compound, thermal reduction is performed in H1. The amount of these additive components in terms of atomic weight ratio to Fe is effective within the following range, and if it is outside this range, it may be uneconomical or may even result in a decrease in magnetic properties. That is, Vo,
05-82.0%, Co 1-30%, N10.5
~10%, Or 0.05~1.0%, Mn
Q, b~5.0%.

Kn O,5〜5.01 Ca 0.05〜1.0 %
 1810.2〜6tsである。本発明で使用されるこ
れらの成分は水可溶性であれは何でもよいが、添加後水
洗の必要のない硝酸塩又は有機献塩及びシリ′カゾルが
好ましい。
KnO, 5-5.01 Ca 0.05-1.0%
1810.2~6ts. These components used in the present invention may be any water-soluble components, but nitrates or organic salts and silica sol, which do not require washing with water after addition, are preferred.

本発明におけるα−1θOOHに他成分を付着させる条
件紘従来法とほぼ同様でよいが、次のように行えばなお
効果的である。すなわち、■含有のα−76001をよ
く水に分散させ、Ni、 Co、 Zn、 Mn。
The conditions for attaching other components to α-1θOOH in the present invention may be substantially the same as in the conventional method, but the following method is more effective. That is, α-76001 containing (1) is well dispersed in water, and Ni, Co, Zn, and Mn are added.

Or、 Oa、 81のうち1m又は2m以上の前述の
水可溶性塩又はゾルと必要に応じ水可溶性のV化合物を
加えかきまぜながら、アンモニアを徐々に加え、PH8
〜10にwI4整した後、脱水乾燥する。これらの可溶
性塩が硝酸塩、有機醒塩及びシリカゾルである場合は脱
水後の水洗が不要である。またニイーダーによシα−F
elonと添加成分及びアンモニアを混練し、そのtま
乾燥する方法によってもスラリーかきまぜ方式と同等、
又はそれ以上の効果が期待できる。以上の付着処理の温
度はスラリーかきまぜ方式の場合は、50〜80℃が効
果的で、ニイーデイング方式の場合は室温で十分に効果
的である。またα−’Fe0OIlに他成分を付着させ
る処理に当たって使用される一調整剤はアンモニアが最
も好ましく、これによれば付着処理後の水洗が不要であ
る上に付着効果が最も良好である。
Add 1 m or 2 m or more of the above-mentioned water-soluble salt or sol of Or, Oa, 81 and the water-soluble V compound as necessary, and while stirring, gradually add ammonia, and adjust the pH to 8.
After adjusting wI4 to ~10, dehydrate and dry. When these soluble salts are nitrates, organic salts, and silica sol, washing with water after dehydration is not necessary. Also, kneader α-F
The method of kneading elon, additive components, and ammonia and drying it is equivalent to the slurry stirring method.
Or even better effects can be expected. The temperature for the above-mentioned adhesion treatment is effectively 50 to 80° C. in the case of the slurry stirring method, and sufficiently effective at room temperature in the case of the kneading method. Ammonia is the most preferable regulator used in the process of adhering other components to α-'Fe0OIl, which eliminates the need for washing with water after the adhesion process and provides the best adhesion effect.

本発明の方法によってV及びNi、 Oo、 Zn、 
Mn。
By the method of the present invention, V and Ni, Oo, Zn,
Mn.

Or、 Oa、 81のうち1種又は2種以上の成分を
付着させたα−FeOO)Iを脱水還元するに当たって
は従来法と同様の条件で行っても十分に満足できる磁気
特性を有する金属磁性粉末を得ることができるが、従来
法のように空気流中で脱水焼きしめ等の処理をすること
なく、前述したとお9α−Felonの脱水開始時から
マグネタイト付近までの還元を300〜550℃におい
てB2の供給量をFe1KF当た91時間に60 )i
t以下とし、マグネタイト以降の還元を600〜550
℃においてFe1Kp尚た91時間に900 N2以上
のB2供給量として行うことを特徴とする。本発明のよ
うに脱水からマグネタイトまでの還元を少量のB2の供
給量で行いマグネタイト以降、メタルまでの還元を大量
のHI!供給量の下で行うようにすると、−1般法の還
元に比較し、He、σ、角型比等の磁気特性値を少ない
町の消費量で一層高めることができる0本発明において
脱水及びマグネタイト付近までの還元を少量のHsの供
給量で行う理由は脱水からマグネタイトまでの大きな粒
子構造の変化をゆるやかに進行させるためで、この構造
変化の進行をB2の供給量を少なくし、水蒸気の分圧を
高めることによって制御しようとするものである。すな
わち脱水からマグネタイトまでの還元を600〜550
℃とじH8の供給量をFeIKf尚たり1時間K 60
 ML以下とすることによって脱水からマグネタイト付
近までの還元に伴う大きな粒子の構造変化に対処しよう
とするもので、−膜流の還元前の焼きしめと同等以上の
効果を期待できるものであり、工程も簡略化できる利点
を有するものである。
When dehydrating and reducing α-FeOO)I to which one or more of Or, Oa, and 81 components are attached, it is a metal magnetic material that has sufficiently satisfactory magnetic properties even when carried out under the same conditions as the conventional method. Although a powder can be obtained, it is possible to reduce the 9α-Felon from the start of dehydration to near magnetite at 300 to 550°C without performing dehydration and annealing in an air stream as in the conventional method. The supply amount of B2 is 60 in 91 hours per Fe1KF)i
t or less, and the reduction after magnetite is 600 to 550
C. Fe1Kp and B2 supply amount of 900 N2 or more for 91 hours. As in the present invention, reduction from dehydration to magnetite is performed using a small amount of B2 supplied, and reduction from magnetite to metal is performed using a large amount of HI! If the reduction is carried out under the supplied amount, the magnetic property values such as He, σ, squareness ratio, etc. can be further increased with a small consumption amount compared to the general reduction method. The reason why the reduction to the vicinity of magnetite is performed with a small amount of Hs supplied is to allow the change in the large particle structure from dehydration to magnetite to proceed slowly. This is intended to be controlled by increasing the partial pressure. In other words, the reduction from dehydration to magnetite is 600 to 550
℃ and the supply amount of H8 is increased to FeIKf for 1 hour K 60
This is intended to deal with structural changes in large particles due to reduction from dehydration to near magnetite by reducing the temperature to ML or less, and it is expected to have an effect equal to or greater than that of baking before reduction of membrane flow, and the process This has the advantage that it can also be simplified.

本発明においてはマグネタイト以降の後段の還元にはB
2の供給量をPe1Kg当たり1時間に90ONt以上
とすることが心安であ不のに対し、−膜流では1500
 N1以上を必要とする。第6図は後の実施例、比較例
で説明するとおt7) V f:TIeに対し原子重量
比で0.2チ含有する本発明実施例のα−FeOOH、
!: V fl含まない比較例のa −lFe0OHに
ついて、それぞれ還元前にFeに対し原子重量比テNi
 49に、 Zn I To、 Oa 015%、81
1.51t−α−lFe0OHに添加し、脱水、マグネ
タイトマでの還元を350〜450℃で4供給童を5 
Q N4/]FeKp・Hで5時間処理し、後段の還元
を450℃でB2供給量をそれぞれ変動させて10時間
処理した場合のHaを縦軸にプロットしたものであるが
、本発明の実施例がはるかに少量のB2供給量で還元が
完了できることを示している。更に第4図は第3図と同
様の本発明実施例と比較例についてそれぞれ脱水及びマ
グネタイトまでの還元を650〜450℃でB2供給量
を50 HA71el14−11で5時間処理し、続い
て後段の還元を450℃でR3の供給量を1500 M
A/PeKf−Hとしり揚台o後段。
In the present invention, B is used for the subsequent reduction after magnetite.
It is safe to keep the supply amount of 2 to 90ONt or more per hour per 1Kg of Pe, whereas -1500ONt is supplied by membrane flow.
Requires N1 or higher. Figure 6 will be explained later in Examples and Comparative Examples.
! : For the comparative example a-lFe0OH that does not contain Vfl, the atomic weight ratio TeNi to Fe before reduction, respectively.
49, Zn I To, Oa 015%, 81
1.51t-α-lFe0OH was added, dehydrated, and reduced with magnetite toma at 350-450°C.
The graph plots Ha on the vertical axis when treated with QN4/]FeKp・H for 5 hours and the subsequent reduction at 450°C for 10 hours while varying the amount of B2 supplied. The example shows that the reduction can be completed with much smaller amounts of B2 feed. Further, FIG. 4 shows the same examples of the present invention and comparative examples as shown in FIG. 3, in which dehydration and reduction to magnetite were performed at 650 to 450°C with a B2 supply amount of 50 HA71el14-11 for 5 hours, followed by subsequent treatment in the latter stage. Reduction was carried out at 450°C and the amount of R3 supplied was 1500 M.
A/PeKf-H toshiriage platform o rear stage.

還元時間とHCとの関係を示したもので、本発明実施例
の方がはるかに還元されやすいことを示している。
This figure shows the relationship between reduction time and HC, and shows that the examples of the present invention are much easier to reduce.

次に本発明を実施例・比較例によって説明する〇実施例
 1 鉄板の塩酸酸洗廃液を水でFe” 2 Qνtになるよ
うに希釈し、この溶液にメタリン酸ナトリウムが500
 ppmに、j fl:、NaVO3をVとLテ20p
pm(IF・に対し0.2%)になるように添加した混
合溶液100tを130を容量の中和酸化情に取り、か
きまぜながらNaOH3Q Q l!/を溶液を加え、
過剰のMaOHが3011/lになるようにした。約6
0分間空気を断ってかきまぜを続けた後、液温を45℃
とし、1e+が1.5〜2.09/l−mの速度で酸化
されるように空気を供給した。15時間後に完全に10
 が酸化されたので脱水、洗浄して約7゜チ含水率の濾
過ケーキを得た。この湿淘ケーキ1011を25t=イ
ーダーに取シ、N1(No3)21Zn(NO3)1+
1 Ca(NOs)a+及び5102ゾルをそれぞれF
eに対し原子重量比で114%5Zni%、0&0.5
チ、sil、5チになるように溶液状で加え、約5分二
イーディングした後ニイーデイングしなからNH,31
0011/lのアンモニア水を徐々に加え、−を95と
した。約15分間二イーディングを続は九後、100℃
で乾燥させた0この乾燥物12009 (’Iceとし
て5801)を12 を容量CD回転式加熱還元炉に入
れ徐々に温度を上げ、650℃で2.0時間保持するよ
うにした。温度は回転式加熱炉の気相中心部を検出する
ようにし、200℃からはN2を291Ai (0,4
8t/Min ) ”t’供給を開始した。350℃で
2時間処理し九後その11のN2供給量で450℃に昇
温し、この温度で5時間保った。この状態で還元された
IFe 量は全Feに対し34.1 %であった。続い
て温度を450℃に保持し、N2の供給量を8701.
AX (15001/IPaKg−Hに相当)に増加さ
せ10時間処理した。
Next, the present invention will be explained with reference to Examples and Comparative Examples〇Example 1 The waste solution from hydrochloric acid pickling of iron plates was diluted with water to give Fe" 2 Qνt, and this solution contained 500% sodium metaphosphate.
ppm, j fl:, NaVO3 to V and Lte 20p
pm (0.2% relative to IF), add 100 t of mixed solution to 130 ml of neutralized oxidation solution, and add NaOH3Q Q l! while stirring. / Add the solution,
The excess MaOH was adjusted to 3011/l. about 6
After cutting off the air for 0 minutes and continuing stirring, the liquid temperature was reduced to 45℃.
and air was supplied so that 1e+ was oxidized at a rate of 1.5 to 2.09/l-m. Completely 10 after 15 hours
was oxidized, so it was dehydrated and washed to obtain a filter cake with a water content of about 7°. Take this wet cake 1011 to 25 tons = Eider, N1 (No 3) 21 Zn (NO 3) 1 +
1 Ca(NOs)a+ and 5102 sol respectively
114% 5Zni% in atomic weight ratio to e, 0 & 0.5
Add NH, 31 in solution form so that it becomes 1, 5, 5, and 5 minutes.
0011/l of aqueous ammonia was gradually added to make -95. After about 15 minutes of second easing, heat to 100°C.
The dried product 12009 ('Ice: 5801) was placed in a capacity CD rotary heating reduction furnace, and the temperature was gradually raised and maintained at 650° C. for 2.0 hours. The temperature is determined by detecting the gas phase center of the rotary heating furnace, and from 200℃, N2 is 291Ai (0,4
8t/Min) "t' supply was started. After treatment at 350°C for 2 hours, the temperature was raised to 450°C with the 11 N2 supply amount and kept at this temperature for 5 hours. In this state, the reduced IFe The amount was 34.1% based on the total Fe.Subsequently, the temperature was maintained at 450°C, and the amount of N2 supplied was 8701%.
AX (equivalent to 15001/IPaKg-H) and treated for 10 hours.

冷却後トルエンを回転加熱炉内に入れ還元生成物をトル
エンと共に取り出し、風乾した0このようにしてIIl
製し丸金属磁性粉末はpeB3L、他成分は1・に対し
Ni4.06%、Zn1.05%、MnO,1596,
0IL0.46%、811.5896でほぼ添加し九成
分量を含有していた。ただしMnは塩酸酸洗廃液中6不
純物として含有していたものである。またこの金属磁性
粉末の磁気特性は50000eO磁界において11c 
134 Q Oe、 as 142ksx/i。
After cooling, toluene was placed in a rotary heating furnace and the reduction product was taken out together with toluene and air-dried.
The manufactured round metal magnetic powder is peB3L, and other components are 4.06% Ni, 1.05% Zn, MnO, 1596,
0IL0.46%, 811.5896 was added and contained the amount of nine components. However, Mn was contained as 6 impurities in the hydrochloric acid pickling waste solution. In addition, the magnetic properties of this metal magnetic powder are 11c in a 50,000eO magnetic field.
134 Q Oe, as 142ksx/i.

角飄比0.548であった。The angle ratio was 0.548.

実施例 2〜17 α−1・0〇五に添加する成分又は成分量f:表iのよ
うに変えて、他の牽伸は実施例 1と同様に処理した場
合の磁気特性を表 1に示した。表中実施例 17は塩
酸酸洗廃液にv′を添加して胸裏したα−I!’eoO
Hで線なく、Pe5o、−7H,Oを水に溶解して第1
鉄塩溶液とし、■を添加することなく外は実施例 1と
同様の条件で′vI4!11!シたα−FeOO1(を
使用し、VはN1等の添加時にNH4VO3として添加
したもので、他は実施例 1と同様の条件とした0 比較例 1 ■を添加しないこと、及び還元が進行し難いため後段の
還元時のN2供給量を1160 tAi(200o t
7yeKtrH)とする以外は実施例 1と全く同様に
処理した。このようにして得九金属磁性粉末は50.0
006の磁界においてHc73QOe。
Examples 2 to 17 Component or amount of component f added to α-1.005: Changed as shown in Table i, and other drafting was performed in the same manner as in Example 1. The magnetic properties are shown in Table 1. Indicated. In Example 17 in the table, α-I was prepared by adding v' to the hydrochloric acid pickling waste solution! 'eoO
Dissolve Pe5o, -7H, O in water without line with H and make the first
'vI4!11!' under the same conditions as in Example 1 except as an iron salt solution and without adding ■. α-FeOO1 was used, V was added as NH4VO3 when adding N1, etc., and the other conditions were the same as in Example 1. Because of this, the amount of N2 supplied during the subsequent reduction was reduced to 1160 tAi (200 tAi).
The treatment was carried out in exactly the same manner as in Example 1, except that 7yeKtrH) was used. The nine metal magnetic powder obtained in this way is 50.0
Hc73QOe in a magnetic field of 006.

as l 3 f3 ICmu/、lit、角厘比0.
413であつ九。
as l 3 f3 ICmu/, lit, angle ratio 0.
413 and nine.

比較例 2 y・804・7BsOを水に溶解して第1鉄塩溶液とし
α−ハ001Kの!4製原液とした以外は比較例°1.
と同様に処理して金属磁性粉末を得九〇この金属磁性粉
末は5000 oeの磁界においてHCl1700et
as 143 Emu/p、角製比0.517であった
0笑施例 18〜26 後段の還元時に供給するN2量を表 2のように変更し
た以外は実施例 1と同様に処理した0こうして得九金
属磁性粉末の磁気特性は表 2、図−6のとおシであっ
た。
Comparative Example 2 y・804・7BsO is dissolved in water to make a ferrous salt solution and α-Ha001K! Comparative example °1 except that the stock solution manufactured by No. 4 was used.
90 This metal magnetic powder was treated in the same manner as HCl1700 et in a magnetic field of 5000 oe.
as 143 Emu/p, square ratio 0.517 Examples 18 to 26 The same process as in Example 1 was carried out except that the amount of N2 supplied during the subsequent reduction was changed as shown in Table 2. The magnetic properties of the nine metal magnetic powders were as shown in Table 2 and Figure 6.

比較例 6〜6 後段の還元時に供給するN2量を表 2のように変更し
た以外は比較例 2と同様に処理した0こうして得た金
属磁性粉末の磁気特性は表 2、第6図のとかりであっ
た0 実施例 24〜28 後段の還元時間を表 6のように、変更した以外は実施
例 1と同様に処理した0こうして得た金属磁性粉末の
磁気特性値は懺 3、第4図のとおpであった0 比較例 7〜10 後段の”還元時間を表 6のように変更し、N2供給量
を1500 L/ FeKf−Hとした以外は比較例2
と同様に処理した0こうして得た金属磁性粉末の磁気特
性値は表 6、第4図のとおりでめった。
Comparative Examples 6-6 Processed in the same manner as in Comparative Example 2 except that the amount of N2 supplied during the subsequent reduction was changed as shown in Table 2. The magnetic properties of the metal magnetic powder thus obtained are as shown in Table 2 and Figure 6. 0 Examples 24 to 28 The treatment was carried out in the same manner as in Example 1 except that the reduction time in the latter stage was changed as shown in Table 6. The magnetic property values of the metal magnetic powder thus obtained were as follows. Comparative Examples 7 to 10 Comparative Example 2 except that the reduction time in the latter stage was changed as shown in Table 6 and the N2 supply amount was 1500 L/FeKf-H.
The magnetic properties of the metal magnetic powder thus obtained were as shown in Table 6 and Figure 4.

表・1 磁界5ooooe 表II2 磁界50000e 表・6 磁界s o o o oeTable 1 Magnetic field 5oooooe Table II2 Magnetic field 50000e Table 6 Magnetic field s o o o o oe

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄板の塩酸酸洗廃液から比較例1によって調製
したα−FeOOHの1−5000倍の電子姉微鏡写真
で、 第2図は開基w1敵洗廃叡にVを0.2チ、1eに対し
て添加した実施例1に従って調製したα−1・00B0
15000倍の電子ari微曖写真である0第3図は!
ダネタイト以降の還元を行うに当たり、−の供給速度N
 L/ 1’e 4・HとHcとの関係を実施例@)と
比較例(■)について示したものである0第4図はマグ
ネタイトからメタルまでの還元時間とiioとの関係を
実施例(■)と比較例(■)とについて示したものであ
る0 代理人浅村 皓 外4名 遁 第3図 H2’&#tft  (N//FeKg・Hr)牙4図 濫元曙Fs’l  (Hr)
Figure 1 is a 1-5000x electronic microscopic photograph of α-FeOOH prepared from Comparative Example 1 from the waste solution from hydrochloric acid pickling of iron plates. , α-1・00B0 prepared according to Example 1 added to 1e.
Figure 3 is a 15,000x magnified electronic ari photo!
In performing reduction after Dannetite, - supply rate N
The relationship between L/ 1'e 4・H and Hc is shown for the example @) and the comparative example (■). 0 Figure 4 shows the relationship between the reduction time from magnetite to metal and iio for the example (■) and comparative example (■). (Hr)

Claims (1)

【特許請求の範囲】 (1)  α−Fe00Htl−還元して妖を主成分と
する金属磁性粉末を製造するに当たり、α−FeOOH
のB11製時に第1vc塩′#叡にバナジウム化合物を
添加して中和絃化を行い、VtVのa −Fe0OHt
l−3ll製し、該a−FeOOHにNi、 co、 
Zn、 Mn、 Or、 Oa、 Si のうち、1棟
又は2棟以上の酸化物又は水和物及び必要に応じV化合
wtl−追加付着させる処理を行った後、H2気流哨で
脱水還元することを特徴とする鉄を主成分とする金属磁
性粉末の製造方法0(21V含有のα−TPeOOHV
cn、i、 co、 Zn、 Mn、 Or。 Oa、 8101棟又は2棹以上の酸化物又は水和物又
は水和物及び必要に応じVの化合物を追加付着させる処
理を行うに除1−、アンモニアでpl−1t−8〜10
に調整することを特徴とする%W!f績求の範囲第1項
記載の#Ikを主成分とする金属磁性粉末の製造方法0 (3)脱水還元温度を300〜550℃とし、脱水及び
マグネタイトまでの脱水還元時に供給されるH2蓋をP
e 1Kgに対し毎時60 Nt以下とし、以後メタル
までの還元時に供給されるkiaitをFe 1脅に対
し毎時90011以上とすることを特徴とする特許請求
の範囲第1項記載の鉄を主成分とする金属磁性粉末の製
造方法0
[Claims] (1) In producing a metal magnetic powder whose main component is α-FeOOHtl-reduced, α-FeOOH
When producing B11, a vanadium compound was added to the first VC salt for neutralization, resulting in VtV of a -Fe0OHt.
Ni, co,
After processing to additionally attach one or more oxides or hydrates of Zn, Mn, Or, Oa, and Si, and optionally V compound wtl-, dehydration and reduction with an H2 gas stream. Method 0 for producing metal magnetic powder mainly composed of iron (21V-containing α-TPeOOHV
cn, i, co, Zn, Mn, Or. Oa, 8101 building or 2 or more oxides or hydrates or hydrates and, if necessary, a treatment to additionally attach V compounds 1-, ammonia pl-1t-8 to 10
%W! fRequired rangeMethod for producing metal magnetic powder containing #Ik as a main component described in item 10 (3) H2 cap supplied during dehydration and dehydration reduction to magnetite with a dehydration reduction temperature of 300 to 550°C P
60 Nt per hour or less per 1 kg of Fe, and the kiait supplied during subsequent reduction to metal is set to 90011 per hour or more per 1 kg of Fe. Method for producing metal magnetic powder 0
JP56208770A 1981-12-23 1981-12-23 Manufacture of metallic magnetic powder comprising iron as main component Pending JPS58110009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56208770A JPS58110009A (en) 1981-12-23 1981-12-23 Manufacture of metallic magnetic powder comprising iron as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56208770A JPS58110009A (en) 1981-12-23 1981-12-23 Manufacture of metallic magnetic powder comprising iron as main component

Publications (1)

Publication Number Publication Date
JPS58110009A true JPS58110009A (en) 1983-06-30

Family

ID=16561797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56208770A Pending JPS58110009A (en) 1981-12-23 1981-12-23 Manufacture of metallic magnetic powder comprising iron as main component

Country Status (1)

Country Link
JP (1) JPS58110009A (en)

Similar Documents

Publication Publication Date Title
JPS608606B2 (en) Manufacturing method of ferromagnetic powder
US4056410A (en) Process for preparing acicular iron powders containing titanium and tin, and the resulting powders when so prepared
JPS5853493B2 (en) Kiyoji Seifun Matsuno Seiho
US4251592A (en) Stabilization treatment of acicular ferromagnetic iron or iron-alloy particles against the oxidation thereof
JPS58110009A (en) Manufacture of metallic magnetic powder comprising iron as main component
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS62139803A (en) Production of ferromagnetic metallic powder
JPS5891039A (en) Manufacture of needlelike alpha-feooh for magnetic recording material
JPS61186225A (en) Production of acicular goethite
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPH0445561B2 (en)
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPH05152114A (en) Method of stabilizing acicular ferromagnetic metallic powder intrinsically composed of iron
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron
JPS6349722B2 (en)
JPS58161704A (en) Production of magnetic metallic powder
JP2669010B2 (en) Desiliconization method in metal salt solution
JPH02119104A (en) Manufacture of magnetic powder for magnetic recording subjected to sintering protection treatment by using aluminum compound
JPS6317886B2 (en)
JPS63143203A (en) Production of magnetic iron powder
JPH0238504A (en) Manufacture of ferromagnetic metal fine particle having excellent dispersibility
JPS5947004B2 (en) Manufacturing method of ferromagnetic metal fine particles
JPS61159502A (en) Production of magnetic metallic powder