JPS58109849A - Novel analysis for separation of inositol - Google Patents

Novel analysis for separation of inositol

Info

Publication number
JPS58109849A
JPS58109849A JP20810381A JP20810381A JPS58109849A JP S58109849 A JPS58109849 A JP S58109849A JP 20810381 A JP20810381 A JP 20810381A JP 20810381 A JP20810381 A JP 20810381A JP S58109849 A JPS58109849 A JP S58109849A
Authority
JP
Japan
Prior art keywords
inositol
myo
myoinositol
kidney
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20810381A
Other languages
Japanese (ja)
Inventor
Kunihiko Takeda
邦彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20810381A priority Critical patent/JPS58109849A/en
Publication of JPS58109849A publication Critical patent/JPS58109849A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To determine myoinositol quickly and easily in good accuracy and to discriminate exactly the functions of the kidney, by separating the myoinositol in blood serum etc. from another material by using liquid chromatography and analyzing by using a differential refractometer. CONSTITUTION:In an analysis of myoinositol in body fluids (blood serum etc.), a sample is injected into a liquid chromatography column packed with a packing having a hydrophilic property (a polyvinyl alcohol group adsorbent or an adsorbent of silica gel hydrophilic radical etc.) and separation is carried out by using water as a solvent and then, it is determined by using a differential refractometer as a detector. It can be measured also by an ultraviolet spectrometer by adding a color producing reagent such as nitric acid, CaCl2 etc. The concentration of the myoinositol is known by a preliminarily found calibration curve. In this manner, the functions of the kidney is discriminated by measuring quickly and simply with high accuracy. Especially in the transplantation of the kidney, it is suitable for the discrimination of the functions quickly after the transplantation.

Description

【発明の詳細な説明】 本発明はミオイノシトールの新しい分離および分離定量
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for the separation and separate quantification of myo-inositol.

ミオイノシトールは生物界C:広く分布し、li乳動物
では経口的に摂取される他、グルコースがらも生合成さ
れている。ミオイノシトールは単独で存在する場合(フ
リーミオイノシトール)と脂質と結合したホスホイノシ
トールなどとして脳5腎臓、腎丸等に多量に存在してい
る。発明者らはこのミオイノシトールが、内臓の機能と
密接な関係を有していることを明らかにしていく過程に
おいて、新しいミオイノシトールの分離および分離定置
法を発明するに至った。
Myo-inositol is widely distributed in living organisms, and in addition to being orally ingested by mammals, it is also biosynthesized from glucose. Myo-inositol exists in large amounts in the brain, kidneys, kidneys, etc. both when it exists alone (free myo-inositol) and as phosphoinositol bound to lipids. In the process of elucidating that myo-inositol has a close relationship with the functions of internal organs, the inventors came to invent a new method for separating and emplacement of myo-inositol.

即ち、従来のミオイノシトールの分離定置法としては、
その一つにガスクロマトグラフィーがある。しかるにこ
の方法では、ミオイノシトールが高沸点物質であるため
に、シリル化をしなければならないとか、測定時間が長
いといった短所を有している。また硝酸などを用いた化
学分析法(シェーク−法)も知られているが、この方法
でも測定に長時間を要する。ミオイノシトールを定量す
ることによって内臓の機能を判定する場合には、測定の
迅速性が要求される場合が多い。例えば腎臓移植の場合
などにおいては、サンプリングしたのち数十分の間に分
析を終了して腎機能の判定をしなければならない。本発
明はこの様な見地から。
That is, the conventional separation and emplacement method of myo-inositol is as follows:
One of them is gas chromatography. However, this method has the disadvantages that myo-inositol is a high boiling point substance, so it must be silylated and the measurement time is long. A chemical analysis method (shake method) using nitric acid or the like is also known, but even this method requires a long time for measurement. When determining the function of internal organs by quantifying myo-inositol, rapid measurement is often required. For example, in the case of kidney transplantation, analysis must be completed within several minutes after sampling to determine renal function. The present invention is based on this viewpoint.

液体クロマトグラフィーを用いることC二より迅速な測
定を行うことができることを特徴とする。ミオイノシト
ールの分離定量法である。本発明にいうミオイノシトー
ルとはフリーミオイノシトール及びミオイノシトールと
脂質の結合した物質をいう。ミオイノシトールと脂質の
結合した物質は。
The use of liquid chromatography is characterized by the ability to perform measurements more quickly than C2. This is a method for separating and quantifying myo-inositol. Myo-inositol as used in the present invention refers to free myo-inositol and substances in which myo-inositol and lipids are bound. What is a substance that combines myo-inositol and lipids?

塩酸メタノール分解(二より、定量的かつ容易にフリー
ミオイノシトール(=することができる。
Hydrochloric acid methanol decomposition (2) can quantitatively and easily free myo-inositol (=).

分離定量するサンプルC二特に制限はないが、哺乳動物
等の内臓の機能を判定するという目的がある場合は、血
清や器官内の体液がサンプルとなる。
Sample C2 to be separated and quantified There are no particular limitations, but when the purpose is to determine the function of internal organs of mammals, serum or body fluids in organs can be used as samples.

特に摘出腎の機能を判定しようという目的のある場合に
おいては1例えば、阻血腎グラフトをウォッシュアウト
した初期層出液をサンプルとすることもできる。また摘
出腎の一部または全部から抽出した液なども用いること
ができる。これらのサンプルはトリクao酢酸などで除
蛋白操作をおこなっておくと、ミオイノシトールの分析
がやりやすい場合が多い。また全ミオイノシトールを測
定したい場合には、前述した塩酸メタノール分解後のサ
ンプルを用いれば良い。
Particularly when the purpose is to determine the function of the excised kidney, for example, an initial laminar exudate obtained by washing out an ischemic kidney graft may be used as a sample. Furthermore, a liquid extracted from part or all of the removed kidney can also be used. It is often easier to analyze these samples for myo-inositol by deproteinizing them with trichlorhydric acetic acid or the like. Furthermore, when it is desired to measure total myo-inositol, the above-mentioned sample after hydrochloric acid methanol decomposition may be used.

好ましい分析法の態様例を以下に述べる。展開液として
はミオイノシトールの溶解性の問題から水が最も好まし
く、場合C二よっては水と相溶性のある有機物を混合し
てもさしつかえない。分離に用いる充填カラムの充填剤
は、なんでもよいが水親和性を有するものがより好まし
く1例えばポリビニルアルコール系の吸着剤、シリカゲ
ルに親水性の置換基を導入した吸着剤、セルロース糸の
吸着剤、アクリルアミド、ビニルピロリドン系吸着剤な
どを用いることができる。検出器としては、前処理のい
らない点でRI−検出器(示差屈折計)が優れているが
、硝酸、塩化カルシウムなどの発色剤を用いて発色させ
た後、UVにより検出する方法も可能である。
Examples of preferred analytical methods are described below. Water is most preferable as the developing solution due to the solubility of myo-inositol, and depending on the case C2, it may be mixed with an organic substance that is compatible with water. The packing material for the packed column used for separation may be of any kind, but it is more preferable to use one that has water affinity.1 For example, a polyvinyl alcohol-based adsorbent, an adsorbent prepared by introducing a hydrophilic substituent into silica gel, a cellulose thread adsorbent, Acrylamide, vinylpyrrolidone-based adsorbents, etc. can be used. As a detector, an RI-detector (differential refractometer) is superior in that it does not require pretreatment, but it is also possible to develop a color using a coloring agent such as nitric acid or calcium chloride and then detect using UV light. be.

また1発明者らは腎組織内に存在するミオイノシトール
が、摘出腎グラフト、ことに阻血腎グラフトをウォッシ
ュアウトした初期の製出液中に多量に流出してくること
を発見した。この事実をもとに、摘出腎グラフトの初期
effluent perfusite(以下HIPと
略す)中のミオイノシトール濃度を、その上溝中のフリ
ーミオイノシトールの湯度測定:二より判定し、さらC
=このデータから腎の機能を判定することができること
を見い出した。従来腎機能を測定する方法としては、テ
トラゾリウム塩による呈色反応を利用したもの、腎表面
のpH測定によるもの、酸素消費率C二よる方法%Na
/に比計算法などが知られているが、これらの従来の方
法は測定時間が長いこと、実験操作1問題があり、その
成績が不安定であること、あるいは判定が困難である場
合が多いという欠点を有している。
In addition, the inventors have discovered that myo-inositol present in renal tissue leaks out in large quantities into the initial exudate after washing out an excised renal graft, particularly an ischemic renal graft. Based on this fact, the myo-inositol concentration in the initial effluent perfusite (hereinafter abbreviated as HIP) of the excised renal graft was determined by measuring the hot water content of free myo-inositol in the upper groove, and then
=We discovered that kidney function can be determined from this data. Conventional methods for measuring renal function include methods that utilize color reaction with tetrazolium salts, methods that measure pH on the kidney surface, and methods that use oxygen consumption rate C2%Na.
Ratio calculation methods are known for /, but these conventional methods require long measurement times, have problems with experimental operations, and are often unstable in their results or difficult to judge. It has the following drawbacks.

釘に腎機能を簡便でしかも正確に判定する方法としては
、前述のB111Pのみならず、血液中(二存在するミ
オイノシトールを定量することによっても可能なことが
判明した。
It has been found that a simple and accurate method for determining kidney function is possible by quantifying not only B111P described above but also myo-inositol, which is present in the blood.

HIPを用いる場合を例として具体例を述べるならば、
腎動静脈(;シリコンカテーテル等を挿入、固定し、乳
酸加リンゲル溶液を腎動脈から注入する際ζ二出てくる
液をサンプルリングする。このFIBPより遠心分り器
などで1清を採取し、イノシトール分析のサンプルとす
る。
To give a specific example using HIP,
Insert and fix a silicon catheter, etc., and sample the fluid that comes out when lactated Ringer's solution is injected from the renal artery. Collect one supernatant from this FIBP using a centrifugal separator, etc. Use as a sample for inositol analysis.

腎の機能は動物実験における移植手術後の生存率或は血
清中のクレアチニンの濃度などによって判断することが
できる。
Kidney function can be judged by the survival rate after transplant surgery in animal experiments or the concentration of creatinine in serum.

この様にして、ミオイノシトールと移植手術後の動物の
生存率及び血清中のクレアチニン濃度の相関をとると、
ミオイノシトールの濃度の高い腎を移植した動物はど生
存率が低く、しかもクレアチニンの濃度が高いことが判
明した。
In this way, the correlation between myo-inositol, the survival rate of animals after transplantation surgery, and the concentration of creatinine in the serum is determined.
It was found that animals transplanted with kidneys containing high levels of myo-inositol had lower survival rates and also had higher levels of creatinine.

以下に実施例を示すがこれらは本発明を制限するもので
はない。
Examples are shown below, but they do not limit the present invention.

実施例/ ビニルアルコールとジビニルベンゼンのポリマ一単位を
含むゲルをつめた。ダ■eで長さjOaaのカラム、示
差屈折針、送液ポンプ、レコーダー積分針を備えた液体
クロマトグラフに5人血清!μtを注入し、水を溶媒と
してクロマト分離を行った。/$で送液した時の分離ク
ロマトグラムを@/図に示す。(図中RI[Jniiは
屈折率の変化を示す単位で、その値は低濃度C:おける
イノシトールの濃度に比例する。) あらかじめ求めておいた検量線から、この人血清中のイ
ノシトール濃度は3.rlBであることがわかった。
Example/ A gel containing one polymer unit of vinyl alcohol and divinylbenzene was packed. Serum from 5 people in a liquid chromatograph equipped with a column of length jOaa, a differential refraction needle, a liquid pump, and a recorder/integration needle! μt was injected and chromatographic separation was performed using water as a solvent. The separation chromatogram when the liquid was pumped at /$ is shown in the @/ figure. (In the figure, RI [Jnii] is a unit that indicates the change in refractive index, and its value is proportional to the concentration of inositol at a low concentration C:.) From the calibration curve obtained in advance, the inositol concentration in this person's serum is 3. .. It turned out to be rlB.

一方、同じサンプルをシリル化−ガスクロ分析という従
来の方法で分析した結果、やはり3.jq/ltlとい
う結果が得られた。
On the other hand, as a result of analyzing the same sample using the conventional method of silylation-gas chromatography, the result was still 3. A result of jq/ltl was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

fs1図は実施例ハ:おいて、71I4/&lIlで送
液した時の分離りaマドグラムを示す。 特許出願人 旭化成工業株式会社
The fs1 diagram shows a separation a madogram when the liquid was fed with 71I4/&lIl in Example C:. Patent applicant Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 / 液体クロマトグラフィーを用いることを特徴とする
ミオイノシトールを他の物質から分離する方法 コ 液体クロマトグラフィーを用いてミオイノシトール
を他の物質からの分離し、定量することを特徴とする特
許請求の範囲第1項記載の方法3 ミオイノシトール及
び他の物質が体液中に存在する物質であることを特徴と
する特許請求の範囲@2項記載の分離定量方法 記載の分離定置方法 j 示差屈折計を検出器として用いることを特徴とする
特許請求の範囲第2項記載の分離定量方法 6 水親和性を有する充填剤を用いることを特徴とする
特許請求の範囲@2項記載の分離定置方法 2 液体クロマトグラフィーを用いてミオイノシトール
を定量することを特徴とする腎機能の判定方法
[Claims] / A method for separating myo-inositol from other substances, characterized by using liquid chromatography. A method characterized by separating myo-inositol from other substances and quantifying it by using liquid chromatography. A method 3 according to claim 1, wherein myo-inositol and other substances are substances that exist in body fluids. A method for separating and fixing according to a method for separating and quantifying according to claim 2, characterized in that myo-inositol and other substances are substances that exist in body fluids. j Separation and quantitative method according to claim 2, characterized in that a differential refractometer is used as a detector 6. Claim @ claimed in claim 2, characterized in that a filler having water affinity is used. Separation and emplacement method 2 A method for determining renal function characterized by quantifying myo-inositol using liquid chromatography
JP20810381A 1981-12-24 1981-12-24 Novel analysis for separation of inositol Pending JPS58109849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20810381A JPS58109849A (en) 1981-12-24 1981-12-24 Novel analysis for separation of inositol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20810381A JPS58109849A (en) 1981-12-24 1981-12-24 Novel analysis for separation of inositol

Publications (1)

Publication Number Publication Date
JPS58109849A true JPS58109849A (en) 1983-06-30

Family

ID=16550680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20810381A Pending JPS58109849A (en) 1981-12-24 1981-12-24 Novel analysis for separation of inositol

Country Status (1)

Country Link
JP (1) JPS58109849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392404A2 (en) * 1989-04-10 1990-10-17 Nippon Kayaku Kabushiki Kaisha Method for quantitatively measuring sugar-alcohol, column and kit for same
WO1991000258A1 (en) * 1989-06-28 1991-01-10 Mitsui Toatsu Chemicals, Incorporated Myoinositol derivative and method of production thereof, and phosphorylating agent and its use
US5225349A (en) * 1989-06-21 1993-07-06 Perstorp Ab Method for analytical separation of inositol phosphates with quaternary amine and metal ion complex
CN105929051A (en) * 2016-04-20 2016-09-07 内蒙古蒙牛乳业(集团)股份有限公司 Determination method for inositol in milk powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392404A2 (en) * 1989-04-10 1990-10-17 Nippon Kayaku Kabushiki Kaisha Method for quantitatively measuring sugar-alcohol, column and kit for same
EP0392404B1 (en) * 1989-04-10 1996-07-03 Nippon Kayaku Kabushiki Kaisha Method for quantitatively measuring sugar-alcohol, column and kit for same
US5225349A (en) * 1989-06-21 1993-07-06 Perstorp Ab Method for analytical separation of inositol phosphates with quaternary amine and metal ion complex
WO1991000258A1 (en) * 1989-06-28 1991-01-10 Mitsui Toatsu Chemicals, Incorporated Myoinositol derivative and method of production thereof, and phosphorylating agent and its use
CN105929051A (en) * 2016-04-20 2016-09-07 内蒙古蒙牛乳业(集团)股份有限公司 Determination method for inositol in milk powder
CN105929051B (en) * 2016-04-20 2018-06-29 内蒙古蒙牛乳业(集团)股份有限公司 A kind of milk powder mysoinositol assay method

Similar Documents

Publication Publication Date Title
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
Wada et al. A simple method for the quantitative analysis of urinary delta-aminol evulinic acid to evaluate lead absorption
US3733179A (en) Method and apparatus for the quantitative determination of blood chemicals in blood derivatives
EP0038826A1 (en) Microchromatographic device and method for rapid determination of a desired substance
Viktora et al. New automated fluorometric methods for estimation of small amounts of adrenaline and noradrenaline
US8709358B2 (en) Cartridge for separating analyte from mixture, comprising dispensing and receiving chambers and insert
Toffaletti et al. Separation and quantitation of serum constituents associated with calcium by gel filtration.
JPS58109849A (en) Novel analysis for separation of inositol
Andersson et al. Urinary excretion of hippuric acid and o-cresol after laboratory exposure of humans to toluene
US5045453A (en) Method for determining sialic acid in plasma
Mechanic et al. A rapid quantitative estimation of tyrosine and phenylalanine by ion-exchange chromatography
Barber et al. Bromcresol green assay is nonspecific for rat plasma albumin
US4701418A (en) Method for determining lipid bound sialic acid in whole blood
US3275416A (en) Process and device for separating barbituric acid derivatives from biological samples, and for analyzing same
RU2605965C1 (en) Method for solid phase extraction of toluidine blue dye
EP2989461A2 (en) Systems and methods to determine body drug concentration from an oral fluid
Suzuki Anion-exchange high-performance liquid chromatography of water-soluble chromium (VI) and chromium (III) complexes in biological materials
Hughes et al. Liquid-chromatographic determination of 4-hydroxyproline in urine.
Simkin Isolation and quantification of serum uric acid by adsorption chromatography
US4914036A (en) Method and apparatus for simultaneously analyzing vanillylmandelic acid, homovanillic acid and creatinine
JPH06189793A (en) Analytical method for checking mixture for poisonous component
Severini et al. Liquid-chromatographic determination of inosine, xanthine, and hypoxanthine in uremic patients receiving hemodialysis treatment.
Kesner et al. [62] Separation of citric acid cycle and related compounds by partition column chromatography
US5462877A (en) Method for determining lipid bound sialic acid in plasma or serum
CA1220700A (en) Aqueous solution as an eluant used in liquid chromatography