JPS58109179A - Desalting method of sea water by refrigeration in direct contact with lng - Google Patents

Desalting method of sea water by refrigeration in direct contact with lng

Info

Publication number
JPS58109179A
JPS58109179A JP56206983A JP20698381A JPS58109179A JP S58109179 A JPS58109179 A JP S58109179A JP 56206983 A JP56206983 A JP 56206983A JP 20698381 A JP20698381 A JP 20698381A JP S58109179 A JPS58109179 A JP S58109179A
Authority
JP
Japan
Prior art keywords
ice
lng
tank
sea water
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206983A
Other languages
Japanese (ja)
Inventor
「淵」上 武彦
Takehiko Fuchigami
Nobuo Nikaido
二階堂 信夫
Shigeoki Nishimura
西村 成興
Tetsuro Adachi
安達 哲朗
Toshiki Mutsukushi
六串 俊巳
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP56206983A priority Critical patent/JPS58109179A/en
Publication of JPS58109179A publication Critical patent/JPS58109179A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To desalt sea water efficiently by bringing LNG and sea water into direct contact with each other to produce hydrate, decomposing the same under reduced pressure, converting the same to ice and separating ice from the sea water. CONSTITUTION:Sea water 11 is pumped 12 into a crystallizing tank 13, where the sea water contacts directly with the LNG15 supplied into the tank by a pump 14. The LNG15 deprives the sea water 11 of heat and is discharged as NG16 from the tank 13. Part of the NG reacts with the sea water 11 and forms hydrate. The slurry consisting of the hydrate and the sea water is transferred into a decomposing tank 17, where the hydrate is decomposed under reduced pressure and is separated to the NG and water. The water is frozen to ice by the heat of decomposition. The decomposition is continued for >=7min. The slurry consisting of the sea water and the ice is fed into a decomposing tank 18, where the slurry is separated to ice and brine. The ice is washed with part 24A of the fresh water 24 formed in a thawing tank 23 and is then fed into the tank 23.

Description

【発明の詳細な説明】 本発明はLNG (液化天然ガス)と海水とを直接々触
させる海水淡水化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a seawater desalination method in which LNG (liquefied natural gas) and seawater are brought into direct contact.

近年石油事情の悪化及びクリーンエネルギーへの指向か
らLNGの使用量が年々増加して来ている。
In recent years, the amount of LNG used has been increasing year by year due to the deterioration of the oil situation and the trend towards clean energy.

LNGは産地にて一160Cに冷却液化され。LNG is cooled and liquefied at -160C at the production site.

消費地に輸送される。消費地では、加熱しガス化して使
用する。LNGは冷熱として約200KCat/9を有
するため、その有効利用を図ることが消エネルギーの見
地から重要視されている。
transported to the place of consumption. At the point of consumption, it is heated and gasified. Since LNG has a cooling energy of about 200 KCat/9, effective utilization of LNG is important from the viewpoint of energy consumption.

LNGのガス化方式は従来より(1)オープンラック式
、(2)サブマージ式が採用されで来たが1両方式とも
LNGの持っている冷熱を有効利用することができない
。LNGの冷熱を利用する方法としては冷熱発電、低温
倉庫、海水淡水化などが考えられる。海水淡水化を行な
う方法としてはLNGの冷熱を高沸点の冷媒に移行させ
、この冷媒と海水を直接々触させる方法とLNGと海水
とを直接接触させる方法でおる。LNGと海水を直接々
触させる方法は、熱交換器がす<、その熱交換特性は極
めて良好となり、LNGの冷熱を海水にうつし、hNo
t−No (天然ガス)とすることができる。この直接
々触法のフローを第1図に示す。1は海水、2は海水ポ
ンプ、4はLNG、5ば’LNGポンプであり、海水1
とLNG4は晶析槽8内に2いて直接々融し、LNG4
は海水に冷熱を移しNG3となるものである。この時、
LNG4に対する海水1の量を削減して行くことにより
、海水中に氷晶とハイドレート(炭化水素の水和物)が
生成する。ハイドレートの生成量はLNGの組成、晶析
圧力、晶析湛Kにょシ変化する。なお6はプラインポン
プ、7はプラインである。第2図はCH,89mO4%
のLNGのハイドレートの生成域を示したもので、圧力
1 oKy/cm” G以上になると、その生成が顕著
になってくる。基礎検討の結果ハイドレートが生成する
領域ではハイドレートが氷よりも優先的に生成すること
が明らかになっている。又、晶析圧力が10〜/cm”
 G以下ではハイドレートはほとんど生成せず、氷の生
成が優先的でめることかわかった。ハイドレートは第3
図(aXb)に模式的に示したように、炭化水素分子が
その周囲を水分子の水素結合によシつつまれているもの
で、減圧によシ容易に中心の炭化水素がガス化し氷晶へ
と転換する。ハイドレートは結晶体であるが、LNGと
海水との直接々触により生成したハイドレート粒子の大
きさは約40μm程度であるので、固液分離操作が困難
でありハイドレートの状態での分離洗浄法は実現性がな
い。
Conventionally, LNG gasification methods have been adopted: (1) open rack method and (2) submerged method, but neither method can effectively utilize the cold energy that LNG has. Possible ways to utilize the cold energy of LNG include cold power generation, cold storage, and seawater desalination. Methods for seawater desalination include a method in which the cold energy of LNG is transferred to a high boiling point refrigerant and a method in which this refrigerant is brought into direct contact with seawater, and a method in which LNG and seawater are brought into direct contact. In the method of bringing LNG and seawater into direct contact, a heat exchanger has extremely good heat exchange characteristics, transfers the cold heat of LNG to seawater, and increases hNo.
t-No (natural gas). The flow of this direct contact method is shown in Figure 1. 1 is seawater, 2 is a seawater pump, 4 is LNG, 5 is a LNG pump;
and LNG4 are directly melted in the crystallization tank 8, and LNG4
transfers cold heat to seawater and becomes NG3. At this time,
By reducing the amount of seawater 1 relative to LNG 4, ice crystals and hydrates (hydrocarbon hydrates) are generated in the seawater. The amount of hydrate produced varies depending on the LNG composition, crystallization pressure, and crystallization temperature. Note that 6 is a pline pump and 7 is a pline. Figure 2 shows CH, 89mO4%
This shows the region where hydrates are formed in LNG, and when the pressure exceeds 1 oKy/cm"G, the formation becomes noticeable.Basic studies have shown that in the region where hydrates are formed, hydrates are stronger than ice. It has also been revealed that crystallization pressure is 10~/cm''.
It was found that below G, almost no hydrate is produced, and ice is preferentially produced. Hydrate is the third
As schematically shown in Figure (a Convert to. Hydrate is a crystalline substance, but the size of hydrate particles generated by direct contact between LNG and seawater is about 40 μm, so solid-liquid separation is difficult, and separation and cleaning in the hydrate state is difficult. The law is not practical.

本発明は上記事情に鑑みなされたもので、LNGと海水
とを直接々触して生成するハイドレート全有効に淡水と
して回収することを目的とするものである。
The present invention was made in view of the above circumstances, and an object of the present invention is to effectively recover all of the hydrate produced by direct contact between LNG and seawater as fresh water.

即ち本発明の特徴は、LNGをガス化するLNG気化方
法において、LNGと海水とを直接々触させ、この直接
々触によって生成したハイドレートを減圧分解して氷に
変換せしめ、しかる区海水からこの氷を分離すると共に
融解して、淡水化するLNG直接々触冷凍海水淡水化方
法にある。
That is, the feature of the present invention is that, in an LNG vaporization method for gasifying LNG, LNG and seawater are brought into direct contact with each other, and the hydrate produced by this direct contact is decomposed under reduced pressure and converted into ice. This method involves separating and melting this ice to desalinate seawater by directly catalyzing LNG.

以下本発明の一実施例を第4図によって説明する。13
は海水ポンプ12で送シ込まれた海水11とLNGポン
プ14で供給されたLNG15を直接々触する晶析槽、
16は気化しfcNG、17は晶析槽13から排出され
たハイドレートを減圧分解して氷に変戻する分解槽、1
8は海水と氷からなるスラリーを氷とプラインに分離す
る分離槽、23は氷を海水26と間接々触させて融解す
る+dN槽である。19は分離槽18で分離されたプラ
イ/、20はそのプラインポンプ、21はプライン19
の一部を晶析槽13に循環する循環水、22はその循環
水ポンプ、24は融解槽23で生成した淡水であり、そ
の一部は分離槽18の氷を洗浄するための洗浄水24A
として用いられる。25は融解槽23で生成した淡水2
4Bを分離槽18に循環させる循環ポンプ、27は淡水
ポンプ、28は冷海水、29は洗浄水ポンプである。
An embodiment of the present invention will be described below with reference to FIG. 13
is a crystallization tank in which seawater 11 pumped in by a seawater pump 12 and LNG 15 supplied by an LNG pump 14 come into direct contact;
16 is a vaporized fcNG; 17 is a decomposition tank that decomposes the hydrate discharged from the crystallization tank 13 under reduced pressure and returns it to ice;
8 is a separation tank that separates a slurry consisting of seawater and ice into ice and prine, and 23 is a +dN tank that melts the ice by bringing it into direct contact with seawater 26. 19 is the ply separated in the separation tank 18, 20 is its pline pump, and 21 is the ply 19
A part of the water is circulated to the crystallization tank 13, 22 is the circulating water pump, 24 is fresh water generated in the melting tank 23, and a part of it is the washing water 24A for washing the ice in the separation tank 18.
used as. 25 is fresh water 2 generated in the melting tank 23
A circulation pump that circulates 4B to the separation tank 18, 27 a freshwater pump, 28 cold seawater, and 29 a wash water pump.

さて、海水11は海水ポンプ12により晶析槽13に送
り込まれ、LNGポンプ14により供給されたLNG1
5と直接々触する。LNG15は海水11の熱を奪い、
NG16となり、晶析槽13から排出されるが、NGの
一部は海水11と反応してハイドレートが生成する。海
水とハイドレートからなるスラリーは、晶析槽13から
分解槽17へと移送される。分解槽17で21イドレー
トは減圧分解さn、NG16と水分に分71’れるが、
分解熱によシ、水は氷に変換する。この時分解時間を1
0分以上とする。次に、海水と氷からなるスラリーは分
解槽16から分離槽18へ移送嘔れ、分離槽18ではス
ラリーは氷とプライン19に分離すれる。プライ/19
はブライン水/7”20により排出されるが、一部は循
環水21として循環ポンプ22により晶析槽13に起さ
れる。分離槽18で分離された氷は融解槽23で生成し
た淡水24の一部24Aで洗浄した後、融解槽23から
淡水24Bt−循環ポンプ25により循環させて氷を融
解槽23に移送する。融解槽23では海水26を間接々
触させ氷を融解し、淡水24を生成する。淡水24は淡
水ポンプ27により利用施設へ供給される。氷の融解に
使用された海水26は冷海水28にな9、晶析槽13に
投入する海水の1部として利用され、冷熱の有効利用度
を高めている。
Now, the seawater 11 is sent to the crystallization tank 13 by the seawater pump 12, and the LNG1 is supplied by the LNG pump 14.
Direct contact with 5. LNG15 takes away the heat from seawater11,
The NG becomes NG16 and is discharged from the crystallization tank 13, but a part of the NG reacts with the seawater 11 to generate hydrate. A slurry consisting of seawater and hydrate is transferred from the crystallization tank 13 to the decomposition tank 17. In the decomposition tank 17, the 21 idrate is decomposed under reduced pressure and separated into n, NG16 and water 71'.
Due to heat of decomposition, water is converted to ice. At this time, the decomposition time is 1
0 minutes or more. Next, the slurry consisting of seawater and ice is transferred from the decomposition tank 16 to the separation tank 18, where it is separated into ice and prine 19. Ply/19
is discharged as brine water/7" 20, and a part of it is sent to the crystallization tank 13 by the circulation pump 22 as circulating water 21. After washing with a portion 24A of fresh water 24A, fresh water 24Bt is circulated from the melting tank 23 by a circulation pump 25 and the ice is transferred to the melting tank 23. In the melting tank 23, seawater 26 is brought into direct contact with the ice to melt the ice, and the fresh water 24 The fresh water 24 is supplied to the utilization facility by a fresh water pump 27.The sea water 26 used for melting the ice is converted into cold sea water 289, and is used as part of the sea water to be input into the crystallization tank 13. This increases the effectiveness of cooling and heat utilization.

本発明は前述し九如<、ノ梢トレー1減圧分解し氷晶へ
と転換し、氷晶をプライン力・ら分離し、洗浄し淡水を
回収するものでるるか、第3図に示したように、急激な
る減圧分解を行なった場合、生成する氷晶の粒径もハイ
ドレートの粒径と近いものとなり、プラインからの分離
性能の向上はのぞめない。、@5図は晶析圧力から常圧
にまで減圧する141IJ1とその時生成した氷晶の粒
径を示した。
The present invention is based on the above-mentioned method, in which the treetop tray 1 is decomposed under reduced pressure and converted into ice crystals, the ice crystals are separated by prine force, and the fresh water is recovered by washing, as shown in Figure 3. Thus, when rapid decompression is carried out, the particle size of the ice crystals produced will be close to that of hydrate, and no improvement in separation performance from the pline can be expected. Figure 5 shows 141IJ1 when the pressure is reduced from the crystallization pressure to normal pressure and the particle size of the ice crystals generated at that time.

分解時間が短かい時は、粒径が細かいが、分解時間を長
くすることにより生成する氷晶粒径を大きくすることが
可能である。
When the decomposition time is short, the particle size is small, but by increasing the decomposition time, it is possible to increase the size of the generated ice crystal particles.

に 10分以上ではぜの粒径の大きさはほぼ一定に近づく。to After 10 minutes or more, the grain size of the wrinkles approaches a constant value.

分解時間7分で飽和値の75%程度まで粒径が増大する
。そのため7分以工あれば十分と考えられる。
The particle size increases to about 75% of the saturation value after 7 minutes of decomposition time. Therefore, it is considered that 7 minutes or more is sufficient.

本発明によれば、LNGと海水とを直接々触して生成す
るハイトレー1有効に淡水として回収することができる
According to the present invention, the high tray 1 produced by direct contact between LNG and seawater can be effectively recovered as fresh water.

図面の簡単な説明    □:□ 第1図はLNGと海水の直接々触の熱交を示す説明図、
wII2図はハイドレートの生成域を示す線図、第3図
はハイドレートの模式図、第4図は本発明の一実施例を
示すブロック図%第5図は晶析圧力から常圧まで減圧分
解と氷晶の粒径の関係を示す線図である。
Brief explanation of the drawings □:□ Figure 1 is an explanatory diagram showing heat exchange through direct contact between LNG and seawater;
Figure wII2 is a diagram showing the hydrate generation region, Figure 3 is a schematic diagram of hydrate, Figure 4 is a block diagram showing an embodiment of the present invention, and Figure 5 is a diagram showing pressure reduction from crystallization pressure to normal pressure. FIG. 2 is a diagram showing the relationship between decomposition and the particle size of ice crystals.

11・・・海水、15・・・LNG、9・・・晶析漕、
17・・・分解槽、18・・・分離槽、23・・・融P
s槽、24・・・炎1A+図 晶櫂1度(°C) 葛3図 (LL)(4) ′@牛図 富5図 OIO2o   3o   4−O 滅氏介屏θ卑開(i) 第19頁の続き 0発 明 者 高橋燦吉 日立市幸町3丁目1番1号株式 %式% @出 願 人 株式会社日立製作所 東京都千代田区丸の内−丁目5 番1号
11...Seawater, 15...LNG, 9...Crystallization tank,
17... Decomposition tank, 18... Separation tank, 23... Melt P
s tank, 24...Flame 1A + Zushokai 1 degree (°C) Kuzu 3 diagram (LL) (4) '@Ushizutomi 5 diagram OIO2o 3o 4-O Mejisuke folding θbeikai (i) Page 19 Continuation of 0 inventions Author: Sankichi Takahashi, 3-1-1, Saiwai-cho, Hitachi City, % stock % @Applicant: Hitachi, Ltd., 5-1, Marunouchi-chome, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、LNGtガス化するI、NG気化方法において、L
NGと海水とを直接々触させ、この直接々触によって生
成したハイドレートヲ減圧分解して氷に変侠せしめ、し
かる佼海水からこの水を分離すると共にN!jI解して
淡水化することを特徴とするLNG直接々触冷凍海水淡
水化方法。 2、ハイドレートの減圧分解時間を7分以上としたこと
を特徴とする特許請求の範囲第1項記載のLNG直接々
触冷凍海水淡水化方法。 3、氷の一屏に便用した海水をLNGとの直接々触に使
用することを特徴とする特許請求の範囲第1項記−のL
NG直接々触冷凍海水淡水化方法。
[Claims] 1. I to gasify LNGt. In the NG vaporization method, L
NG and seawater are brought into direct contact, and the hydrate produced by this direct contact is decomposed under reduced pressure and transformed into ice.This water is then separated from the seawater and N! 1. A method for desalinating seawater by directly catalyzing LNG, which is characterized by desalinating seawater by decomposing LNG. 2. The LNG direct catalytic seawater desalination method according to claim 1, characterized in that the decomposition time under reduced pressure of the hydrate is 7 minutes or more. 3.L of Claim 1--, characterized in that seawater used on a sheet of ice is used for direct contact with LNG.
NG direct contact frozen seawater desalination method.
JP56206983A 1981-12-23 1981-12-23 Desalting method of sea water by refrigeration in direct contact with lng Pending JPS58109179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206983A JPS58109179A (en) 1981-12-23 1981-12-23 Desalting method of sea water by refrigeration in direct contact with lng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206983A JPS58109179A (en) 1981-12-23 1981-12-23 Desalting method of sea water by refrigeration in direct contact with lng

Publications (1)

Publication Number Publication Date
JPS58109179A true JPS58109179A (en) 1983-06-29

Family

ID=16532227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206983A Pending JPS58109179A (en) 1981-12-23 1981-12-23 Desalting method of sea water by refrigeration in direct contact with lng

Country Status (1)

Country Link
JP (1) JPS58109179A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000553A3 (en) * 2000-06-26 2002-07-04 Marine Desalination Sys Llc Controlled cooling of input water by dissociation of hydrate in an artificially pressurized assisted desalination fractionation apparatus
US6475460B1 (en) 1999-07-12 2002-11-05 Marine Desalination Systems Llc Desalination and concomitant carbon dioxide capture yielding liquid carbon dioxide
US6497794B1 (en) 1999-07-12 2002-12-24 Marine Desalination Systems L.L.C. Desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6531034B1 (en) 1999-07-12 2003-03-11 Marine Desalination Sys6Tems, L.L.P. Land-based desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6673249B2 (en) 2000-11-22 2004-01-06 Marine Desalination Systems, L.L.C. Efficiency water desalination/purification
US6767471B2 (en) 1999-07-12 2004-07-27 Marine Desalination Systems, L.L.C. Hydrate desalination or water purification
US6890444B1 (en) 2003-04-01 2005-05-10 Marine Desalination Systems, L.L.C. Hydrate formation and growth for hydrate-based desalination by means of enriching water to be treated
US6969467B1 (en) 1999-07-12 2005-11-29 Marine Desalination Systems, L.L.C. Hydrate-based desalination with hydrate-elevating density-driven circulation
US7008544B2 (en) 2002-05-08 2006-03-07 Marine Desalination Systems, L.L.C. Hydrate-based desalination/purification using permeable support member
US7255794B2 (en) 1999-07-12 2007-08-14 Marine Desalination Systems, Llc Hydrate-based reduction of fluid inventories and concentration of aqueous and other water-containing products

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969467B1 (en) 1999-07-12 2005-11-29 Marine Desalination Systems, L.L.C. Hydrate-based desalination with hydrate-elevating density-driven circulation
US6475460B1 (en) 1999-07-12 2002-11-05 Marine Desalination Systems Llc Desalination and concomitant carbon dioxide capture yielding liquid carbon dioxide
US6497794B1 (en) 1999-07-12 2002-12-24 Marine Desalination Systems L.L.C. Desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6531034B1 (en) 1999-07-12 2003-03-11 Marine Desalination Sys6Tems, L.L.P. Land-based desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6562234B2 (en) 1999-07-12 2003-05-13 Marine Desalination Systems L.L.C. Land-based desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6565715B1 (en) 1999-07-12 2003-05-20 Marine Desalination Systems Llc Land-based desalination using buoyant hydrate
US7255794B2 (en) 1999-07-12 2007-08-14 Marine Desalination Systems, Llc Hydrate-based reduction of fluid inventories and concentration of aqueous and other water-containing products
US6733667B2 (en) 1999-07-12 2004-05-11 Marine Desalination Systems L.L.C. Desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6767471B2 (en) 1999-07-12 2004-07-27 Marine Desalination Systems, L.L.C. Hydrate desalination or water purification
US6830682B2 (en) 2000-06-26 2004-12-14 Marine Desalination Systems, L.L.C. Controlled cooling of input water by dissociation of hydrate in an artificially pressurized assisted desalination fractionation apparatus
WO2002000553A3 (en) * 2000-06-26 2002-07-04 Marine Desalination Sys Llc Controlled cooling of input water by dissociation of hydrate in an artificially pressurized assisted desalination fractionation apparatus
US6991722B2 (en) 2000-09-07 2006-01-31 Marine Desalination Systems, L.L.C. Hydrate desalination for water purification
US6673249B2 (en) 2000-11-22 2004-01-06 Marine Desalination Systems, L.L.C. Efficiency water desalination/purification
US7008544B2 (en) 2002-05-08 2006-03-07 Marine Desalination Systems, L.L.C. Hydrate-based desalination/purification using permeable support member
US6890444B1 (en) 2003-04-01 2005-05-10 Marine Desalination Systems, L.L.C. Hydrate formation and growth for hydrate-based desalination by means of enriching water to be treated

Similar Documents

Publication Publication Date Title
JPS58109179A (en) Desalting method of sea water by refrigeration in direct contact with lng
US2974102A (en) Hydrate forming saline water conversion process
CN104891593B (en) A kind of equipment with high desalinization method for desalting seawater based on cold energy of liquefied natural gas and device
KR101924533B1 (en) Power generating and desalination composite plant
WO2016154505A1 (en) Process for selectively recovering sulfate and chloride salts from wastewater
CN100588614C (en) Method for preparing sodium chloride and magnesium sulphate heptahydrate with brine
JP2008221140A (en) Joint supply equipment for natural gas hydrate cracked gas and fresh water
US3147072A (en) Method of processing sea water
US7560028B1 (en) Complex admixtures of clathrate hydrates in a water desalination method
JP2010507776A5 (en)
JP2006181516A (en) Fresh water generator utilizing solar power generation
JPS6125682A (en) Seawater desalting method
US3213633A (en) Separating components of a freeze concentration process by an intermediate density layer
CN204752259U (en) High salt rejection sea water desalination device based on liquefied natural gas cold energy
CN106641710B (en) LNG regasification system
US1937995A (en) Process for the separation and recovery of the constituents of sea water
SU1170216A2 (en) Method of conveying natural gas
JP2003311262A (en) Production separator for desalted and water salt- concentrated water of deep seawater
JPH06241625A (en) Method and device for manufacturing ice by direct contact of freezing mixture forming no hydrate and water
JPS59154187A (en) Desalting method utilizing waste heat of diesel engine
TWI303995B (en) Absorption freezing method to separate pure water from sea water
JPS6320764B2 (en)
JPH05123668A (en) Method for producing purified water and device therefor
US5080704A (en) Solid-liquid-vapor multiple phase transformation process with coupled absorption-melting operations
CN115784257B (en) Gas-ammonia grading recovery treatment process by combined alkali preparation method