JPS58109035A - Pressing cylinder for x-ray diagnosis - Google Patents

Pressing cylinder for x-ray diagnosis

Info

Publication number
JPS58109035A
JPS58109035A JP56206726A JP20672681A JPS58109035A JP S58109035 A JPS58109035 A JP S58109035A JP 56206726 A JP56206726 A JP 56206726A JP 20672681 A JP20672681 A JP 20672681A JP S58109035 A JPS58109035 A JP S58109035A
Authority
JP
Japan
Prior art keywords
arm
compression
ray
ray diagnosis
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56206726A
Other languages
Japanese (ja)
Other versions
JPS6351696B2 (en
Inventor
多田 尚
猿田 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56206726A priority Critical patent/JPS58109035A/en
Publication of JPS58109035A publication Critical patent/JPS58109035A/en
Publication of JPS6351696B2 publication Critical patent/JPS6351696B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はX線診断用圧迫筒に関するものであり、その目
的とするところは、軽量でしかも剛性が高く、かつX線
透過性の良好な圧迫筒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compression tube for X-ray diagnosis, and its object is to provide a compression tube that is lightweight, has high rigidity, and has good X-ray transparency.

従来用いられてきたX線診断用圧迫筒は、X線の透過性
が良好であること、その取扱い時に起る破損を防止する
ために木製の中実棒状の圧迫筒が使用されてきたが、X
線診断時に於ける被検者のX細波、湯量の低減の要求や
X線源X線診断装置を用いた場合に於いても鮮明なX線
画偉の形成が可能な第1図に示した如き断面形状を有す
るX線透過性良好な圧迫筒の開発が試みられているが、
このような形状の圧迫筒を木材にて作るとX線透過性は
良好なものとすることができるが、第4図に示した圧迫
部(1)とその支持棒(2)との接続部の強度が極めて
小さく容易に折損するため実用性のある圧迫筒とするこ
とができなかった。また第1図に示す如き断面形状の圧
迫筒な一方向引揃え炭素繊維プリプレグや炭素繊維クロ
スプリプレグを用いての開発も試みられたが、圧迫部の
成形に際して前記プリプレグの折りたたみ成形によらな
ければならず、圧迫部の箇所によってX線透過性能に差
異を生ずるようKなり、圧迫筒として十分な性能な有す
るものの開発には成功していない現状にある。
Conventionally used compression tubes for X-ray diagnosis have been made of solid wood rods in order to have good X-ray transparency and to prevent damage during handling. X
As shown in Figure 1, it is possible to form a clear X-ray image even when X-ray diagnostic equipment is used, such as the requirement to reduce X-ray waves and the amount of water used by the examinee during X-ray diagnosis. Attempts have been made to develop a compression tube with a cross-sectional shape that has good X-ray transparency;
If a compression cylinder with this shape is made of wood, it can have good X-ray transparency, but the connection between the compression part (1) and its support rod (2) shown in Figure 4 Because the strength of the compression tube is extremely low and it breaks easily, it has not been possible to make it into a practical compression tube. Furthermore, attempts have been made to develop a compressed tube with a cross-sectional shape as shown in Figure 1 using unidirectionally aligned carbon fiber prepreg or carbon fiber cross prepreg, but this cannot be achieved without folding the prepreg when forming the compressed part. Moreover, the X-ray transmission performance varies depending on the location of the compression part, and the development of a compression cylinder with sufficient performance has not been successful at present.

そこで本発明看等は上述した現状に@み、上記要求を満
足したX線診断用圧迫筒な開発することを目的として検
討した結果本発明を完成した。
Therefore, the inventors of the present invention took into consideration the above-mentioned current situation and completed the present invention as a result of studies aimed at developing a compression tube for X-ray diagnosis that satisfies the above-mentioned requirements.

本発明は中空路半球状の軟部とこの圧迫部の一端に設け
られた圧迫部支持体とよりなり、圧迫部と腕部との接合
部とか平均繊維長1〜5゜■の炭素繊維を10〜70容
量慢含む棒状ないし板状の成形素材をこの成形素材面が
圧迫筒の半球状軟部の断面内において肉厚と直角方向く
平行に配列され、かつ圧迫筒の面内圧磨いて二次元方向
にランダムに配向されていることを特徴とするX線診断
用圧迫筒にある。
The present invention consists of a hollow hemispherical soft part and a compression part support provided at one end of this compression part, and the joint part between the compression part and the arm part is made of carbon fiber with an average fiber length of 1 to 5 degrees. A rod-shaped or plate-shaped molded material containing ~70 volumes is arranged so that the surface of this molded material is arranged parallel to the wall thickness in the cross section of the hemispherical soft part of the compression tube, and the in-plane pressure of the compression tube is polished in a two-dimensional direction. The compression tube for X-ray diagnosis is characterized by being randomly oriented.

本発明を実施するに際して使用する炭素繊維としてはX
線透過性良好なものであればピッチ系炭素線維9召炭系
炭素繊維、アクリロニトリル系炭素繊維などを用いるこ
とができ、これらの炭素繊維を用いて作られた圧迫筒の
X線透過性を低下せしめない範囲で芳香族ポリアンド系
繊維などを併用することもできる。
The carbon fiber used in carrying out the present invention is
Pitch-based carbon fibers, charcoal-based carbon fibers, acrylonitrile-based carbon fibers, etc. can be used as long as they have good radio transparency, and the X-ray transparency of compression tubes made using these carbon fibers is reduced. Aromatic polyand fibers and the like can also be used in combination within the range that does not cause any adverse effects.

本発明を実施するに際して用いるマトリックス樹脂とし
ては熱硬化性樹脂、熱硬化性樹脂等種々のものを用いる
ことができ、例えばポリエチレン、ポリプロピレン、酢
ビ−エチレン系樹脂などのポリオレフィン系樹脂、ポリ
エステル系樹脂、ポリアミド系樹脂などの熱可塑性樹脂
Various types of matrix resins such as thermosetting resins and thermosetting resins can be used as the matrix resin used in carrying out the present invention, such as polyolefin resins such as polyethylene, polypropylene, and vinyl acetate-ethylene resins, polyester resins, etc. , thermoplastic resins such as polyamide resins.

ビニルエステル系樹脂、エボ牟シ樹脂、不飽和ポリエス
テル樹脂、フェノール樹脂などの加熱処理もしくはその
他のエネルギー源、例えば電子線、放射線等の処理によ
り樹脂中に三次元架橋構造を形成しうるものなどを挙げ
ることができるが、これらのものより得られる成形素材
の成形加工作業性を考慮するとぎはマトリックス樹脂と
して熱硬化型樹脂を用いることが好まし一ゝ・ 本発明を実施するに際して用いる成形壽材は繊維長l〜
50mの炭素繊維を10〜70容量嘩含有するマ) I
Jツクス樹脂含浸物で構成されており、その形状は長さ
1〜501111.巾1〜20閣なる板状、スティック
状のものであることが望ましく、補強用繊維はできるだ
け上記成形素材の長さ方向に配向せしめたものであるこ
とが好ましい。
Vinyl ester resins, epoxy resins, unsaturated polyester resins, phenolic resins, etc. that can form a three-dimensional crosslinked structure in the resin by heat treatment or treatment with other energy sources, such as electron beams or radiation. However, considering the molding workability of the molding material obtained from these materials, it is preferable to use a thermosetting resin as the matrix resin. Fiber length l~
A material containing 10 to 70 volumes of 50 m of carbon fiber) I
It is made of JTx resin impregnated material, and its shape is 1 to 501111. It is preferable that the reinforcing fibers be in the form of a plate or stick with a width of 1 to 20 mm, and that the reinforcing fibers be oriented in the longitudinal direction of the molded material as much as possible.

上記成形素材を用いて本発明の圧迫筒を作るKは金型内
に上記成形素材を所定量装填し、トランスファー成形法
もしくは圧縮成形済等圧よって成形すると、上記成形素
材は第2図に示す如く金型内に於いて、圧迫筒の半球状
軟部に於いて、その断面℃肉厚に対し直角方向く、圧迫
筒の面内圧於いては第1図に示す如く二次元方向に極め
てスムースに流動して圧迫筒の半球状軟部が形成され、
腕部に於いても第3図に示す如く同様の成形素材の流れ
が認められ、極めて強度に優れたものとすることができ
る。
K, which makes the compression tube of the present invention using the above molding material, loads a predetermined amount of the above molding material into a mold and molds it by transfer molding or compression molded isopressure, and the molded material is as shown in FIG. As shown in Figure 1, in the mold, the hemispherical soft part of the compression tube is perpendicular to its cross-sectional wall thickness, and the in-plane pressure of the compression tube is extremely smooth in the two-dimensional direction as shown in Figure 1. It flows and forms the hemispherical soft part of the compression tube,
A similar flow of the molding material is observed in the arm portions as shown in FIG. 3, and it can be made to have extremely excellent strength.

また、半球状軟部と腕部との接合部に於ける上記成形素
材は第4図に示す如く半球状軟部の面内と腕部面内にそ
の断°面に於いて肉厚に対し垂直方向に極めて良好に流
動するため、この接合部は従来開発されてきたものに較
ぺその強度を著しく高めたものとすることができる。
In addition, the above-mentioned molded material at the junction between the hemispherical soft part and the arm part is formed in a direction perpendicular to the wall thickness in the plane of the hemispherical soft part and in the arm part plane, as shown in Fig. 4. Because of the extremely good flow, this joint can be of significantly increased strength compared to previously developed joints.

また、半球状軟部に於いては上記成形素材が板状体で極
めて均一に配向されているため、X線の透過′性は均一
で良好であり、従来開発されてきた圧迫筒に比し、被検
者のX線診断時における被爆量を著しく低減しうると共
に、X線診断装置として低線源のX線を用いた場合に於
いても鮮明なX線画像の形成をすることができる。
In addition, in the hemispherical soft part, the molded material is plate-shaped and extremely uniformly oriented, so the X-ray transparency is uniform and good, compared to conventionally developed compression tubes. The amount of radiation a subject is exposed to during X-ray diagnosis can be significantly reduced, and a clear X-ray image can be formed even when a low-ray source of X-rays is used as an X-ray diagnostic apparatus.

炭素繊維のカット長は平均1〜505mがよい。The cut length of the carbon fiber is preferably 1 to 505 m on average.

1m以下では補強効果に乏しく、5011以上では表1
に示す通り補強効果の改善か見られな(ばかつか素材の
流動性に乏しくなる。より好ましくは12.5〜25絽
である。一方、部分補強の為50IIllI以上の繊維
を一方向、織物9組紐等の形態で50%を越えない範囲
で含むことも可能である。
Below 1m, the reinforcing effect is poor, and above 5011, Table 1
As shown in the figure, there is no improvement in the reinforcing effect (the fluidity of the material becomes poor.More preferably 12.5 to 25 rugs.On the other hand, for partial reinforcement, fibers of 50III or more are unidirectionally woven into 9 It is also possible to include it in the form of a braid or the like within a range not exceeding 50%.

熱硬化性樹脂に対する補強用炭素繊維の含有率は高い程
好ましいが、補強効果及び成形時の流動性を考慮して1
5〜70容量チ、より好ましくは50〜65容量係の繊
維を含有することが好ましい。
The higher the content of the reinforcing carbon fiber in the thermosetting resin, the better, but considering the reinforcing effect and fluidity during molding,
It is preferable to contain fibers having a volume of 5 to 70, more preferably 50 to 65.

成形素材の形状は長さ1〜50m、巾1〜20Uなる板
状又は棒状体のものであることが、その成形性が良好で
あり、その長さ、巾が上記範囲を越えて大きくなるとそ
の成形時に於げる成形性か低下し、Xa透過特性1強度
の高い圧迫筒とすることはできなくなるので好ましくな
い。
The shape of the molding material should be a plate or rod with a length of 1 to 50 m and a width of 1 to 20 U to ensure good moldability. This is undesirable because the moldability during molding decreases and it becomes impossible to obtain a compression cylinder with high Xa permeation properties and strength.

実施例1 一万フィラメントの炭素繊維トウにエポキシ樹脂を含浸
した後、長さを表IK示す如き長さに切断し、厚さO,
l wm、巾約51Ellなる非粘着性成形素材を作っ
た。この成形素材は炭素繊維の含有率が50容量チのも
のであった。
Example 1 A carbon fiber tow of 10,000 filaments was impregnated with epoxy resin and then cut into lengths as shown in Table IK.
A non-adhesive molded material having a width of approximately 51Ell was made. This molded material had a carbon fiber content of 50 volumes.

上記の如(して得た成形素材を圧縮成形用金型中に充填
し加熱加圧し硬化せしめた。
The molding material obtained as described above was filled into a compression mold and cured by heating and pressing.

得られた圧迫筒の半球状軟部及び腕部の断面は第2図中
の(1)に示した如くその肉厚に対し垂直方向に極めて
均−忙流動しており、また平面部に於いては第1図中の
(2)K示した如(二次元方向にランダムに均一に流動
したものであった。
The cross-section of the hemispherical soft part and arm part of the obtained compression tube shows extremely uniform flow in the direction perpendicular to the wall thickness, as shown in (1) in Figure 2, and in the flat part. As shown in (2) K in Figure 1, the flow was random and uniform in two dimensions.

また、半球状軟部と腕部との接合部断面に於いては上記
成形素材が両部にまたがって極めて均一に流動しており
、腕部の横断面に於いても第3図に示す如(肉厚に対し
垂直方向に流動したものであった。
In addition, in the cross section of the joint between the hemispherical soft part and the arm, the molding material flows extremely uniformly across both parts, and even in the cross section of the arm, as shown in FIG. The flow was perpendicular to the wall thickness.

得られた圧迫筒の曲げ強度9曲げ弾性率を測定した結果
を表1に示した。
Table 1 shows the results of measuring the bending strength and bending modulus of the obtained compression cylinder.

表  1 また、上記の如くして得た長さ25m、厚さ0.111
1%巾71111の成形素材を金型内に充填し表2に示
す如き肉厚を有する圧迫筒を作成し、そのたわみ特性、
X線透過特性及びその重さを測定した結果を表2に示し
た。
Table 1 Also, the length 25 m and thickness 0.111 obtained as above
A compression cylinder having a wall thickness as shown in Table 2 was created by filling a mold with a molding material with a width of 71111% of 1%, and its deflection characteristics were determined.
Table 2 shows the results of measuring the X-ray transmission properties and weight.

表  2 II1図は本発明の圧迫筒の平面図を示すものであり、
第2図はそのA−A断面図を、第3図はB−B断面図で
あり、第4図は圧迫簡軟部と腕部との接合部の断面図で
ある。
Table 2 Figure II1 shows a plan view of the compression tube of the present invention,
FIG. 2 is a cross-sectional view taken along line AA, FIG. 3 is a cross-sectional view taken along line B-B, and FIG. 4 is a cross-sectional view of the joint between the compressible part and the arm.

泉/図 襄2図 L3図       尾4コFountain/Figure Sho 2 map L3 diagram 4 tails

Claims (1)

【特許請求の範囲】[Claims] 略半球状毅部と腕部及び腕部接合部が平均繊維長1〜5
0諺なる炭素繊維を10〜70容量優含む長さ1〜50
M、巾1〜20露なる棒状ないし板状成形素材を、前記
毅部、腕部の断面肉厚方向に対し略垂直方向に配列され
ており、かつ前記毅部及び腕部の平面内に於いて二次元
方向にランダムに配向せしめられており、かつ毅部と腕
部との接合部に於いては前記成形素材が毅部と腕部とに
わたって配置された構造をとっていることを特徴とする
X線診断用圧迫筒。
Approximately hemispherical stiffness, arms, and arm joints have an average fiber length of 1 to 5.
Length 1-50 containing over 10-70 volumes of carbon fiber
M, rod-shaped or plate-shaped molded materials having a width of 1 to 20 mm are arranged in a direction substantially perpendicular to the cross-sectional thickness direction of the arm portion and the arm portion, and within the plane of the arm portion and the arm portion. The molded material is randomly oriented in two-dimensional directions, and at the joint between the arm and the arm, the molded material is arranged over the arm and the arm. A compression tube for X-ray diagnosis.
JP56206726A 1981-12-21 1981-12-21 Pressing cylinder for x-ray diagnosis Granted JPS58109035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206726A JPS58109035A (en) 1981-12-21 1981-12-21 Pressing cylinder for x-ray diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206726A JPS58109035A (en) 1981-12-21 1981-12-21 Pressing cylinder for x-ray diagnosis

Publications (2)

Publication Number Publication Date
JPS58109035A true JPS58109035A (en) 1983-06-29
JPS6351696B2 JPS6351696B2 (en) 1988-10-14

Family

ID=16528084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206726A Granted JPS58109035A (en) 1981-12-21 1981-12-21 Pressing cylinder for x-ray diagnosis

Country Status (1)

Country Link
JP (1) JPS58109035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487638A (en) * 1987-09-28 1989-03-31 Mitsubishi Electric Corp Carbon fiber-reinforced composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116366A (en) * 1974-07-31 1976-02-09 Mitsubishi Rayon Co
JPS5637690U (en) * 1979-08-31 1981-04-09
JPS5643849A (en) * 1979-09-17 1981-04-22 Taiko Denki Seisakusho:Kk Check code transmission system of data transmission using push-button dial signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116366A (en) * 1974-07-31 1976-02-09 Mitsubishi Rayon Co
JPS5637690U (en) * 1979-08-31 1981-04-09
JPS5643849A (en) * 1979-09-17 1981-04-22 Taiko Denki Seisakusho:Kk Check code transmission system of data transmission using push-button dial signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487638A (en) * 1987-09-28 1989-03-31 Mitsubishi Electric Corp Carbon fiber-reinforced composite material
JPH0563491B2 (en) * 1987-09-28 1993-09-10 Mitsubishi Electric Corp

Also Published As

Publication number Publication date
JPS6351696B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
KR101688868B1 (en) Molded product having hollow structure and process for producing same
AU2007201166B2 (en) External fixator element
ES2236889T3 (en) IMPROVEMENTS OF, OR RELATED TO, MOLDING METHODS.
JP7404486B2 (en) Carbon fiber reinforced molded body
BR112019005958B1 (en) REINFORCING ELEMENT TO INCREASE THE RESISTANCE OF SELF-SOLIFYING PASTY MATERIALS, AND METHOD FOR PRODUCING A STRUCTURE
JPS58109035A (en) Pressing cylinder for x-ray diagnosis
JP6822120B2 (en) Sound insulation structure
US20100332002A1 (en) Carbon fiber prosthetic foot with hollow cross sections
JP7338468B2 (en) laminate
JP2018518989A (en) Fishing rod having graphene and manufacturing method
JPH0115370Y2 (en)
JP2003002990A5 (en)
JPS58201614A (en) Prepreg sheet
JP3154805B2 (en) Tubular body
JP2958036B2 (en) Penetration resistant composite molding
JPS5829653A (en) Intermediate for molding
JPH0740488A (en) Fiber reinforced resin tubular material
DE102004047552B4 (en) Production of airgel composite materials
JP3114741B2 (en) Prepreg
KR20240051128A (en) Absence of X-ray transmission
JPH061771Y2 (en) Intermediate material for reinforced resin structures
JPS58190344A (en) Fishing reel
JP2005187523A (en) Heat-resistant frp member for exhaust apparatus and frp exhaust apparatus using the same
JP7512307B2 (en) Radius filler for braided preforms
JP4333242B2 (en) Radiation diagnostic equipment top plate