JPS5810902A - Electromagnetic wave absorbing body - Google Patents

Electromagnetic wave absorbing body

Info

Publication number
JPS5810902A
JPS5810902A JP10968681A JP10968681A JPS5810902A JP S5810902 A JPS5810902 A JP S5810902A JP 10968681 A JP10968681 A JP 10968681A JP 10968681 A JP10968681 A JP 10968681A JP S5810902 A JPS5810902 A JP S5810902A
Authority
JP
Japan
Prior art keywords
layer
electromagnetic wave
impedance
wave absorber
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10968681A
Other languages
Japanese (ja)
Other versions
JPH0325958B2 (en
Inventor
Kenichi Hatakeyama
賢一 畠山
Tadashi Sugimoto
正 杉本
Tetsuji Inui
乾 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10968681A priority Critical patent/JPS5810902A/en
Publication of JPS5810902A publication Critical patent/JPS5810902A/en
Publication of JPH0325958B2 publication Critical patent/JPH0325958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Abstract

PURPOSE:To obtain a large attenuation of reflection over a wide frequency, by providing the 1st layer of a low impedance active like an absorber and the 2nd layer operating as a tranaformer on a conductor plate. CONSTITUTION:The 1st layer 1 having a low input impedance viewed from other side when one side is short-circuited is provided on a conductor plate A. A layer 2 acting like an impedance transforming action is provided on the layer 1. The layer 1 is constituted with an electromagnetic wave absorber, but it can not be a good electromagnetic wave absorber only with a single layer because of the surface reflection. The layer 2 becomes an impedance transformer between air and the layer 1. Thus, the layer can be a dielectric substance without loss. An excellent electromagnetic wave absorbing body is obtained through the mutual action of the two layers.

Description

【発明の詳細な説明】 本発明は電波吸収体に関する。[Detailed description of the invention] The present invention relates to a radio wave absorber.

電磁波の不要な散lL#ILの抑mを目的とする電波1
111L体において、構造上置も簡潔なるものは、第1
図に示す如く、導体板ムの上に電磁波徴収層1を設は九
整合形電液吸駅体と呼ばれるものである。
Radio waves 1 aimed at suppressing unnecessary dispersion of electromagnetic waves IL#IL
In the 111L body, the one with the simplest structure is the first one.
As shown in the figure, an electromagnetic wave collection layer 1 is provided on a conductive plate, which is called a nine-match electrolyte absorber.

整合形電ma収体は、電磁波吸収層1の複素誘電率(:
)、複素透磁率(ロ)及び厚さく櫨)を調整し電磁波吸
収層10表面から見た規格化入力インピーダンスtlK
することによシ、大きな反射減衰量を得る。しかしゑ=
1は臨界的な条件のもとでのみ成立するので大きな反射
減衰量が得られる周波数幅が非常に狭い光め厚さdの変
化に対する許容度が小さいという欠点があ−)え。
The matched electromagnetic absorber has a complex dielectric constant (:
), complex magnetic permeability (b) and thickness) are adjusted to obtain the normalized input impedance tlK as seen from the surface of the electromagnetic wave absorbing layer 10.
By doing so, a large return loss can be obtained. However, =
1 holds true only under critical conditions, so the frequency width at which a large return loss can be obtained is very narrow, and the drawback is that there is little tolerance for changes in the optical thickness d.

本発明の目的は導体板上に%いずれか一側面管短絡状態
にしたときに他の側面から見て低入力インピーダンス特
性を有する層1を設け、更にその上にインピーダンス変
成作用を有する層2を積層した電波徴収体により、上記
の欠点を克服した電波吸収体を提供するととにある。
The object of the present invention is to provide a layer 1 on a conductor plate which has a low input impedance characteristic when viewed from the other side when one side of the tube is short-circuited, and a layer 2 having an impedance modification effect on the layer 1. It is an object of the present invention to provide a radio wave absorber that overcomes the above-mentioned drawbacks by using a laminated radio wave collector.

以下に本発明にりいて詳細に説明する。The present invention will be explained in detail below.

本発明で提供する層1は、いずれか−側面を短絡状態に
したとき他の側面から見て低入力インピーダンス特性を
有するため、謳1図に示すように、導体板上に層1を単
体で設けただけでは、電磁波が層1の表面で反射するた
め、良好な電波吸収体とはな如得ない。同じくインピー
ダンス変成作用を有する層2は、無損失材料でも使用す
ることができるので、層2単体でも電波吸収体とはなり
得ないものである。而して、このように単体では良好な
電波吸収体とはなり得ない2種の特性を有する材料を第
2図に示す如く、積層上に構成すれば、真好tkI#性
を有する電波吸収体を構成することができる。
Layer 1 provided by the present invention has a low input impedance characteristic when viewed from the other side when one side is short-circuited, so layer 1 is placed alone on a conductive plate as shown in Figure 1. If only provided, the electromagnetic waves would be reflected on the surface of the layer 1, so it would not be a good radio wave absorber. The layer 2, which also has an impedance modification effect, can be made of a lossless material, so the layer 2 alone cannot serve as a radio wave absorber. As shown in Fig. 2, if materials with two types of characteristics that cannot be used alone as a good radio wave absorber are stacked together as shown in Fig. 2, a radio wave absorber with true tkI# properties can be obtained. can form a body.

謔2図の構成において、層2がなく層1のみの状態での
規格化入力インピーダンス、層2がある場合の規格化入
力インピーダンスを各々第3図のスミス図表上の破線、
実線で示す。ただし、層1の複素誘電率g=4Q−j1
5.複素透磁率;=0.88−jo、3.厚さは1.4
露とし、層2の複素誘電率:=3.to−jo、複素透
磁率tμ=1−jO。
In the configuration shown in Figure 2, the normalized input impedance when there is no layer 2 and only layer 1 is present, and the normalized input impedance when layer 2 is present are expressed by the broken lines on the Smith diagram in Figure 3, respectively.
Indicated by solid line. However, the complex permittivity of layer 1 g=4Q−j1
5. Complex permeability;=0.88-jo, 3. Thickness is 1.4
complex permittivity of layer 2:=3. to-jo, complex permeability tμ=1-jO.

厚さは41−とし、5cazから15GHzの周波数で
計算したものである。層1単体の場合は、113図の破
線で示される様に規格化入力インピーダンスがスミス図
表の中心(Z=X)より大きくずれているので良好な電
波吸収体となっていないことがわかる。しかし層lの上
に層2t−設けた場合の規格化入力インピーダンスは第
3図の実線で示すれるようにスミス図表の中心を通るの
で良好な電波吸収体となる。113図の実線の特性を反
射減衰量と、周波数の関係で表わした亀のを第4図の実
線に示す。第4図の破線は第1図の整合形電波吸収体に
於て、その複素誘電率a ’=+12−jO,55,複
素透磁率μ=1−jo、4.厚さt−2,4■とじて計
算したものであるが、実線で示される特性に比べて反射
減衰量が大きくなる周波数幅が狭い。
The thickness is 41- and was calculated at frequencies from 5caz to 15GHz. In the case of layer 1 alone, the normalized input impedance deviates greatly from the center of the Smith diagram (Z=X), as shown by the broken line in Figure 113, so it can be seen that it is not a good radio wave absorber. However, when the layer 2t is provided on the layer 1, the normalized input impedance passes through the center of the Smith diagram as shown by the solid line in FIG. 3, so it becomes a good radio wave absorber. The solid line in FIG. 4 shows the characteristic shown by the solid line in FIG. 113 in terms of the relationship between return loss and frequency. The broken line in FIG. 4 indicates the complex dielectric constant a'=+12-jO, 55, complex permeability μ=1-jo, 4. Although the calculations were made with the thicknesses t-2 and 4 cm, the frequency width where the return loss increases is narrower than the characteristic shown by the solid line.

例えば第4図において20dl1以上の反射減衰量とな
る周波数幅は、従来の整合形吸収体に於ては高々soo
MHz 8度であるが、本発明にょる菖2図に示す構成
の電波吸収体に於ては約3500MHz′であシ、大幅
に&jLされている。
For example, in Fig. 4, the frequency width that results in a return loss of 20 dl1 or more is at most soo in the conventional matched absorber.
MHz is 8 degrees, but in the radio wave absorber having the configuration shown in Fig. 2 according to the present invention, it is approximately 3500 MHz', which is significantly lower.

本実l!jIKよる第2図の構成では層2は空気と層1
とのインピーダンス変成器として働らいていると考えら
れる。従って、これをマイクロ波工学テの1/4波長イ
ンピーダンス変換法の概念から捕えると、層1単体での
規格化入力インピーダンスにおいてその虚数部が0とな
る周波数t f Oe実部tRとすれば、層2の波動イ
ンビーダン、+Cjw (My = q ) t Zv
 = 1m トL、厚す”を層2内1sでのfoK対応
する波長の1/4 にすれけインピーダンス変成作用を
完全に1!現できることになる。
Honestly! In the configuration shown in Figure 2 by IK, layer 2 is air and layer 1
It is thought that it works as an impedance transformer. Therefore, if we understand this from the concept of the 1/4 wavelength impedance conversion method in microwave engineering technology, if the frequency t f Oe where the imaginary part becomes 0 in the normalized input impedance of layer 1 alone is the real part tR, then Layer 2 wave impedance, +Cjw (My = q) t Zv
= 1 m, the thickness is 1/4 of the wavelength corresponding to foK at 1 s in layer 2, and the impedance transformation effect can be completely expressed.

簡単のために層2を損失のない誘電体とすれば、113
図の破線よ砂Rz = 0.27 、 f o = 9
500MHzであり7層2の誘電率ξはg=i=3.7
0.その厚さは4.10−と1に−)て、前述した計算
に於て用い友値と同じに&る。
For simplicity, if layer 2 is a lossless dielectric, then 113
According to the broken line in the figure, Rz = 0.27, f o = 9
500MHz and the dielectric constant ξ of 7 layers 2 is g=i=3.7
0. Its thickness is 4.10- and 1-), which is the same as the value used in the calculations described above.

以上は、第3図にて破@7t″示される層1m体の規格
化入力インピーダンスがいかなる値でありても一般に成
立する関係であるが、数値実験の結果、115図に20
d1以上の反射減衰量となる周波数幅(中心周波数が約
9〜1ocut’)と前述の8との関係に示す如く、R
が0.5以下のときに良好to性となる。従りて本発明
による第2図に示される構成O電液吸収体に於ては層1
m体の規格化入力インピーダンスを小さくし、RtO,
5以下とすることが肝要である。
The above is a relationship that generally holds true no matter what value the normalized input impedance of the 1m-layer body shown as broken @7t'' in Fig. 3, but as a result of numerical experiments, 20
R
Good to property is obtained when is 0.5 or less. Therefore, in the structure O electrolyte absorber according to the invention shown in FIG.
By reducing the normalized input impedance of the m body, RtO,
It is important that the value be 5 or less.

大きい値にすることになり、その結果1/4波長にする
層2の厚さが薄くなるという利点を持つ。
This has the advantage that the thickness of the layer 2, which is made into a quarter wavelength, becomes thinner.

又、Rt 0.5以下にすることは層2の誘電率ε(誘
電体の誘電率はこの周波数範囲では2以上であることが
多いので、層2の材料の選択を容易にする利点もある。
Also, setting Rt to 0.5 or less has the advantage of making it easier to select the material for layer 2, since the dielectric constant ε of layer 2 (the dielectric constant of dielectrics is often 2 or more in this frequency range) .

上記の計算例では、層2は無損失の誘電体とし、その厚
さを174 波長として極〈簡単な場合を取)扱りたが
、層2に若干の電気的磁気的損失を含ませることや、厚
さを1/4波長かられずかずらすこと等で反射減衰量の
特性を変化させる ことも考えられるが、基本的には層
2にインピーダンス変成作用を持たせるととに変やはな
い。
In the above calculation example, layer 2 is a lossless dielectric material and its thickness is assumed to be 174 wavelengths (a simple case); however, it is possible to include some electrical and magnetic loss in layer 2. It is also possible to change the characteristics of return loss by changing the thickness from 1/4 wavelength, etc., but basically there is nothing wrong with giving layer 2 an impedance transformation effect. .

第6図は層lとして黴金属看、及びフェライトをペイン
ト材に混ぜて電気的損失、磁気的損失を大きくし、前述
のRを約11GHzK於てはり0.3の値にした材料を
用い、層2として誘電率Cが1.3に近い誘電体を用い
て、これを同軸短絡端の前面に置き、その反射減衰量を
測定したものである。
Figure 6 shows the layer 1 using a material in which mold metal and ferrite are mixed with the paint material to increase the electrical loss and magnetic loss, and the above-mentioned R is set to a value of 0.3 at about 11 GHzK. A dielectric material with a dielectric constant C close to 1.3 was used as layer 2, and this was placed in front of the coaxial short-circuit end, and its return loss was measured.

反射減衰量が20d1以上となる周波数は約8700M
HS から11000MHzK渡りており、従来の整合
形電波徴収体に比べて非常に広い周波数幅であること1
*験的K1m1!した。
The frequency at which the return loss is 20d1 or more is approximately 8700M
HS to 11,000MHzK, which is a much wider frequency width than conventional matched radio wave collectors1.
*Experimental K1m1! did.

以上述べたようk、本発明によれば従来の整合形電波吸
収体に比べて著るしく広い周波数幅に渡りて大きな反射
減衰量を得る電波吸収体が実現できる。
As described above, according to the present invention, it is possible to realize a radio wave absorber that obtains a large return loss over a significantly wider frequency range than conventional matched radio wave absorbers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の整合形電波吸収体の構造を示す図、IE
2図は本発明による電波吸収体の構造を示、    す
図・菖3図は一′ン8図表上での特性を示す図・第4図
は第3図の実−の特性を反射減衰量と周波数の関係で示
した図、aS図は、20d1以上の反射減衰量となる周
波数幅とRとの関係を示す図、第6図は本発明による電
波吸収体の実験結果管示す図である。 寮17 蟻2@ 第Φ図 J(Mm)
Figure 1 is a diagram showing the structure of a conventional matching type radio wave absorber, IE
Figure 2 shows the structure of the radio wave absorber according to the present invention; The aS diagram is a diagram showing the relationship between R and the frequency width that results in a return loss of 20d1 or more, and Figure 6 is a diagram showing the experimental results of the radio wave absorber according to the present invention. . Dormitory 17 Ant 2 @ Diagram Φ J (Mm)

Claims (1)

【特許請求の範囲】[Claims] 導体板上K11lO層を設妙、更に雛1の層0上に嬉2
の層を積層して構成する電波電波吸収体に於て、lll
0層社そのいずれか一側面を短絡状態にしたときに倫側
面から見て低入力イン゛ビーダンス勢性を有し、 11
120層はインピーダンス変成作用を有するようKした
仁とt41黴とする電波吸収体。
Set up a K111O layer on the conductor board, and add 2 layers on layer 0 of Hina 1.
In a radio wave absorber constructed by laminating layers of
When one of the 0-layer sides is short-circuited, it has low input impedance when viewed from the L side, and 11
The 120th layer is a radio wave absorber made of K and T41 mold to have an impedance transformation effect.
JP10968681A 1981-07-14 1981-07-14 Electromagnetic wave absorbing body Granted JPS5810902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10968681A JPS5810902A (en) 1981-07-14 1981-07-14 Electromagnetic wave absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10968681A JPS5810902A (en) 1981-07-14 1981-07-14 Electromagnetic wave absorbing body

Publications (2)

Publication Number Publication Date
JPS5810902A true JPS5810902A (en) 1983-01-21
JPH0325958B2 JPH0325958B2 (en) 1991-04-09

Family

ID=14516610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10968681A Granted JPS5810902A (en) 1981-07-14 1981-07-14 Electromagnetic wave absorbing body

Country Status (1)

Country Link
JP (1) JPS5810902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081455A (en) * 1988-01-05 1992-01-14 Nec Corporation Electromagnetic wave absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081455A (en) * 1988-01-05 1992-01-14 Nec Corporation Electromagnetic wave absorber

Also Published As

Publication number Publication date
JPH0325958B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
US5497137A (en) Chip type transformer
US9130252B2 (en) Symmetric baluns and isolation techniques
JP3310670B2 (en) Directional coupler for wireless devices
JPS6121601A (en) Microwave balloon for mixer and modulator
US6954116B2 (en) Balanced-unbalanced converting circuit and laminated balanced-unbalanced converter
CN103915667B (en) LTCC band-pass filter using feed structure to restrain third harmonics
Wu et al. Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators
US20090091405A1 (en) Resonator, method for manufacturing filter by using resonator and filter manufactured by the same method
CN109301405A (en) The three-dimensional band absorption frequency selecting structures of suction type
CN108054502A (en) Compact-type high-gain recognition circular polarization reader antenna and feeding network preparation method
US8478223B2 (en) Methods and apparatus for receiving radio frequency signals
JPH04150098A (en) Radio wave absorptive material
KR20030007398A (en) Radio wave absorber
CN105552486A (en) Millimeter wave narrow bandpass filter based on folded substrate integrated waveguide
JPS5810902A (en) Electromagnetic wave absorbing body
CN102959801A (en) Microstrip antenna
Abdelaziz et al. Realization of composite right/left-handed transmission line using coupled lines
CN107785642B (en) Multilayer directional coupler based on super-exponential line oscillation type load
Tabatabaeian et al. Design investigation of a wideband backward-wave directional coupler using neural network
US3221276A (en) Microwave variable reactance device operating about a resonant condition
WO2021077639A1 (en) Directional coupler for use in multi-beam antenna feed network
Naito et al. Electromagnetic wave absorbing properties of carbon‐rubber doped with ferrite
Jia et al. Multilayer composite right/left-hand transmission line with ultra-wideband and miniaturized characteristics
Gupta et al. An high impedance transformation ratio dual-band matching network with DC isolation capability
Yang et al. Dual bandpass filter based on hybrid spoof surface plasmon polariton and substrate integrated waveguide structure