JPS58108986A - Controller for motor - Google Patents

Controller for motor

Info

Publication number
JPS58108986A
JPS58108986A JP56208683A JP20868381A JPS58108986A JP S58108986 A JPS58108986 A JP S58108986A JP 56208683 A JP56208683 A JP 56208683A JP 20868381 A JP20868381 A JP 20868381A JP S58108986 A JPS58108986 A JP S58108986A
Authority
JP
Japan
Prior art keywords
speed
motor
rate
electric motor
drooping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56208683A
Other languages
Japanese (ja)
Inventor
Tamotsu Moriyasu
守安 保
Yasuo Meide
目出 康男
Michio Shimoda
下田 道雄
Yoshiaki Uwazumi
好章 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56208683A priority Critical patent/JPS58108986A/en
Publication of JPS58108986A publication Critical patent/JPS58108986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/2855Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To enable to rotate a motor even in a low speed range by varying the depending rate in response to the rotating speed of the motor. CONSTITUTION:A depending rate calculator 56 inputs the outputs of a rotating speed detector 54 and a current detector 55, thereby varying the depending rate d between the motor current and the rotating speed in response to the rotating speed. After a speed reference value Na is corrected by a speed correction signal from the calculator 56, it is inputted to a speed controller 53. The controller 53 controls the output of a power source 52, thereby controlling the speed of a motor 51. In this manner, depending characteristic is provided in the low speed range without stopping the motor

Description

【発明の詳細な説明】 本発明は電動機の回転速度に垂下特性をもたせるいわゆ
る電動機のDroop制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to so-called Droop control of an electric motor that gives drooping characteristics to the rotational speed of the electric motor.

第1図は2つのスタンドを有する圧延設備を示す説明図
である。
FIG. 1 is an explanatory diagram showing a rolling equipment having two stands.

図において、11)は被圧延材、(11)は&)lスタ
ンドの作業ロール、(6)は翫)1スタンドの控えロー
ル、斡は作業ロールaυに連結された減速機、 04は
減速機Qlに連結された電動機である。
In the figure, 11) is the material to be rolled, (11) is the work roll of the &)l stand, (6) is the backing roll of the 1) stand, 斡 is the reducer connected to the work roll aυ, and 04 is the reducer This is an electric motor connected to Ql.

又、(2)、 @、 @、 軸は凪2スタンドのもので
それぞれ(ロ)は作業ロール、(2)は控えロール、(
至)は減速機、(2)は電動機を示す。
Also, (2), @, @, the axes are from Nagi 2 stand, respectively (b) is the work roll, (2) is the backup roll, (
(to) shows the reducer, and (2) shows the electric motor.

仁ξで、隘1スタンド下流の被圧延材f1)の速度をY
l p hh 2スタンド下流の被圧延材(1)の速度
をVle作業ロールOv、(2)のロール径をハ及びへ
、減速機01、@の減速比をQ及び偽、電動機a◆、■
の単位時間当りの回転数すなわち回転速度をN1及びN
、。
In ξ, the speed of the rolled material f1) downstream of the first stand is Y
l p hh The speed of the rolled material (1) downstream of the 2nd stand is Vle, the work roll Ov, the roll diameter of (2) is C and to, the reduction ratio of reducer 01, @ is Q and false, the electric motor a◆,■
The number of rotations per unit time, that is, the rotation speed of N1 and N
,.

又各スタンドの先進率をそれぞれfl及びf2とすると
次式が成立する。
Further, if the advance rate of each stand is fl and f2, the following equation holds true.

N、=              川・・・・・・ 
0式%式% こξで、Ih5D+sG1*G!lよある圧延状態では
固定値であり、fl * fl * vl e vlも
圧延スケジュールが決定される値である。
N, = river...
0 formula% formula% With this ξ, Ih5D+sG1*G! l is a fixed value in a certain rolling state, and fl * fl * vl e vl is also a value for determining the rolling schedule.

したがって、Nl * l’Gは圧延スケジュールが決
定される。
Therefore, the rolling schedule is determined based on Nl*l'G.

今、仮にNlが高く設定されていたとすると、Nw、l
 lスタンド電動機04に負荷が多くかかることになり
、又、鬼2スタンドは、凪1スタンドのロールQυ、被
圧延材(11を通じて押されることになり、その結果、
凪2スタンドの電動機員の負荷電流は小さくなり、両者
の負荷のかかりかたが不平衡となる。
Now, if Nl is set high, Nw,l
A large load will be applied to the l-stand electric motor 04, and the Oni 2 stand will be pushed through the roll Qυ and the rolled material (11) of the Nagi 1 stand.
The load current of the electric motor member of the Nagi 2 stand becomes small, and the load on both stands becomes unbalanced.

このような不具合を除去するため、従来設備では第2図
に示すように、電動機電流Iと電動機回転速FINの間
に垂下特性をもたせている。
In order to eliminate such a problem, in conventional equipment, as shown in FIG. 2, a drooping characteristic is provided between the motor current I and the motor rotational speed FIN.

つまも、速度基準値Naを高(設定した場合でも電流が
大きくなると、自動的に回転速1tNbが小さくなるよ
うに制御している。
Finally, even if the speed reference value Na is set to a high value, as the current increases, the rotation speed 1tNb is automatically controlled to become smaller.

従来設備では、負荷電流に対して回転速度の垂下率は一
定であり、第2図において、電動機の定格回転速度をN
o速度基準値をNas又速変速度基準値Na転中に定格
負荷電流Ioが、、、かかった時の電動機の回転数をN
bとすると、垂下率1dは、Na−Nb ””  No     ・・・・・川・0式で定義され
る。従来の装置では、この垂下率dは速度に無関係であ
ったので、以下に述べるような不具合があった。
In conventional equipment, the rate of rotational speed droop is constant with respect to load current, and in Figure 2, the rated rotational speed of the motor is set to N.
o The speed reference value is Na, and the speed change speed reference value Na is the rotational speed of the motor when the rated load current Io is applied during rotation.
b, the drooping rate 1d is defined by the Kawa-0 equation. In the conventional device, this drooping rate d was unrelated to the speed, so there were problems as described below.

すなわち、低速領域において例えば速度基準値がNa)
od  で、かつ電動機の負荷電流が定格電流を超える
と、速度基準は垂下補正回路によって打ち消され、あた
かも速度指令が零となったようになり、電動機は回転し
なくなる欠点があった。
That is, in the low speed region, for example, the speed reference value is Na)
od and when the load current of the motor exceeds the rated current, the speed reference is canceled by the droop correction circuit, and the motor stops rotating, as if the speed command were zero.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電動機の回転速度に応じて垂下率
dを変化させることにより、低速領域においても回転が
可能となるような制御装置を提供することを目的として
いる。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and provides a control device that enables rotation even in a low speed region by changing the droop rate d according to the rotational speed of the electric motor. is intended to provide.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第8図において、 tti1+は制御される電動機、1
5’A4’A電動機−を駆動させるための電源装置、・
Aは速度制御器、−は電動機(2)の回転速度を検出す
る回転速度検出器、−は電動機1511の負荷電流を検
出する負荷電流検出器、−は垂下率演算装置、匍は速度
指令信号をそれぞれ示す。
In FIG. 8, tti1+ is the controlled electric motor, 1
Power supply device for driving the 5'A4'A electric motor,・
A is a speed controller, - is a rotational speed detector that detects the rotational speed of the electric motor (2), - is a load current detector that detects the load current of the electric motor 1511, - is a drooping rate calculation device, and Sae is a speed command signal are shown respectively.

次に、本発明の動作について説明する。Next, the operation of the present invention will be explained.

第2図において、垂下率演算装置−には、回転速度検出
器−により計測された電動機値υの回転速度と電流検出
装置−により計測された電動機電流が入力されている。
In FIG. 2, the rotation speed of the motor value υ measured by the rotation speed detector and the motor current measured by the current detection device are input to the droop rate calculation device.

したがって垂下率dを垂下率演算装置−で演算するとき
、例えば第4図に示すような関係で選んだとすれば低速
域において垂下率は小さくなり、ξの速度補正信号によ
り速度基準値が零以下になって電動機が回転しなくなる
という不具合はなくなる。
Therefore, when calculating the drooping rate d using the drooping rate calculation device, if the relationship shown in Fig. 4 is selected, the drooping rate will be small in the low speed range, and the speed reference value will be zero due to the speed correction signal of ξ. The problem that the electric motor stops rotating due to the following conditions will no longer occur.

以下、第8図、第4図により垂下率演算装置−の演算す
る速度垂下率dについて具体的に述べる。
Hereinafter, the speed drooping rate d calculated by the drooping rate calculating device will be specifically described with reference to FIGS. 8 and 4.

先ず、回転速度検出器−の検出する電動機−の回転速度
は一方向、すなわち正値をとるものとし、この回転速度
Nbがoxbs軸(但し、Nmは回転速度Nの定格値N
oに比べ約数パーセント以下の小さい値である。)のと
きには、 又1回転速度NbがNa滲すのときには、d= do 
  ・・・・・・・・・0式とグする。このように、垂
下率演算装置−により速度垂下率dを演算すれば、第4
図に示す如き所望の速度垂下率が得られることになる。
First, the rotation speed of the electric motor detected by the rotation speed detector is assumed to be in one direction, that is, to take a positive value, and this rotation speed Nb is the oxbs axis (however, Nm is the rated value N of the rotation speed N).
This is a small value of about several percent or less compared to o. ), and when one rotational speed Nb leaks Na, d=do
・・・・・・・・・Google it as 0 type. In this way, if the speed droop rate d is calculated by the droop rate calculation device, the fourth
The desired velocity droop rate as shown in the figure is obtained.

゛また。速度制御器−に与えられる速度基準信号Na、
 l!!動機−の電流をI、電動機11+1の回転速度
をNbとすれば、第2図に説明した定義によって下式が
成立する。
゛Again. speed reference signal Na given to the speed controller;
l! ! If the current of the motor - is I and the rotational speed of the motor 11+1 is Nb, then the following formula holds true according to the definition explained in FIG.

■ Nb−Na −d−No・−・・・・・・・・・0式但
しIoは電動機151Jの定格負荷電流、またNoは電
動−機15】)の定格回転速度を表わす。
■Nb-Na-d-No.--0 Formula where Io represents the rated load current of the motor 151J, and No represents the rated rotational speed of the motor 15].

■、■および0式より次の0式および0式が成立する。From (1), (2), and (0), the following (0) and (0) formulas hold true.

Gb≦勅のとき ■ Nb= Na −do−No・−・・・・・・・・・0
式なお■式および0式におけるそれぞれのNbは。
When Gb≦Emperor ■ Nb= Na -do-No・-・・・・・・・・・0
In addition, each Nb in the formula (■) and the formula (0) is.

速度指令Naが次式の値のとき同一値となり、 Naの
値の増大に従って■式より0式へ切替えられることとな
る。
When the speed command Na is the value of the following formula, it becomes the same value, and as the value of Na increases, the formula is switched from formula ① to formula 0.

Na= Nm 十do−No・」−・・・・・・・・・
 0式いいかえれば、垂下率演算装置■は、回転速度検
出器(2)の検出する電動機I5nの回転速度Nbに対
応して0式または0式にて規定される垂下率dを演算す
るとともに、電流検出装置−によって検出される電動機
Illの電流Iを利用して ■ d−No・−・・・・・・・・・0式 なる信号を生成し、速度制御器−へ出力するものである
Na= Nm 10 do-No・”-・・・・・・・・・
In other words, the drooping rate calculation device (2) calculates the drooping rate d defined by the formula 0 or the formula 0 corresponding to the rotational speed Nb of the electric motor I5n detected by the rotational speed detector (2), and It uses the current I of the motor Ill detected by the current detection device to generate a signal called d-No.....0 and outputs it to the speed controller. .

■式の示すところによれば、電動機忰υの回転速度Nb
が零になることはなく、起動時の起動電流もしくは負荷
電流によって電動機が回転しなくなるという従来装置の
不工合は除去される。
■According to the equation, the rotational speed Nb of the electric motor υ
does not become zero, and the defect of the conventional device in which the motor stops rotating due to the starting current or load current at startup is eliminated.

なお、上記実施例では、垂下率演算装置に入力する回転
速度信号及び電流信号をそれぞれ実績壜を計測した値を
使用しているが、それらの変りに速度制御装置に与える
基準信号を用いてもよい。
In the above embodiment, the rotational speed signal and the current signal input to the droop rate calculation device are respectively the values measured for the actual bottle, but it is also possible to use the reference signal given to the speed control device instead. good.

また前記実施例において回転速lfNと垂下率dとの間
に第4図に示す関係をもたせたが、これらの関係は機械
設備の種類、運転方法により変化するのでそれらに適合
した任意の関係に選ぶことが出来る。
Further, in the above embodiment, the relationship shown in FIG. 4 was established between the rotational speed lfN and the droop rate d, but since these relationships change depending on the type of machinery and equipment and the operating method, any relationship that is suitable for them may be established. You can choose.

又、低速領域にて電動機−が回転しない原因が起動時の
つっかかりにより一時的に負荷電流が増え補正率が増え
たためであれば一旦電動機が起動すれば負荷電流は減る
Furthermore, if the reason why the motor does not rotate in the low speed range is that the load current temporarily increases due to a stumbling block during startup, and the correction factor increases, once the motor starts, the load current decreases.

したがって垂下率を回転速度により変化させる代りに起
動完了を検出するまでは垂下率を零とし起動完了後従来
の重下率にすることによっても解決できる。
Therefore, instead of changing the drooping rate depending on the rotational speed, the problem can be solved by setting the drooping rate to zero until the completion of startup is detected, and then setting the drooping rate to the conventional drooping rate after the completion of startup.

又さらに起動待垂下率を零とし、さらに電動機回転速度
によ゛り垂下率dを変化させることにすればよへ確実に
低速域での運転が行なえる。
Further, by setting the start-up droop rate to zero and changing the droop rate d depending on the motor rotation speed, operation in a low speed range can be more reliably performed.

又、実施例では電動機が速度制御をされているものとし
て説明したが、電圧制御であってもさしつかえなくこの
場合回転速度の変わりに電動機電圧を用いてもよい。
Furthermore, although the embodiment has been described assuming that the motor is speed-controlled, the motor voltage may be used instead of the rotational speed even if the motor is voltage-controlled.

又従来装置の説明は2スタンド圧延機にて行ったが、適
用は他に材料により結合されている複数の駆動系がある
ような、つまり従来より垂下特性をもたせて制御してい
る装置であれば全てに適用できる。
In addition, although the conventional equipment was explained using a two-stand rolling mill, it can also be applied to equipment that has multiple drive systems connected by materials, that is, equipment that is conventionally controlled with drooping characteristics. It can be applied to all cases.

以上のようにこの発明によれば、垂下率を電動機回転速
度により変化させることにより、低速領域で電動機を停
止させることなく、垂下特性を持たせることができる。
As described above, according to the present invention, by changing the drooping rate depending on the motor rotation speed, drooping characteristics can be provided without stopping the motor in a low speed region.

又起動検出装置を用いることにより起動時の材料のつっ
かかりによる起動不可の吠態を解消することが出来る。
Furthermore, by using a startup detection device, it is possible to eliminate the situation where startup is not possible due to material getting stuck during startup.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2つのスタンド有す圧延機を示す説明図、第2
図は従来装置の電動機速度Iと電動回転連間の関係を示
す特性図、第8図はこの発明の一実施例を示す電動機の
制御構成図、第4図は本発明の一実施例による垂下量d
と電動機回転速度Nの関係を示した特性図である。 11)・・・被圧延材、Qυ、(2)、(財)、(イ)
・・・ロール、Q3゜(2)・・・減速機、04.翰・
・・Wl動機、51・・・Vt電動機52・・・電源装
置、68・・・速度制御器、54・・・回転速度検出器
。 65・・・垂下率演算装置 なお、各図中、同一符号は、同一あるいは相当部分を示
すものとする。 代理人  葛 野 信 − 第1図 第2図 Io一定格吃走
Figure 1 is an explanatory diagram showing a rolling mill with two stands;
Fig. 8 is a characteristic diagram showing the relationship between the motor speed I and the electric rotation train of a conventional device, Fig. 8 is a control configuration diagram of the motor showing an embodiment of the present invention, and Fig. 4 is a drooping diagram according to an embodiment of the present invention. quantity d
FIG. 3 is a characteristic diagram showing the relationship between the motor rotation speed N and the motor rotation speed N. 11)...Rolled material, Qυ, (2), (Foundation), (A)
...Roll, Q3゜(2)...Reducer, 04. Kanji・
...Wl motor, 51...Vt motor 52...power supply device, 68...speed controller, 54...rotation speed detector. 65... Drooping rate calculation device In each figure, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Io 1-rated stuttering

Claims (1)

【特許請求の範囲】[Claims] 制御される電動機が低速領域にあることを検出する検出
器、上記電動機の速度重下率を演算する垂下率演算装置
、この垂下率演算装置の演算する速度重下率に従って上
記電動機を速度制御する速度制御器を備え、上記検出器
により電動機が低速領域にあることを検出したとき、垂
下率演算装置の演算する速度垂下率を低く抑えるように
したことを特徴とする電動機制御装置。
a detector for detecting that the controlled electric motor is in a low speed region; a drooping rate calculation device for calculating a speed drop rate of the electric motor; and a speed control of the electric motor in accordance with the speed drop rate calculated by the droop rate calculation device. A motor control device comprising a speed controller, wherein when the detector detects that the motor is in a low speed region, the speed droop rate calculated by the droop rate calculation device is kept low.
JP56208683A 1981-12-21 1981-12-21 Controller for motor Pending JPS58108986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56208683A JPS58108986A (en) 1981-12-21 1981-12-21 Controller for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56208683A JPS58108986A (en) 1981-12-21 1981-12-21 Controller for motor

Publications (1)

Publication Number Publication Date
JPS58108986A true JPS58108986A (en) 1983-06-29

Family

ID=16560333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56208683A Pending JPS58108986A (en) 1981-12-21 1981-12-21 Controller for motor

Country Status (1)

Country Link
JP (1) JPS58108986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186185A (en) * 1988-01-19 1989-07-25 Mitsubishi Electric Corp Speed controller for driving-motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186185A (en) * 1988-01-19 1989-07-25 Mitsubishi Electric Corp Speed controller for driving-motor

Similar Documents

Publication Publication Date Title
JPS609509A (en) Control method of rolling mill
JPH05169126A (en) Method for controlling cold strip rolling mill
JP5843796B2 (en) Press machine
JPS58108986A (en) Controller for motor
JPH02266885A (en) Method of controlling speed of motor for rolling mill
JPS61119557A (en) Emergency stop controller in strip taking-up machine
US2619631A (en) Regulating apparatus
KR100607898B1 (en) Rolling apparatus for bars and method for rolling bars
JP3048210B2 (en) Speed control method of tandem rolling mill
JP6809900B2 (en) Electric vehicle control device
JPH0424122B2 (en)
JPH0585652A (en) Winding shaft control device for take-up device
JPS63140724A (en) Method for controlling reel motor of reversible rolling mill
JPH0565419B2 (en)
JPH0534091B2 (en)
JPH0248888Y2 (en)
JPH0884495A (en) Method for dealing with instantaneous power interruption of voltage inverter
JPH0219710B2 (en)
JPS5822405A (en) Preventing method for axial oscillation of driving system having backlash
JPS58110111A (en) Controlling device for drive of rolling mill
JPS5928892A (en) Load balance controller for different speed rolling
Moore High performance control for tandem cold mill main drive systems
JPH0235507A (en) Detecting method for driving shaft abnormality for numerical controller
JPS6260490A (en) Control method of different speed of rolling mill
JPS61214726A (en) Stabilization of power system