JPS58108776A - Junction diode - Google Patents

Junction diode

Info

Publication number
JPS58108776A
JPS58108776A JP56206873A JP20687381A JPS58108776A JP S58108776 A JPS58108776 A JP S58108776A JP 56206873 A JP56206873 A JP 56206873A JP 20687381 A JP20687381 A JP 20687381A JP S58108776 A JPS58108776 A JP S58108776A
Authority
JP
Japan
Prior art keywords
region
junction
diode
area
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206873A
Other languages
Japanese (ja)
Inventor
Hisao Kamo
加茂 久夫
Eiji Murata
英治 村田
Mitsugi Higashiura
東浦 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56206873A priority Critical patent/JPS58108776A/en
Publication of JPS58108776A publication Critical patent/JPS58108776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Abstract

PURPOSE:To reduce more the element occupation area by a method wherein, along the side surface of one side conductive region formed in a semi-insulating semiconductor substrate, the other side conductive region is formed at a higher density and in a shallower depth than one side conductive region so that a part is superposed in the region, and the remnant is distributed out of the region. CONSTITUTION:In the semi-insulating GaAs substrate O, using a selective ion implantation method, a p<+> type region 21 and an n type region 23 are provided in an island form so that the partial region 22 along each side surface is used in common. The respective carrier densities are; e.g. NA 1X10<18>/cm<3> and ND 1X10<19>/cm<3>, the respective depths are formed so as to be DH<DL between DH on the high density region 21 side and DL on the low density region 23 side, and the superposition length L of the common part is formed so as to satisfy L>DH. Thereby, the junction plane is formed not only on the side surface 241 of the low density region side of the common region 22, but also on a bottom surface 242, and accordingly the junction area S, when W is a junction width, becomes S=[L+DH]XW. The junction width WX to obtain the junction area of the same as this value becomed WX=0.1W, and therefore the area necessary to form a diode can be reduced to approx. 1/10 compared with the conventional one.

Description

【発明の詳細な説明】 発明の技術分野 ガリウムショット/ゲート電界効果トランジスタ(Ga
、As tlJE 8 F ET )と同−基体中に設
けられ、ショットキゲート保護用として特に適するp−
n接合ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention Gallium shot/gate field effect transistor (Ga
, As tlJE 8 FET) and is provided in the same substrate and is particularly suitable for protecting Schottky gates.
Regarding n-junction diodes.

発明の技術的背景とその問題点 以下FETと記載する砒化ガリウムショットキググート
電界効果トランジスタ(GaA、sMF、8FgT) 
、%に民生用機器に用いるFETでは、F E Tのゲ
゛−ト、ソース間にゲートの逆制圧より低い耐圧のp−
n接合ダイオードを挿入することにより、ショットキゲ
ートを静電破壊から保障している。この場合ダイオード
の接合面積S。はダイオードが挿入されたFET0高周
波特性をほとんど損わないこと、且つ又必要なゲート保
護性能を有することの二点から決められる。そしてこの
p−n接合ダイオードとしては、(1aAsより安価な
シリコン(Sl)ダイオードが使用されている。
Technical background of the invention and its problems Gallium arsenide Schottkygout field effect transistor (GaA, sMF, 8FgT), hereinafter referred to as FET
,% In FETs used in consumer equipment, there is a p-
By inserting an n-junction diode, the Schottky gate is protected from electrostatic damage. In this case, the junction area S of the diode. is determined from two points: that it hardly impairs the high frequency characteristics of the FET0 in which the diode is inserted, and that it also has the necessary gate protection performance. As this p-n junction diode, a silicon (Sl) diode (which is cheaper than 1aAs) is used.

しかし、S1ダイオードチツプとGaAs ME S 
F ETテツゾの二個のチップを用いるときには、Ga
AsMESFET−個のチップの場合に比較して、素子
の組立て作業が複雑となり作業性が低下する。
However, S1 diode chips and GaAs MES
When using two chips of FET Tetsuzo, Ga
Compared to the case of AsMESFET- chips, the assembly work of the element becomes complicated and the workability decreases.

それ故同−半絶縁性GaAs基板上にFETとゲート保
膿用p−n接合ダイオードを形成することが、作業性を
向上させるうえで望ましい。この要望に沿い半絶縁性基
板k例えばGaAs Y上に設けたp−n接合ダイオー
ドとして、例えば第1図斜視図に示す素子が知られてい
る。この素子はp十形領域0υと、このp十形領域の側
面に沿い一部(12は領域内に重ねられ残部03)は領
域外に分布するn影領域とが島状に設けられ、それ散失
々の領域の一部分(12)を共有する構造をとっている
Therefore, it is desirable to form an FET and a pn junction diode for gate protection on the same semi-insulating GaAs substrate in order to improve workability. In response to this demand, a device shown in the perspective view of FIG. 1, for example, is known as a pn junction diode provided on a semi-insulating substrate (e.g., GaAs Y). This element has a p-shaped region 0υ and an island-like n-shaded region along the side surface of this p-shaped region (12 overlaps within the region and the rest 03) distributed outside the region. It has a structure in which a part (12) of the scattered area is shared.

一般にNp形領域又はn影領域のうちいずれか一方のキ
ャリヤ濃度を他方よシ充分高濃度にして、接合の逆耐圧
が低濃度領域のキャリヤ濃度でほぼ決まるようにし、さ
らにp影領域とn影領域の夫々の深さについては高濃度
領域の深さDHと低濃度領域の深さDLについてDH≧
DLとなるように構成している。従って第1図例ではp
+形領領域α1の深さDHがn形価域(I3)の深さD
Lより深くおかれているのである。
Generally, the carrier concentration in either the Np type region or the n shadow region is made sufficiently higher than the other so that the reverse breakdown voltage of the junction is approximately determined by the carrier concentration in the low concentration region, and Regarding the respective depths of the regions, the depth DH of the high concentration region and the depth DL of the low concentration region DH≧
It is configured to be DL. Therefore, in the example in Figure 1, p
The depth DH of the +-type region α1 is the depth D of the n-type region (I3)
It is placed deeper than L.

しかしDH≧DLとする場合、第1図で、接合Iはp十
形領域01)の−側面の一部でn影領域09との界面に
のみ形成され、との−側面の深さ方向残域並びにn影領
域(13)の底面には形成されない。従って、ダイオー
ドが充分なゲートの保護性能を有するために必要な接合
面積Sは、この側面の幅即ち第1図界面の水平辺長さを
Wで表わすとき5−DLxWにか\るため、幅Wを例え
ばF E Tのゲート幅の2倍程度にしなければならな
い。このためダイオードを形成するのに、F’ETより
も大きい面積を必要とする欠点がある。
However, when DH≧DL, in FIG. It is not formed on the bottom surface of the area or the n-shaded area (13). Therefore, the junction area S required for the diode to have sufficient gate protection performance is 5-DLxW, where W is the width of this side surface, that is, the horizontal length of the interface in Figure 1. For example, W must be about twice the gate width of FET. Therefore, there is a drawback that a larger area is required to form a diode than an F'ET.

発明の目的 この発明はこのような欠点を除き、素子占有面積をより
小に得させる接合ダイオードを提供するものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a junction diode which eliminates the above-mentioned drawbacks and allows the device to occupy a smaller area.

発明の概要 即ちこの発明は(1)半絶縁性半導体基体内に形成され
た一力導電形領域と、この一方4電形領域の側面に沿い
一部は領域内に重ねられ残部は領域外に分布するように
二方導・亀形領域より高濃度に且つ浅く形成された他方
4を影領域との内域を併せ島状に備える接合ダイオード
、又は(2)一方導電形領域の側面から領域内にある他
方導電影領域の重なり距離は、この他方導電影領域の深
さよりも犬である前記(1)項に記載の接合ダイオード
にある。
Summary of the Invention Namely, this invention consists of (1) a single-conductivity type region formed within a semi-insulating semiconductor substrate; a portion of the quadriconductivity-type region along the side surface thereof is overlapped within the region, and the remainder is outside the region; A junction diode which has an island shape with the inner region of the other conductive region and the shadow region formed at a higher concentration and shallower than the two-way conductivity type region so as to be distributed, or (2) the region from the side of the one conductivity type region. In the junction diode according to item (1), the overlapping distance of the other conductive shadow region within the junction diode is longer than the depth of the other conductive shadow region.

このようなこの発明の接合ダイオードは、例えばショッ
トキゲート電界効果トランジスタと一体化させるゲート
保護ダイオードに好適する。そしてこのダイオードの特
徴は半絶縁性半導体基体中に深く形成されている一方導
電形領域に対し浅く且つ高濃度の他方導電影領域を共有
領域をおいて設けである点に係る。この場合には接合は
その面積を拡大する。つまり一方導電形領域内に重ねら
れた共有領域の侵入側面と底面とが、接合面積となるか
らである。ゲート保護性能は従来通り確保され、素子の
占有面積をより小さくする。又この場合高濃度領域深さ
DHは、イオン注入法では加速電圧できまる上限が存在
するため、共有領域の重なり距離をLとしてL > D
Iとおくと接合面積を犬に出来る。更に又このダイオー
ドではこのダイオードが降伏時に高濃度領域の底面から
遠去かる空乏層端面を、低濃度領域内にとどめられるよ
うに、それぞれの領域深さDHx DLを定めるとよい
Such a junction diode of the present invention is suitable, for example, as a gate protection diode integrated with a Schottky gate field effect transistor. The feature of this diode is that one conductivity type region is formed deeply in a semi-insulating semiconductor substrate, and the other conductivity type region is provided with a shallow, high concentration conductive shadow region with a shared region. In this case the bond expands its area. In other words, the intrusion side surface and the bottom surface of the shared region overlapped in one conductivity type region constitute the bonding area. Gate protection performance is maintained as before, and the area occupied by the device is further reduced. In this case, the high concentration region depth DH has an upper limit determined by the accelerating voltage in the ion implantation method, so L > D, where L is the overlapping distance of the shared region.
By setting it as I, the joint area can be made into a dog. Furthermore, in this diode, each region depth DHxDL is preferably determined so that the end face of the depletion layer, which is far away from the bottom of the high concentration region when the diode breaks down, can be kept within the low concentration region.

発明の実施例 以下この発明の実施例について図面を参照して説明する
Embodiments of the Invention Below, embodiments of the invention will be described with reference to the drawings.

砒化ガリウムショットキゲート電界効果トランジスタ(
GaAsMESFHT)と同−基体上に設けられるゲー
ト保護用p十n接合ダイオードについて述べる。
Gallium arsenide Schottky gate field effect transistor (
A p-n junction diode for gate protection provided on the same substrate as GaAs MESFHT will be described.

に、I−基板又は1と称する半絶縁性GaAs基体(0
)内に選択イオン注入法を用いてp十形領域Qυ及びn
影領域(23)を、夫々の側面に沿う一部領域(221
が共有となるように島状に設けられたものである。又夫
々のキャリヤ濃度はこの例ではNA、>NDl  例え
ばN/A:′1 x 1019/cr/l 、 ND’
:: 1 x 1018/ctftで、夫々の深さは高
濃度領域(21)側のDHと低濃度領域(ハ)側のDL
との間でDH<九であるように、共有部分の重なり距離
りは■、)DHを満足するように構成しである。
A semi-insulating GaAs substrate (0
) using selective ion implantation to form p-domain regions Qυ and n
The shadow area (23) is replaced by a partial area (221) along each side.
It was established in the form of an island so that the area was shared. Also, each carrier concentration is NA in this example, >NDl For example, N/A:'1 x 1019/cr/l, ND'
:: 1 x 1018/ctft, each depth is DH on the high concentration region (21) side and DL on the low concentration region (c) side
The overlapping distance of the shared portion is configured to satisfy DH<9, and the overlapping distance of the shared portion satisfies DH.

例えばLユ3μm、 、 DH’:: 0.1μm、 
DL? 0.3μmとする。
For example, L: 3μm, DH':: 0.1μm,
DL? It is set to 0.3 μm.

このようにすると、接合面は共有領域(24の低濃度領
域91tl側面(241)のみならず底面(242)に
も形成されるから、接合面積SはWを接合幅とするとき
8 = (L+DH) XW  となる。すでに述べた
ように第1図例構造の場合には8=DLXWであるので
、いまこの値と同じ接合面積を得るだめの接合幅Wxは
、Wx=WxDL/(Lo+DH)の関係を用い、Lo
%DH%DLに上記の値を代入してWx= 0.1 W
が得られる。従って、ダイオードを形成するのに必要な
面積を従来に比較して1/10程度に小さくできる。
In this way, the bonding surface is formed not only on the side surface (241) of the shared region (low concentration region 91tl of 24) but also on the bottom surface (242), so the bonding area S is 8 = (L+DH) where W is the bonding width. ) Using the relationship, Lo
Substitute the above value for %DH%DL and get Wx = 0.1 W
is obtained. Therefore, the area required to form the diode can be reduced to about 1/10 compared to the conventional one.

同第2図平向図に対し、第4図平面図に示すように接合
幅方向に関して一方導電形領域よりも他方導電影領域を
伸張させてもよい。
In contrast to the plan view of FIG. 2, as shown in the plan view of FIG. 4, the other conductive shadow region may be extended more than the one conductivity type region in the junction width direction.

この実施例ダイオードはp +−n構造であるが、n+
 p構造としてもよろしい。又n−p+−n。
This example diode has a p+-n structure, but an n+
It may also be a p-structure. Also n-p+-n.

n”−p”’n+・ p十−n−p” %  p−n+
−9などの横方向ダイオード素子構造にも適用できる。
n"-p"'n+・pten-n-p"% p-n+
It can also be applied to lateral diode element structures such as -9.

第5図及び第6図にn−p”−n横方向ダイオード素子
について平面図及び断面図を示す。これ等の両側では高
濃度p+形領領域2I)の両側方に共有領域(221)
又は(222)をおいて低濃度n影領域(231)又は
(232)をおき、接合(2411)、(2421)又
は(2412)、(2422)を形成している。また前
記実施例は同一基板上に設けられるショットキゲート電
界効果トランジスタのゲート保障を目的にしたダイオー
ドであるが、単体のダイオードとしてもよろしい。そし
て半導体基体は砒化ガリウム又この基体内に形成される
各導電影領域は、選択イオン注入法の他エピタキシャル
成長法、熱拡散法あるいはこれらを適当に組合せること
によって形成されてよい。同形成される共有領域が沿う
一方導電形領域側面形状は、平面に限られない。例えば
曲面をなしていてもよい。
5 and 6 show a plan view and a cross-sectional view of an n-p"-n lateral diode element. On both sides of these, there are shared regions (221) on both sides of the high concentration p+ type region 2I).
Or (222) is placed and a low density n shadow area (231) or (232) is placed to form a junction (2411), (2421) or (2412), (2422). Furthermore, although the above embodiment is a diode intended to guarantee the gate of a Schottky gate field effect transistor provided on the same substrate, a single diode may also be used. The semiconductor substrate is made of gallium arsenide, and the conductive shadow regions formed within the substrate may be formed by selective ion implantation, epitaxial growth, thermal diffusion, or a suitable combination thereof. The shape of the side surface of the one conductivity type region along which the shared region is formed is not limited to a flat surface. For example, it may have a curved surface.

発明の効果 以上述べたようにこの発明によれば、半絶縁性半導体基
体中に設けられるp−n接合ダイオードの接合面積を変
えることなく素子面積を大幅に減少でき、例えばダイオ
ードと同一基板上に設けられるショットキゲート電界効
果トランジスタに接続され、ゲートの保睦に適したダイ
オードを提供できる。
Effects of the Invention As described above, according to the present invention, the element area can be significantly reduced without changing the junction area of a pn junction diode provided in a semi-insulating semiconductor substrate. A diode connected to the provided Schottky gate field effect transistor and suitable for gate protection can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のダイオードに係る斜視図、第2図はこの
発明の実施例ダイオードの平面図、第3図は第2図のA
、 −A’線に沿う断面図、第4図は平面外形状を変え
た実施例ダイオード平面図、第5図は他の実施例ダイオ
ード平面図、第6図は同じく断面図である。 第2図乃至第6図で 代理人 弁理士 井 上 −男 第  1  図 第  2  図 第  3  図
FIG. 1 is a perspective view of a conventional diode, FIG. 2 is a plan view of a diode according to an embodiment of the present invention, and FIG. 3 is a diagram of A in FIG.
, FIG. 4 is a plan view of an example diode with a different out-of-plane shape, FIG. 5 is a plan view of another example diode, and FIG. 6 is a sectional view of the same. In Figures 2 to 6, the agent is Patent Attorney Inoue, Figure 1, Figure 2, Figure 3.

Claims (1)

【特許請求の範囲】 1、半絶縁性半導体基体内に形成された一方導電形領域
と、この一方導電形領域の側面に沿い一部は領域内に重
ねられ残部は領域外に分布するように一方導電形領域よ
り高濃度に且つ浅く形成された他方導電影領域との画成
を併せ島状に備えることを特徴とする接合ダイオード 2、一方導電形領域の側面から領域内にある他方導電影
領域の重なり距離は、この他方導電影領域の深さよりも
犬でおることを特徴とする特許請求の範囲第1項に記載
の接合ダイオード
[Claims] 1. One conductivity type region formed in a semi-insulating semiconductor substrate; A junction diode 2 characterized in that it has an island shape with a conductive shadow region formed at a higher concentration and shallower than the one conductivity type region, and the other conductive shadow region is located within the region from the side surface of the one conductivity type region. The junction diode according to claim 1, wherein the overlapping distance of the regions is greater than the depth of the other conductive shadow region.
JP56206873A 1981-12-23 1981-12-23 Junction diode Pending JPS58108776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206873A JPS58108776A (en) 1981-12-23 1981-12-23 Junction diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206873A JPS58108776A (en) 1981-12-23 1981-12-23 Junction diode

Publications (1)

Publication Number Publication Date
JPS58108776A true JPS58108776A (en) 1983-06-28

Family

ID=16530449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206873A Pending JPS58108776A (en) 1981-12-23 1981-12-23 Junction diode

Country Status (1)

Country Link
JP (1) JPS58108776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136980A (en) * 1984-07-18 1986-02-21 ゼネラル・エレクトリック・カンパニイ Diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221874A (en) * 1975-08-11 1977-02-18 Hewlett Packard Yokogawa Group delay measuring device
JPS5450277A (en) * 1977-09-27 1979-04-20 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221874A (en) * 1975-08-11 1977-02-18 Hewlett Packard Yokogawa Group delay measuring device
JPS5450277A (en) * 1977-09-27 1979-04-20 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136980A (en) * 1984-07-18 1986-02-21 ゼネラル・エレクトリック・カンパニイ Diode
JPH0578952B2 (en) * 1984-07-18 1993-10-29 Gen Electric

Similar Documents

Publication Publication Date Title
US9698216B2 (en) Semiconductor device having a breakdown voltage holding region
US3293087A (en) Method of making isolated epitaxial field-effect device
JP2008522436A5 (en)
KR100541539B1 (en) Method of providing a gettering scheme in the manufacture of silicon-on-insulatorsoi integrated circuits
US7573109B2 (en) Semiconductor device
JPS6113664A (en) Semiconductor device with large breakdown voltage
US6906355B2 (en) Semiconductor device
JPH07226521A (en) Semiconductor device for rectification
US4901131A (en) Conductivity modulated metal oxide semiconductor field effect transistor
JPS6240778A (en) Complementary semiconductor device
GB949646A (en) Improvements in or relating to semiconductor devices
EP1063705A2 (en) Field effect transistor having high breakdown withstand capacity
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
JPH0648691B2 (en) Semiconductor device and manufacturing method thereof
JPS58108776A (en) Junction diode
US11923461B2 (en) Semiconductor device
JPH0342688Y2 (en)
US4337475A (en) High power transistor with highly doped buried base layer
JPH0416443Y2 (en)
JPH09181335A (en) Semiconductor device
JPS61228676A (en) Embedded type zener diode
KR890004974B1 (en) Transistor
JP2993084B2 (en) Voltage standard diode
JPS59127865A (en) Semiconductor device
JPS61198683A (en) Field effect transistor