JPS58108662A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS58108662A
JPS58108662A JP56206754A JP20675481A JPS58108662A JP S58108662 A JPS58108662 A JP S58108662A JP 56206754 A JP56206754 A JP 56206754A JP 20675481 A JP20675481 A JP 20675481A JP S58108662 A JPS58108662 A JP S58108662A
Authority
JP
Japan
Prior art keywords
lead
lead iodide
solid electrolyte
cathode
pbix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206754A
Other languages
Japanese (ja)
Inventor
Shuichi Wada
秀一 和田
Akira Kawakami
章 川上
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP56206754A priority Critical patent/JPS58108662A/en
Publication of JPS58108662A publication Critical patent/JPS58108662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve discharge performance by forming a cathode with lead iodide acting as positive active mass and electron conductive mass mainly comprising metal powder such as lead, silver, or copper. CONSTITUTION:A lithium foil is used as an anode, Li3N-LiI is as a solid electrolyte, and a cathode is formed with lead iodide indicated as PbIx (X=1.82- 1.92) which acts as a cathode active mass and an electron conductive mass. A battery is formed with these materials, then discharged at a constant current of 30muA at 20 deg.C. Relation between an atomic ratio of iodine to lead in lead iodide and discharge capacity is shown in the figure. The figure shows that when X values in PbIx exist in the range of 1.82-1.92, discharge performance is distinctively improved compared with stoichiometric PbI2 or lead iodide having a formulation near PbI2. When especially X values are within 1.85-1.90, the performance is increased.

Description

【発明の詳細な説明】 この発明はヨウ化鉛を陽極活物質とした固体電解質電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolyte battery using lead iodide as an anode active material.

従来、固体電解質電池におりる陽極活物質としては、各
種金属のハロゲン化物、硫化物!、fどが知られており
、このなかでもとくにヨウ化鉛か代表的なものとして用
いられている。この種のヨウ化鉛は、一般にPl、I2
て表わされる二価の鉛塩からなるものであり、高純度ヨ
ウ化鉛としては−1−記化学量論的な分子式で表わされ
るものか放電特性1、望ましいものとされていた。
Conventionally, the positive electrode active materials used in solid electrolyte batteries are halides and sulfides of various metals! , f, etc. are known, and among these, lead iodide is particularly used as a representative one. This type of lead iodide is generally Pl, I2
It is composed of a divalent lead salt represented by the following formula, and as high-purity lead iodide, one having a -1- stoichiometric molecular formula or a discharge characteristic of 1 was considered desirable.

しかるに、この発明者らの実験、検tJによれば、ヨウ
化鉛と鉛の々[1き電子伝導助剤とにより陽極を構成す
る場合には、」−記ヨウ化鉛はその鉛とヨウ素との比が
1対2の化学量論比から多少ずれているほうか放電特性
]−好結果を与えるものであることが見い出された。
However, according to experiments conducted by these inventors, and an electron conduction aid, when the anode is composed of lead iodide and an electron conduction aid, the lead iodide is It has been found that the discharge characteristics give better results if the ratio is slightly deviated from the stoichiometric ratio of 1:2.

第1図は、陰極としてリチウムホイルを、固体電解質と
してLi、N−I・if化合物を、陽極としてヨウ化鉛
と鉛とを、それぞれ用いた固体電解質電池(陽極径10
胴)につき、20℃で30μAの定電流放電を行なった
ときの、ヨウ化船中の鉛に対するヨウ素の原子比と放電
容置との関係を示した特性図である。
Figure 1 shows a solid electrolyte battery (anode diameter 10
FIG. 2 is a characteristic diagram showing the relationship between the atomic ratio of iodine to lead in the iodization vessel and the discharge vessel when a constant current discharge of 30 μA is performed at 20° C.

この図において、ヨウ化船中の鉛に対するヨウ素の原子
比(つまりPl) IXで表4つされるヨウ化鉛のX)
が、化学量論比の2より小さくなるにしたかつて放電容
■か高くなり、約1.88位で最高となって、これより
小さくなると次第に低くなっている。これより明らかな
ように、P I) T xで表わされるヨウ化鉛のXが
1.82〜1.92の範囲であれば、従来の化学量論比
からl、にるP1〕I2ないしこれに近いものに較べて
放電特性を顕皆に改善でき、とくにX−1,85〜1.
90の場合、その効果が一層大となることがわかる。
In this figure, the atomic ratio of iodine to lead in the iodide vessel (i.e. Pl)
However, as the stoichiometric ratio becomes smaller than 2, the discharge capacity becomes higher, peaking at about 1.88, and gradually decreasing below this. As is clear from this, if X of lead iodide represented by P I) T x is in the range of 1.82 to 1.92, P1] I2 or this The discharge characteristics can be significantly improved compared to those close to X-1,85 to 1.
It can be seen that in the case of 90, the effect is even greater.

ところで、ヨウ化鉛は、一般に、硝酸鉛の如き鉛塩の水
溶液にヨウ化水素酸またはヨウ化カリウムなどを加えて
混合反応させることにより沈殿物として析出生成される
が、この反応において、鉛塩に対するヨウ化水素酸など
の使用モル数を前記Xの範囲に応じて設定するζ、とに
より、鉛に対するヨウ素の比が化学量論比(2)より小
さくなる方向にずれた前記PbIxを得ることができる
Incidentally, lead iodide is generally produced as a precipitate by adding hydroiodic acid or potassium iodide to an aqueous solution of a lead salt such as lead nitrate and causing a mixed reaction. By setting the number of moles of hydroiodic acid, etc. to be used according to the range of I can do it.

このように、この発明の固体電解質電池は、陽極活物質
としてPbIX(X−1,82〜1.92 )で表わさ
れるヨウ化鉛を使用しこれと鉛その地銀、銅の如き金属
微粉を主とした電子伝導助剤とにより陽極を構成したこ
とを特徴とするものであり、これによれば従来に較べて
改善された放電特性を得ることができる。
As described above, the solid electrolyte battery of the present invention uses lead iodide represented by PbIX (X-1,82 to 1.92) as an anode active material, and mainly contains lead, base silver, and metal fine powder such as copper. The present invention is characterized in that the anode is constituted by an electron conduction aid such as .

つぎに、この発明の実施例につき説明する。Next, embodiments of this invention will be described.

実施例 (LisN)y  (LiI)z (y−o、ss、z
−0,12)からなる固体電解質50m9を内径10+
++mの金型中で1トン/cI#で仮成形したのち、こ
の上に180℃で10時間真空乾燥されたPbIx(X
−1,88)からなるヨウ化鉛と鉛とからなる重量比4
/1の混合物100■を充填し、7トン/cTlで成形
した。得られた成形ペレットの固体電解質側に、0.2
 mm厚。
Example (LisN)y (LiI)z (yo, ss, z
-0,12) solid electrolyte with an inner diameter of 10+
After preforming at 1 ton/cI# in a ++m mold, PbIx (X
- weight ratio of lead iodide consisting of 1,88) and lead 4
100 ml of a mixture of 1/1 was filled and molded at 7 tons/cTl. On the solid electrolyte side of the obtained molded pellet, 0.2
mm thickness.

8Ta径のリチウムホイルを押しつけて圧着し、以下、
常法に準じて、第2図に示されるような固体電解質電池
を作製した。
Press and crimp a lithium foil with a diameter of 8Ta, and then perform the following steps.
A solid electrolyte battery as shown in FIG. 2 was prepared according to a conventional method.

第2図中、1は陰極、2は陽極、3は固体電解質、4は
陰極板、5は陽極板、6は絶縁体でろう材7によって陰
陽極板4,5に固着されている。
In FIG. 2, 1 is a cathode, 2 is an anode, 3 is a solid electrolyte, 4 is a cathode plate, 5 is an anode plate, and 6 is an insulator, which is fixed to the cathode and anode plates 4 and 5 by a brazing material 7.

この固体電解質電池を20℃で30μAの定電流放電に
供したときの放電容量は6.2rn、Ahであった。ま
た、上記実施例において、PbIxのX値を種々変化さ
せたときの各放電容量を調べた結朱は、前記の第1図に
示されるとおりであった。
When this solid electrolyte battery was subjected to constant current discharge of 30 μA at 20° C., the discharge capacity was 6.2 rn, Ah. Further, in the above-mentioned example, the discharge capacity was investigated when the X value of PbIx was varied, and the results were as shown in FIG. 1 above.

4、図面の簡単な説明               
    1第1図は固体電解質電池における陽極活物質
としてのPbIXのX値と放電容量との関係を示す特性
図、第2図はこの発明の固体電解質電池の一例を示す断
面図である。
4. Brief explanation of the drawing
1. FIG. 1 is a characteristic diagram showing the relationship between the X value and discharge capacity of PbIX as an anode active material in a solid electrolyte battery, and FIG. 2 is a sectional view showing an example of the solid electrolyte battery of the present invention.

2・・・陽極 特許出願人  日立マクセル株式会社 第1図 第2図2...Anode Patent applicant: Hitachi Maxell, Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)陽極活物質としてPl)IX(X−1,82〜1
.92)で表わされるヨウ化鉛を使用しこれと電子伝導
助剤とにより陽極を構成した固体電解質電池。
(1) Pl)IX(X-1,82~1 as anode active material)
.. A solid electrolyte battery using lead iodide represented by 92) and having an anode composed of lead iodide and an electron conduction aid.
JP56206754A 1981-12-21 1981-12-21 Solid electrolyte battery Pending JPS58108662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56206754A JPS58108662A (en) 1981-12-21 1981-12-21 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206754A JPS58108662A (en) 1981-12-21 1981-12-21 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58108662A true JPS58108662A (en) 1983-06-28

Family

ID=16528532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206754A Pending JPS58108662A (en) 1981-12-21 1981-12-21 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58108662A (en)

Similar Documents

Publication Publication Date Title
Takeuchi et al. The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH09507964A (en) High pulse power battery
JP4086653B2 (en) Lithium battery and manufacturing method thereof
US4060676A (en) Metal periodate organic electrolyte cells
JPS61208750A (en) Lithium organic secondary battery
JPH0425676B2 (en)
JPS58108662A (en) Solid electrolyte battery
JPS6335069B2 (en)
JPS59143268A (en) Solid electrolyte battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH0317181B2 (en)
JPH0576745B2 (en)
JPS5978451A (en) Battery
JPS61116758A (en) Lithium battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPH0317182B2 (en)
JPS59146157A (en) Nonaqueous electrolyte secondary cell
EP0077169A1 (en) Solid-state batteries
JP3197554B2 (en) Battery
JPS599857A (en) Solid electrolyte battery
JPH01134874A (en) Sealed square type secondary battery
JPS599862A (en) Solid electrolyte battery
JPS6174258A (en) Lithium organic secondary battery