JPS58108602A - Radio wave absorber and method of producing same - Google Patents

Radio wave absorber and method of producing same

Info

Publication number
JPS58108602A
JPS58108602A JP20117881A JP20117881A JPS58108602A JP S58108602 A JPS58108602 A JP S58108602A JP 20117881 A JP20117881 A JP 20117881A JP 20117881 A JP20117881 A JP 20117881A JP S58108602 A JPS58108602 A JP S58108602A
Authority
JP
Japan
Prior art keywords
carbon
radio wave
wave absorber
concrete
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20117881A
Other languages
Japanese (ja)
Inventor
清水 康敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20117881A priority Critical patent/JPS58108602A/en
Publication of JPS58108602A publication Critical patent/JPS58108602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電波吸収体に係る。史に詳しくは、カーボンフ
ァイバと球状炭素、粉状炭素及び塊状炭素から選択され
る少なくとも1植の炭素質物質とを含有するコンクリー
トから成る電波吸収体及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radio wave absorber. More specifically, the present invention relates to a radio wave absorber made of concrete containing carbon fiber and at least one carbonaceous material selected from spherical carbon, powdered carbon, and lumped carbon, and a method for manufacturing the same.

近年、ビルディング等建造物に起因するテレビゴースト
障害が大きな社会問題になっている。特に、優れた建造
物情造材であるコンクリートは電波吸収特性が極めて悪
いため、コンクリート壁面を有する建造物は電波障害の
原因となるととが多い。
In recent years, TV ghost problems caused by structures such as buildings have become a major social problem. In particular, concrete, which is an excellent building material, has extremely poor radio wave absorption properties, so buildings with concrete walls are often the cause of radio wave interference.

この電波障害に対する対策の1つとして、到来した′虹
波全吸収し反射電波を生じることの少ない電波吸収板を
建造物壁面に設けるという方法がある。電波吸収板材料
として、従来、カーボン官有兄泡ホ+)スチロール、カ
ーボン官有ゴム、フェライト粉末貧有ゴム、フェライト
タイル寺が用いられている。これら従来の吸収板は、電
波吸収時性に優れてはいるものの、強度が弱く建造物の
構造材としては利用できない。
One of the countermeasures against this radio wave interference is to install a radio wave absorbing plate on the wall of a building that completely absorbs the incoming rainbow waves and produces fewer reflected radio waves. Conventionally, carbon styrene foam, carbon rubber, ferrite powder rubber, and ferrite tiles have been used as materials for radio wave absorbing plates. Although these conventional absorbing plates have excellent radio wave absorption properties, they are too weak to be used as structural materials for buildings.

本発明省は、コンクリートにカーボンファイバt ’6
有せしめることによってコンクリートの電波吸収特性全
署しく改善できるという知見にもとすき、史に、時に鉄
筋コンクリートの場合、鉄筋の外側のコンクリート層は
薄い方が強度的に好ましいという事実に鑑みて、厚みが
薄いにも拘らず光分な区波吸収特注を有するコンクリー
トについて鋭慧検討した結果本発明に至った。
Ministry of the Invention Carbon Fiber T'6 in Concrete
In addition to the knowledge that the radio wave absorption properties of concrete can be completely improved by adding a thin layer to the concrete, the thickness The present invention was developed as a result of in-depth research into concrete that has a custom-made structure that absorbs light waves even though it is thin.

本発明の目的は、薄くても光分な′電波吸収+′f性を
句する建造物構造材を提供することである。
An object of the present invention is to provide a structural material for a building that exhibits optical radio wave absorption properties even if it is thin.

本発明の電波吸収体は、カーボンファイバと、粒状炭素
(カーボンビーズ)、粉状炭素及び塊状炭素から選択さ
れる少なくとも1 rMの炭素質物質とケせ有するコン
クリートからノaることを特徴とする。
The radio wave absorber of the present invention is characterized in that it is made of concrete comprising carbon fibers and at least 1 rM of carbonaceous material selected from granular carbon (carbon beads), powdered carbon and lump carbon. .

粒状炭素、粉状炭素及び塊状炭素から選択される少なく
とも1輔の炭素質物質及びカーボンファイバの言有牟は
、製品の厚み、所望とする蹴波吸収+!f注、製品の使
用目的、設置場所咎抽々の要因によって広範囲に選択で
きるが、通常製品コンクリートに対して、カーボンファ
イバ0.5乃至10容童%、粒状炭素、粉状炭素及び塊
状炭素から選択される少なくとも11虫の炭素質物質5
乃至50容市%含まれるものが好ましい。
The characteristics of at least one carbonaceous material selected from granular carbon, powdered carbon, and lumpy carbon and carbon fiber are determined by the thickness of the product, the desired kick wave absorption +! Note: Although a wide range of choices can be made depending on the intended use of the product and the installation location, it is common to use 0.5 to 10% carbon fiber, granular carbon, powdered carbon, and lump carbon to the product concrete. At least 11 selected insect carbonaceous substances 5
Preferably, the content is between 50% and 50%.

本発明で使用するカーボンファイバとしては通常の炭素
繊維でよく、例えば繊維径5〜30μ、絨維長0.3〜
15mのものが使用できる。
The carbon fiber used in the present invention may be any ordinary carbon fiber, for example, a fiber diameter of 5 to 30 μm and a fiber length of 0.3 to 30 μm.
15m length can be used.

粒状炭素とは通常カーボンビーズといわれ、はぼ球状に
近い炭素粒子でめ9、強度も塊状炭素に比較して^く、
粒径は50〜1500μである。粉状炭素とはカーボン
ビーズよりも粒径のはるかに小さい粉体状次系をいう。
Granular carbon is usually referred to as carbon beads, and is carbon particles that are almost spherical in shape9, and their strength is also lower than that of lumpy carbon.
The particle size is 50-1500μ. Powdered carbon refers to a powder-like system with a particle size much smaller than that of carbon beads.

塊状炭素とは、粉状炭素にバインダーを姫加して塊状化
した炭素粒庫會いい、粒径は50μ〜1500μのもの
である。
Lumped carbon refers to carbon granules obtained by adding a binder to powdered carbon to form agglomerates, and has a particle size of 50μ to 1500μ.

本発明の電波吸収体に用いるコンクリートは、通常狙二
われるものでよく、セメント、水、細骨材及び必要に応
じて粗骨材を適当な割合で配会し、よく混糾し、史に硬
化させて得られるものである。
The concrete used for the radio wave absorber of the present invention may be one that is normally used, and is made by distributing cement, water, fine aggregate, and if necessary, coarse aggregate in appropriate proportions, mixing it well, and making it suitable for use in the past. It is obtained by curing.

本発明にいうコンクリートは、辿nのコンクリートの他
にモルタル、軽量コンクリート等も短音するものである
The concrete referred to in the present invention includes not only ordinary concrete but also mortar, lightweight concrete, and the like.

本発明の゛電波吸収体は、通常のコンクリート製造と同
様に製造できる。その際、カーボンファイバ及び粒状炭
系、粉状炭素及び塊状炭素から選択される少なくともl
橿の炭素質物質は、硬化前の任意の段階で、硬化後の製
品が0.5乃至10容普%のカーボンファイバ及び5乃
至50容量%の上記炭素質物質を含南するように、均一
に禽舎する。
The radio wave absorber of the present invention can be manufactured in the same manner as ordinary concrete manufacturing. At least l selected from carbon fibers and granular carbon systems, pulverulent carbon and bulk carbon.
At any stage before curing, the carbonaceous material of the rod is uniformly mixed so that the cured product contains 0.5 to 10% by volume of carbon fibers and 5 to 50% by volume of the carbonaceous material. to house the poultry house.

即ち、カーボンファイバ及び上dピ炭系’J[vlJ買
は、最初にセメントと混合してもよい晧しさメント、水
及びn1lll骨材又はセメント、水、細骨材及び粗骨
材と同時に混合してもよい。更に、カーボンファイバ及
び上M己炭素’i物買を混練の別の段階で混合しでもよ
い。
That is, carbon fiber and carbonaceous carbonaceous materials may be mixed with cement first, water and aggregate or cement, water, fine aggregate and coarse aggregate mixed simultaneously. You may. Additionally, the carbon fibers and the carbon fibers may be mixed at separate stages of kneading.

セメント、水、細骨材等の混合割合はput ’Hのコ
ンクリートと同様に変えることができる。又、通常袖執
材として用いられるスチールファイバ等を混合すること
もできる。
The mixing ratio of cement, water, fine aggregate, etc. can be changed in the same way as for put'H concrete. Further, steel fibers and the like, which are usually used as sleeve binding materials, can also be mixed.

本発明のコンクリート電波吸収体は、粒状炭素、粉状炭
素及び塊状炭素から選択される1柚の炭素質物質及びカ
ーボンファイバの・さ肩車、含水率等により異なる波長
で最大吸収をボす。又、本発明の吸収体の厚みは、吸収
すべき電波の波長(λ)に依存する。
The concrete radio wave absorber of the present invention exhibits maximum absorption at different wavelengths depending on the carbonaceous material selected from granular carbon, powdered carbon, and lumpy carbon, carbon fiber shoulder wheel, water content, etc. Further, the thickness of the absorber of the present invention depends on the wavelength (λ) of the radio wave to be absorbed.

従って、不発明の1波吸収体は、吸収すべき醒波の波長
に刈して、そのカーボンファイバ及び粒糾快儂ざ有半と
厚みを適切に選択して設計することが好捷しい。又、後
述の実施例に示すように、本発明の吸収体は鋭い周波数
時性を示すので、異なる周波ah性紮示す吸収体を2ノ
ー又はそれ以上の多ノー構造とし、広域周波数%aを有
する吸収体を製造することも−oJ iじである。
Therefore, it is preferable to design the uninvented one-wave absorber by appropriately selecting the carbon fiber, grain strength, and thickness to match the wavelength of the active wave to be absorbed. In addition, as shown in the examples below, the absorber of the present invention exhibits sharp frequency temporal characteristics, so the absorber exhibiting different frequency ah properties is made into a multi-no structure with two or more nos, and the wide frequency range %a is It is also the same to manufacture an absorbent body having -oJ i.

本発明の電波吸収体は広範囲の波長の電波に対してM幼
であるが、肴にテレビ液部ぢVl−IP、UH1i’帝
の電波にX佳シて儒−効である。
The radio wave absorber of the present invention is effective against radio waves of a wide range of wavelengths, but is effective against radio waves of TV liquid, Vl-IP, and UH1i' as a side dish.

本発明の電波吸収体はコンクリ−ト製であるため強度が
強い(例えば圧縮強度は約220〜32oKg・f/l
J)ので建造物の構造材として有利に使用できる。yl
Jえば、ビルディングの壁用のパネルとしても用いられ
、又、高架橋桁等の揚曾には現場で製造して用いること
もできる。更に後述の実施例からも明らかなように、本
発明の電波吸収体は薄くても光分な電波吸収時性を有す
るので帳斌化が町Wbで、符にaノー建築用パネルとし
て有オリにに用できる。
Since the radio wave absorber of the present invention is made of concrete, it has high strength (for example, the compressive strength is approximately 220 to 32 oKg・f/l).
J) Therefore, it can be advantageously used as a structural material for buildings. yl
For example, it can be used as a panel for the walls of buildings, and it can also be manufactured on-site and used for lifting elevated bridge girders, etc. Furthermore, as is clear from the examples described later, the radio wave absorber of the present invention has the ability to absorb radio waves as much as light even if it is thin, so it is suitable for use as a construction panel. It can be used for.

以下、実施例を杉照して本発明を詳述する。尚、−′紙
材料の時性ケ表わすには、複素比誘電率″tr(−εI
r  jε″r)が適していることが知られており、以
下の実施例でもこれによった。;rの実部ε′rは辿冨
の誘屯半を示し、虚部ε″rは血気的損失項金示す。即
ちεnrがある程度太きいものが電波吸収体として使用
できる。
Hereinafter, the present invention will be described in detail with reference to Examples. In addition, to express the time characteristic of −′ paper material, the complex dielectric constant “tr(−εI
It is known that r jε″r) is suitable, and this was also used in the following examples. Shows hemodynamic loss. That is, a material with a relatively large εnr can be used as a radio wave absorber.

実施例1 秩父セメント(株)iAセメント60(1,県別化学工
業(株)製カーボンファイバ(平均線?&住18μ、平
均繊維長0.7+Il+1I)81.52、カーボンビ
ーズ(平均粒径300μ)465F、水400CC及び
砂80.6?を混練し、本発明のモルタル原料を得た。
Example 1 Chichibu Cement Co., Ltd. iA Cement 60 (1, Kenbetsu Kagaku Kogyo Co., Ltd. carbon fiber (average line? & height 18μ, average fiber length 0.7+Il+1I) 81.52, carbon beads (average particle size 300μ) ) 465F, water 400cc, and sand 80.6? were kneaded to obtain the mortar raw material of the present invention.

このモルタルの一波的特性を第1図に示す真鍮製同軸導
波管を用いて検討した。第1図に示す導波管に於いて、
lは供試コンクIJ−1,2は真鍮板である。1は供試
体の長さでコンクリートパネルのJvさに和尚する( 
、、e= 10 an )。
The one-wave characteristics of this mortar were investigated using a brass coaxial waveguide shown in Figure 1. In the waveguide shown in Figure 1,
The test concrete IJ-1 and IJ-2 are brass plates. 1 is the length of the specimen, which corresponds to the Jv of the concrete panel (
,, e = 10 an ).

上述の如き組成を有するモルタルを上記導波管に充填し
た。よく乾燥して水分の影響をなくしてから電波的特性
を測定した。得られた結果は、tr’=56.5、tr
”=20.6でめった。
The waveguide was filled with mortar having the composition as described above. Radio wave characteristics were measured after thoroughly drying to eliminate the influence of moisture. The obtained results are tr'=56.5, tr
” = 20.6.

実施y1]2乃至12 セメント、カーボンファイバ、カーボンビーズ、砂及び
水の畦を第1表に示したように変え、実施例1と同様に
モルタルを製造した。
Example y1] 2 to 12 Mortar was produced in the same manner as in Example 1, except that the cement, carbon fiber, carbon beads, sand, and water ridges were changed as shown in Table 1.

−波向特性の測定結果を第1衣に示した。- The measurement results of wave direction characteristics are shown in the first column.

カーボンビーズ及び/又はカーホンファイバを混合しな
い場合の比較例として第1表に示す組成で実施例1と同
様にしてモルタルを製造した。電波的特性の測定結果を
第1表に示した。
As a comparative example in which carbon beads and/or carbon fibers were not mixed, mortar was produced in the same manner as in Example 1 with the composition shown in Table 1. The measurement results of radio wave characteristics are shown in Table 1.

実施例13 カーボンファイバ5谷甫%、カーボンビーズlO谷挺%
宮巾する本兄明のコンクリートパネル(厚さ1octn
、幅50 (WI% −IZさ50m)の反射損周波畝
待1生を検討した。結末を第2図にボした。図から明ら
かなように、カーボンファイバ5容欺%、カーボンビー
ズ10谷−歇%F有するパ洋ルは150MHzに鋭い電
波的特注を示した。
Example 13 Carbon fiber 5%, carbon beads 10%
Concrete panel of the main brother Akira (thickness 1 octn)
, a reflection loss frequency ridge with a width of 50 (WI% - IZ length of 50 m) was studied. The ending is shown in Figure 2. As is clear from the figure, the paper containing 5% carbon fiber and 10% F of carbon beads showed a sharp radio wave customization at 150 MHz.

実施例14 カーボンファイバのff1(i=はぼ一定にし、カーボ
ンビーズの縦を増やした場合の幼果、即ち、30dB以
上の反射損を示すパネルの厚さを検討した。
Example 14 The thickness of a young fruit, that is, a panel exhibiting a reflection loss of 30 dB or more, was investigated when ff1 (i==) of the carbon fiber was kept approximately constant and the length of the carbon beads was increased.

電波の波Jkλ=150crnの場合の結果を第2表に
、λ−300cmの場合の結果全第3衣に示した。
The results when the radio wave Jkλ=150 crn are shown in Table 2, and the results when λ-300 cm are shown in Table 3.

第   2   表 第   3   表 以上のように、カーボンビーズの含壱重を増力lすると
、電波的特注が同等で・くネルの犀みを薄くできた。
As shown in Table 2, Table 3, by increasing the weight of the carbon beads, the radio wave customization was the same and the thickness of the channel could be made thinner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本児明の電波吸収体の電波的特性の測定用同軸
導波管の侮造會示し、第2図は本発明の′電波吸収体に
よる反射損周波数特性を示す。 1・・・コンクリート供試体、2・・・金属板。 第1図 第2図
FIG. 1 shows the construction of a coaxial waveguide for measuring the radio wave characteristics of Akira Honji's radio wave absorber, and FIG. 2 shows the reflection loss frequency characteristics of the radio wave absorber of the present invention. 1... Concrete specimen, 2... Metal plate. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (υ 球状炭素、粉状炭素及び塊状炭素から選択される
少なくとも1aIの炭素質物質とカーボンファイバを含
有するコンクリート醒波吸収体。 (2)球状炭素、粉状炭素及び塊状炭素から選択される
少なくともl柚の炭素質物質5乃至50容量%とカーボ
ンファイバ0.5乃至10容置%を含Mすることを特徴
とする特許精求の範囲第(1)項に記載の電波吸収体。 (3)球状炭素、粉状炭素及び塊状炭素から選択される
少なくとも1棟の炭素IJI物質とカーボンファイバを
、少なくともセメント及び細骨材からなるコンクリート
原料に混合することを特徴とする電波吸収体の製造方法
。 (4)前記炭水質物質とカーボンファイバをセメント、
細骨材、粗骨材からなるコンクリート原料に混合するこ
とを特徴とする特許計J求の範囲第(3)項にS1載の
電波吸収体の製造方法。
[Scope of Claims] (υ Concrete wave absorber containing carbon fiber and at least 1aI carbonaceous material selected from spherical carbon, powdered carbon, and lumpy carbon. (2) Spherical carbon, powdered carbon, and lumpy carbon The scope of the patent described in item (1) is characterized in that it contains 5 to 50% by volume of at least 1 yen carbonaceous material selected from carbon and 0.5 to 10% by volume of carbon fibers. Radio wave absorber. (3) At least one carbon IJI material selected from spherical carbon, powdered carbon, and lump carbon and carbon fiber are mixed into a concrete raw material consisting of at least cement and fine aggregate. Method for manufacturing a radio wave absorber. (4) The above-mentioned carbonaceous substance and carbon fiber are mixed into cement,
A method for manufacturing a radio wave absorber listed in S1 in item (3) of the patent application, which is characterized in that it is mixed with a raw material for concrete consisting of fine aggregate and coarse aggregate.
JP20117881A 1981-12-14 1981-12-14 Radio wave absorber and method of producing same Pending JPS58108602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20117881A JPS58108602A (en) 1981-12-14 1981-12-14 Radio wave absorber and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20117881A JPS58108602A (en) 1981-12-14 1981-12-14 Radio wave absorber and method of producing same

Publications (1)

Publication Number Publication Date
JPS58108602A true JPS58108602A (en) 1983-06-28

Family

ID=16436644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20117881A Pending JPS58108602A (en) 1981-12-14 1981-12-14 Radio wave absorber and method of producing same

Country Status (1)

Country Link
JP (1) JPS58108602A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156457A (en) * 1985-12-27 1987-07-11 株式会社フジタ Microwave absorbing wall body
JPS62283852A (en) * 1986-05-30 1987-12-09 奈良炭化工業株式会社 Electromagnetic wave shielding wall soil composition
JPS63147046A (en) * 1986-12-10 1988-06-20 株式会社フジタ Cement concrete reinforcing body
JPH01148738A (en) * 1987-12-04 1989-06-12 Denki Kagaku Kogyo Kk Conductive hydraulic composition
JPH01226957A (en) * 1988-03-07 1989-09-11 Fujita Corp Structure of electric wave absorbing wall
JPH0259459A (en) * 1988-08-23 1990-02-28 Takenaka Komuten Co Ltd Admixture for producing electrically conductive mortar
JPH0332499U (en) * 1989-08-04 1991-03-29
JPH0348298U (en) * 1989-09-14 1991-05-08
US5394149A (en) * 1991-05-28 1995-02-28 Osaka Gas Company Limited Method of absorbing electromagnetic waves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556320A (en) * 1978-06-27 1980-01-17 Ritsuo Hasumi Spectral module
JPS5544397U (en) * 1979-10-04 1980-03-22
JPS5549797A (en) * 1978-10-03 1980-04-10 Aichi Tokei Denki Kk Distanceeseparation reading device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556320A (en) * 1978-06-27 1980-01-17 Ritsuo Hasumi Spectral module
JPS5549797A (en) * 1978-10-03 1980-04-10 Aichi Tokei Denki Kk Distanceeseparation reading device
JPS5544397U (en) * 1979-10-04 1980-03-22

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156457A (en) * 1985-12-27 1987-07-11 株式会社フジタ Microwave absorbing wall body
JPH0239118B2 (en) * 1985-12-27 1990-09-04 Fujita Kogyo Kk
JPS62283852A (en) * 1986-05-30 1987-12-09 奈良炭化工業株式会社 Electromagnetic wave shielding wall soil composition
JPS63147046A (en) * 1986-12-10 1988-06-20 株式会社フジタ Cement concrete reinforcing body
JPH01148738A (en) * 1987-12-04 1989-06-12 Denki Kagaku Kogyo Kk Conductive hydraulic composition
JPH01226957A (en) * 1988-03-07 1989-09-11 Fujita Corp Structure of electric wave absorbing wall
JPH0259459A (en) * 1988-08-23 1990-02-28 Takenaka Komuten Co Ltd Admixture for producing electrically conductive mortar
JPH0332499U (en) * 1989-08-04 1991-03-29
JPH0348298U (en) * 1989-09-14 1991-05-08
US5394149A (en) * 1991-05-28 1995-02-28 Osaka Gas Company Limited Method of absorbing electromagnetic waves

Similar Documents

Publication Publication Date Title
US4010134A (en) Plaster mixture consisting of an aqueous polymer dispersion containing pigment and filler
JPS58108602A (en) Radio wave absorber and method of producing same
Gandoman et al. Sound barrier properties of sustainable waste rubber/geopolymer concretes
KR20000070449A (en) Use of aerogels for deadening structure-borne and/or impact sounds
CN101591523A (en) Gradient electromagnetic wave-absorbing material and preparation method thereof
EP0004885B1 (en) Thermally insulating coating comprising foam particles, binders and additives
US3510392A (en) Glass nodules in cellular polyurethane
US2342574A (en) Lightweight mineral material
JPS63128794A (en) Electric wave absorber
RU2440314C1 (en) Method to produce building board based on calcium sulfate/barium sulfate
US5308396A (en) Method of making lightweight granules coated with cementitious material
JPS58108603A (en) Radio wave absorber and method of producing same
KR950008356A (en) Method for producing granular sodium silicate
Szabó et al. Effect of SiO2, Al2O3 and Na2O content and fly ash fineness on the structure and mechanical properties of fly ash based geopolymer
CN109081637A (en) A kind of suction wave bullet for anechoic chamber,
JPS6467997A (en) Radio wave absorber containing ferrite
JP2772404B2 (en) Structural radio wave absorber
KR19980702474A (en) Composite gypsum board
JPS61122174A (en) Concrete mass and manufacture
JP3378636B2 (en) Sound absorbing concrete and its secondary products
JP2003048789A (en) Sound absorbing board and sound absorbing body
Astrauskas et al. Acoustic panels based on recycled paper sludge and lime composites
JP3519562B2 (en) Electromagnetic wave absorber
JPH05117001A (en) Hardened material of cement
JP2009167661A (en) Paving material, its manufacturing method, and pavement body