JPS5810856A - Manufacture of complementary type semiconductor integrated circuit device - Google Patents

Manufacture of complementary type semiconductor integrated circuit device

Info

Publication number
JPS5810856A
JPS5810856A JP56107729A JP10772981A JPS5810856A JP S5810856 A JPS5810856 A JP S5810856A JP 56107729 A JP56107729 A JP 56107729A JP 10772981 A JP10772981 A JP 10772981A JP S5810856 A JPS5810856 A JP S5810856A
Authority
JP
Japan
Prior art keywords
type
semiconductor layer
contact hole
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56107729A
Other languages
Japanese (ja)
Inventor
Toshio Hara
利夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56107729A priority Critical patent/JPS5810856A/en
Publication of JPS5810856A publication Critical patent/JPS5810856A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To decrease the leaking current at a junction part by opening contact holes on the side of a well regions, introducing impurities through said holes, opening contact holes on the substrate side, introducing impurities, and forming a deep P-N junction. CONSTITUTION:N type second semiconductor layers 13a and 13b are formed on a P well 12 in the substrate 11. P type first semiconductor layers 14a and 14b are formed on a substrate 11 and an insulating layer 16 is deposited. The contact holes 8 reaching layers 13a and 13b are opened through a resist film 17 and a photomask 18. The N type impurities are introduced in a self-aligning mode. The P-N junctions is formed in the deep part and the leaking current is decreased. Then the contact holes are likewise opened in the layers 14a and 14b, and the complementary type semiconddetor device, wherein the leaking current at the junction part is decreased, is obtained.

Description

【発明の詳細な説明】 本発明は相補型半導体集積回路装置の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a complementary semiconductor integrated circuit device.

近年、半導体集積回路装置の発達は著しい本のがIh9
、なかでも、相補型半導体集積回路装置は、その低消費
電力、広い電源動作範囲という特徴によりめざましい発
展をとげている。しかしながら、従来の製法では、パタ
ーンの微細化にともない、他の装置に見られない弱点も
露呈してきた。
In recent years, the development of semiconductor integrated circuit devices has been remarkable.
In particular, complementary semiconductor integrated circuit devices have achieved remarkable development due to their low power consumption and wide power supply operating range. However, as patterns become finer in conventional manufacturing methods, weaknesses not seen in other devices have been exposed.

すなわち、5g1図は従来法による相補型半導体装置の
コンタクト孔開孔時点での断面図である。
That is, FIG. 5g1 is a cross-sectional view of a complementary semiconductor device at the time of forming a contact hole by the conventional method.

図において、N型半導体基板1の一表面側に、P型半導
体層2(以下P型ウェルと呼ぶ。)t−形成し、フェル
2にN型のソースおよびドレイン領域3a、3bt、N
型基板1にP型ノソースおよびドレイン領域4a、4b
t”設け、絶縁層6に外部配線用金属とWc続するため
のコンタクト孔8を7オトレジスト膜7をマスク材とし
て形成した状態である。通常は、このコンタクト孔8の
形成工程はN型半導体層であるソースおよびドレイン領
域3a、3b、P型半導体層のソースおよびドレイン領
域4a、4bの両者に対し同時に行なわれるため、たと
えば、通常のN型半導体層の接合部リーク電流低減のた
めに行なわれるコンタクト開孔部からのリン拡散等の手
段をとろうとすると、P型半導体層中4CP−N接合が
形成されてしまう。
In the figure, a P-type semiconductor layer 2 (hereinafter referred to as P-type well) is formed on one surface side of an N-type semiconductor substrate 1, and N-type source and drain regions 3a, 3bt, N
P-type source and drain regions 4a and 4b are formed on the type substrate 1.
A contact hole 8 is formed in the insulating layer 6 using the photoresist film 7 as a mask material.Normally, the process of forming this contact hole 8 is performed using an N-type semiconductor. Since the process is performed simultaneously on both the source and drain regions 3a and 3b of the P-type semiconductor layer and the source and drain regions 4a and 4b of the P-type semiconductor layer, for example, it is performed to reduce junction leakage current of a normal N-type semiconductor layer. If an attempt is made to diffuse phosphorus from the contact opening, a 4CP-N junction will be formed in the P-type semiconductor layer.

逆にP型半導体層に対して同様の手段をとると、N型半
導体層中にP−N接合が形成されてしまい、そのために
、接合部リーク電流の低減が非常に困難となっていた。
Conversely, if similar measures are taken for the P-type semiconductor layer, a PN junction is formed in the N-type semiconductor layer, making it extremely difficult to reduce the junction leakage current.

本発明の目的は、この困難を除き、P型半導体層、N型
半導体層ともに接合部のリーク電流の低減をはかりうる
相補型半導体集積回路装置の製造方法全提供することに
ある。
An object of the present invention is to provide an entire method for manufacturing a complementary semiconductor integrated circuit device that can eliminate this difficulty and reduce leakage current at the junction of both the P-type semiconductor layer and the N-type semiconductor layer.

つぎに本発明を実施例によシ説明する。Next, the present invention will be explained using examples.

第2図(alないしくf)は本発明の一実施例の製造工
程を説明するための断面図である。まず、第2図(a)
はN型半導体基板11の一表面にP型ウェル12全形成
し、それらの表面側に、MOSト2ンジスタのソースお
よびドレイン領域として、Pウェル12にN型第2半導
体層13a、13bt−形成し、基板11にP型巣1半
導体層14a、14bを設け、絶縁層16金それらをお
おうように被着し、フォトレジスト膜17t−絶縁層1
6上に被層した工程での断面図である。このフォトレジ
スト膜17は、従来フォトマスク18によシ部分的に露
光されて、N型第2半導体層13a、13bと外部配線
用金属とを接続するコンタクト孔を開孔する際のパター
ン決定用の耐エツチング膜となる。
FIG. 2 (al to f) is a sectional view for explaining the manufacturing process of an embodiment of the present invention. First, Figure 2(a)
A P-type well 12 is entirely formed on one surface of an N-type semiconductor substrate 11, and an N-type second semiconductor layer 13a, 13b- is formed in the P-well 12 as a source and drain region of a MOS transistor on the surface side thereof. Then, P-type layer 1 semiconductor layers 14a and 14b are provided on the substrate 11, an insulating layer 16 of gold is deposited to cover them, and a photoresist film 17t-insulating layer 1 is formed.
FIG. 6 is a cross-sectional view at a step of layering on top of No. 6; This photoresist film 17 is partially exposed using a conventional photomask 18 to determine a pattern when forming contact holes connecting the N-type second semiconductor layers 13a, 13b and external wiring metal. It becomes an etching-resistant film.

なお、本実施例では、露光された部分が残υ、露光され
なかった部分が現像液に溶ける、いわゆる、ネガ型の7
オトレジスト膜を使用しているか、フォトマスクの明暗
を反転してポジ型のフォトレジスト膜を使用してもよい
。フォトレジスト膜17tパターン決定用の耐エツチン
グ膜として、絶縁層16中にN型第2半導体層13a、
13bに達するコンタクト孔8t−開孔した状態が第2
図(b)である。このとき、P型第1半導体層tj”a
、i4bは絶縁層16におおわれたままである。次にフ
ォ)l/シスト膜17を除去し、N14第2半導体層1
3a、13bに達するコンタクト孔8から自己整合的に
N型不純物の導入を行う。この導入法としては拡散法、
イオン注入法がらシ、またN型不純物としてはリンがも
つとも適当でめるが、ヒ素でもよい。この時絶縁層16
がおるためP型半導体層14a、14bにはN型不純物
は導入されない。この状態が@2図(C)である。この
自己整合的なN型不純物の導入により、コンタクト孔8
を通してN型第2半導体層13a、13b′ft:外部
配線用金属と接続した際に、N型第2半導体層13a。
In this example, a so-called negative type 7 was used, in which the exposed part remains and the unexposed part dissolves in the developer.
A photoresist film may be used, or a positive photoresist film may be used by reversing the brightness of the photomask. As an etching-resistant film for pattern determination of the photoresist film 17t, an N-type second semiconductor layer 13a,
Contact hole 8t reaching 13b - the open state is the second
It is figure (b). At this time, the P-type first semiconductor layer tj”a
, i4b remain covered with the insulating layer 16. Next, the N14 second semiconductor layer 1 is removed.
N-type impurities are introduced in a self-aligned manner through contact holes 8 reaching 3a and 13b. The introduction method is the diffusion method,
Due to the ion implantation method, phosphorus is suitable as the N-type impurity, but arsenic may also be used. At this time, the insulating layer 16
Therefore, no N-type impurity is introduced into the P-type semiconductor layers 14a and 14b. This state is shown in Figure 2 (C). By introducing this self-aligned N-type impurity, the contact hole 8
Through N-type second semiconductor layer 13a, 13b'ft: When connected to external wiring metal, N-type second semiconductor layer 13a.

13bとPitウェル12との間に形成場れ、6PN接
合部分でのリーク電流全低減せしめることができる。こ
れは、コンタクト孔開孔部でのPN接合が、従来より深
い部分に形成されるため、外部配線用金属のPN接合部
へのはいり込みがおこシにくくなるからでおる。
13b and the Pit well 12, the leakage current at the 6PN junction can be completely reduced. This is because the PN junction at the opening of the contact hole is formed at a deeper portion than in the past, making it difficult for external wiring metal to penetrate into the PN junction.

次に、再度フォトレジスト膜20を被着し、P型巣1半
導体層14a、14bと外部配線用金属を接続するコン
タクト孔開孔のためのフォトマスク19を示したものが
第2図(d)である。次に7オトクスク19によシ、フ
ォトレジスト膜20をパターン決定用の耐エツチング膜
としてP型巣1半導体層14a、14bに達するコンタ
クト孔9f:開孔した状態が第2図(e)である。この
第2図(e)の状態で、フォトレジスト膜20をマスク
材としてイオン注入法によシ、P型不純物を自己整合的
に導入し、その後に、フォトレジスト膜20を除去し、
高温熱処理によシ、コンタクト孔よシ導入した不純物を
活性化せしめた状態が第2図げ)である。
Next, a photoresist film 20 is deposited again, and a photomask 19 is shown in FIG. ). Next, using the photoresist film 20 as an etching-resistant film for pattern determination, a contact hole 9f reaching the P-type layer 1 semiconductor layer 14a, 14b is opened as shown in FIG. 2(e). . In the state shown in FIG. 2(e), P-type impurities are introduced in a self-aligned manner by ion implantation using the photoresist film 20 as a mask, and then the photoresist film 20 is removed.
Figure 2 shows the state in which the impurities introduced into the contact hole are activated by high-temperature heat treatment.

P型不純物としてはボロンが望ましい。第2図げ)の状
態に外部配線用金属を被層し、パターンを形成すれば相
補型半導体集積回路装置が完成する。
Boron is desirable as the P-type impurity. A complementary semiconductor integrated circuit device is completed by covering the state shown in FIG. 2 with metal for external wiring and forming a pattern.

以上のように、本発明によればN型第2半導体層13g
、13bからPウェル12へのリーク電流及び、pH第
1半導体層14a、14bからN型半導体基板11への
リーク電流がともに低減され、パターンの微細化にとも
なう相補型半導体集積回路装置の弱点を克服するととも
に、その優位性を確固たるものにすることができる。
As described above, according to the present invention, the N-type second semiconductor layer 13g
, 13b to the P-well 12 and the leakage current from the pH first semiconductor layers 14a, 14b to the N-type semiconductor substrate 11 are reduced. We can overcome this problem and solidify our superiority.

表お、本91施例では、N型を一導電型、l!t’に反
対導電型に対応させたが、この逆の対応でも勿論本発明
は成立する。さらに、N型半導体基板にP型ウェルを形
成したが、P型半導体基板にN型ウェルを形成した場合
も、本発明の実施例に入ることはいうまでもない。
In the table, in Example 91, N type is one conductivity type, l! Although t' corresponds to the opposite conductivity type, the present invention can of course also be applied to the opposite conductivity type. Further, although the P-type well is formed on the N-type semiconductor substrate, it goes without saying that forming an N-type well on the P-type semiconductor substrate also falls within the embodiments of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による途中工程の断面図であり、第2図
(a)〜げ)は本発明による実施例の各工程における断
面図である。 1.11・・・・・・N型半導体基板、2,12・・・
・・・P型ウェル、3 a、  3 b、  13 a
、  13 b−−−−−−N型第2半導体層、4 a
、  4 b、  14 a、  14 b−−−−−
−P型@1半導体層、5.15・・・・・・MOS)ラ
ンジスタのゲート電極、6.16・・・・・・絶縁層、
7,17゜20・・・・・・フォトレジストill、1
8.19・・・・・・フォトマスク。 又]
FIG. 1 is a sectional view of an intermediate step according to a conventional method, and FIGS. 2(a) to 2) are sectional views of each step of an embodiment according to the present invention. 1.11...N-type semiconductor substrate, 2,12...
...P-type well, 3 a, 3 b, 13 a
, 13b---N-type second semiconductor layer, 4a
, 4 b, 14 a, 14 b---
-P type @1 semiconductor layer, 5.15...MOS) transistor gate electrode, 6.16...insulating layer,
7,17゜20...Photoresist ill, 1
8.19...Photomask. or]

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板の一生面側の一部に反対導電型のウ
ェル領域を形成する工程と、このウェル領域の外側の前
記半導体基板の一生面側に第1M08)う/ジスタのソ
ース・ドレイン領域としての反対導電型の第1の半導体
層を形成する工程と、前記ウェル領域内に第zMO8)
う/ジスタのソース・ドレイン領域としての一導電型の
第2の半導体層を形成する工程と、前記半導体基板の一
生面側を覆った絶縁膜に前記@1の半導体層と外部配線
金属とt−接続するための@1のコンタクト穴、または
前記絶縁膜に前記第2の半導体層と外部配線金属と’を
接続するための第2のコンタクト穴の何れか一部のコン
タクト穴全開孔し、このコンタクト穴を通してこのコン
タクト穴の通じる半導体層に同じ導電型を生起させる不
純物原子を導入する工程と、つぎに前記絶縁膜に他方の
コンタクト穴i−g孔し、このコンタクト穴を通してこ
のコンタクト穴の通じる半導体層に同じ導電型上生起さ
せる不純物原子を導入する工程とを含むことを特徴とす
る相補型半導体集積回路装置の製造方法。
A step of forming a well region of an opposite conductivity type on a part of the whole surface side of a semiconductor substrate of one conductivity type, and a source/drain region of a first M08) transistor on the whole surface side of the semiconductor substrate outside the well region. a step of forming a first semiconductor layer of opposite conductivity type as zMO8) in the well region;
A step of forming a second semiconductor layer of one conductivity type as a source/drain region of the @1 semiconductor layer and an external wiring metal on an insulating film covering the whole surface side of the semiconductor substrate. - fully opening a part of the contact hole @1 for connection or a second contact hole for connecting the second semiconductor layer and external wiring metal to the insulating film; A step of introducing an impurity atom that causes the same conductivity type into the semiconductor layer that this contact hole communicates with through this contact hole, and then forming the other contact holes i-g in the insulating film and passing the contact hole through this contact hole. 1. A method for manufacturing a complementary semiconductor integrated circuit device, comprising the step of introducing impurity atoms of the same conductivity type into semiconductor layers that communicate with each other.
JP56107729A 1981-07-10 1981-07-10 Manufacture of complementary type semiconductor integrated circuit device Pending JPS5810856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107729A JPS5810856A (en) 1981-07-10 1981-07-10 Manufacture of complementary type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107729A JPS5810856A (en) 1981-07-10 1981-07-10 Manufacture of complementary type semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5810856A true JPS5810856A (en) 1983-01-21

Family

ID=14466463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107729A Pending JPS5810856A (en) 1981-07-10 1981-07-10 Manufacture of complementary type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5810856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208168A (en) * 1990-11-26 1993-05-04 Motorola, Inc. Semiconductor device having punch-through protected buried contacts and method for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248979A (en) * 1975-10-17 1977-04-19 Mitsubishi Electric Corp Process for production of complementary type mos integrated circuit de vice
JPS5574175A (en) * 1978-11-29 1980-06-04 Nec Corp Preparing interpolation type mos semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248979A (en) * 1975-10-17 1977-04-19 Mitsubishi Electric Corp Process for production of complementary type mos integrated circuit de vice
JPS5574175A (en) * 1978-11-29 1980-06-04 Nec Corp Preparing interpolation type mos semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208168A (en) * 1990-11-26 1993-05-04 Motorola, Inc. Semiconductor device having punch-through protected buried contacts and method for making the same

Similar Documents

Publication Publication Date Title
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPS5810856A (en) Manufacture of complementary type semiconductor integrated circuit device
JPS5976459A (en) Method of producing monolithic integrated circuit
JPS62265765A (en) Semiconductor device and manufacture thereof
JPH09321233A (en) Manufacturing semiconductor device
JP2617217B2 (en) Method for manufacturing semiconductor device
JPS6281051A (en) Semiconductor device and manufacture thereof
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH03101264A (en) Manufacture of complementary field effect transistor
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPS59134868A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS59151459A (en) Manufacture of semiconductor device
JPH01235368A (en) Manufacture of semiconductor device
JPS6041870B2 (en) Method for manufacturing complementary MOS integrated circuit device
JPH03135062A (en) Semiconductor device
JPH01278773A (en) Manufacture of semiconductor integrated circuit
JPS61219165A (en) Manufacture of complementary semiconductor integrated circuit device
JPS5886768A (en) Manufacture of semiconductor device
JPH02305469A (en) Manufacture of semiconductor device
JPH04133423A (en) Manufacture of semiconductor device
JPS61185974A (en) Manufacture of semiconductor device
JPS6060765A (en) Manufacture of semiconductor device
JPH02234453A (en) Manufacture of semiconductor device
JPS5373082A (en) Manufacture of mos transistor