JPS58108482A - Positron ct apparatus - Google Patents

Positron ct apparatus

Info

Publication number
JPS58108482A
JPS58108482A JP20623181A JP20623181A JPS58108482A JP S58108482 A JPS58108482 A JP S58108482A JP 20623181 A JP20623181 A JP 20623181A JP 20623181 A JP20623181 A JP 20623181A JP S58108482 A JPS58108482 A JP S58108482A
Authority
JP
Japan
Prior art keywords
length
gamma ray
positron
tungsten plate
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20623181A
Other languages
Japanese (ja)
Other versions
JPS6351511B2 (en
Inventor
Kenichi Okajima
健一 岡島
Takeshi Ueda
健 植田
Fumio Kawaguchi
文男 川口
Katsumi Takami
高見 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20623181A priority Critical patent/JPS58108482A/en
Publication of JPS58108482A publication Critical patent/JPS58108482A/en
Publication of JPS6351511B2 publication Critical patent/JPS6351511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Abstract

PURPOSE:To reduce the missing of simultaneous counting otherwise causing non-linearity in the accidental simultaneous counting rate and the counting rate of a positron CT apparatus as probable noise component by decreasing a part of a dissipated gamma ray from the perimeter of a view having position information of a ray source with a member for absorbing gamma ray with a larger wavelength than it inserted between scintillators. CONSTITUTION:The chart shows changes in the simultaneous counting rate when the length of a tungsten plate is varied with a gamma ray incidence angle theta=25 deg. for example, employing tungsten for a gamma ray absorbing member. The simultaneous counting rate was reduced by about 10% when the tungsten plte was set at the reference length +4mm. in the length and 1mm. in the thickness and about 40% when the length of the tungsten plate exceeds the reference length +12mm. as compared with the case without the tungsten plate. The reference length +12mm. is found to be the optimum length of the tungsten plate. When the length of the tungsten plate was less than the reference length +4mm., the reduction rate in the simultaneous counting rate is small in the perimeter of the view. No substantial advantage was noted. The tungsten plate proved appropriate when it was 0.5-2mm. in the thickness and projected by more than 4mm. from the surface of scintillators in the length. Even in the case of a positron CT, the projection of the tungsten plate by more than 4mm. from the surface of the scintillators is expected to yield an effect of reducing the simultaneous counting rate in the perimeter of the view.

Description

【発明の詳細な説明】 本発明はポジトロンCT装置に関し、特に生体内部に投
与された陽電子放射性同位元素の位置情報を得るための
ガンマ線検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positron CT apparatus, and particularly to a gamma ray detector for obtaining positional information of a positron radioisotope administered into a living body.

ポジ)aンCT装置は、生体内部に投与され九階電子放
射性同位元素(以後線源と略す。)の濃裏分布を体軸に
はは垂直な平面で表示する装置てある。ここで、線源の
位置情報は人体をリング状あるいは正多角形状に取抄囲
んだ多数のガンマ線検出器間の同時計数により得られる
。この方法は、特開昭56−6175号公報等に詳細に
述べられている。              、  
・ビ生体内部に分布した線源から放出される一対の消滅
ガンマ線は線源の存在位置・消滅ガンマ線放出方向によ
り人体において異なる経路を通り興なるガンマ線吸収を
受ける。視野に一様にIIi!源が分布する場合、一対
の消滅ガンマ線が吸収されることなくガンマ線検出器へ
到達する確率は、上記透過経路の差異によるガンi線吸
収率差の影響を受ける。第1図K、一対の消滅ガンマ線
が視野内でらかなように視野周辺部を通過する消滅ガン
V線ね、視野中央部を透過するガン11iIVC比べ大
きくなる。第1図において、横軸tは視野中心0から透
過経路pまでの距離を示し、縦軸は透過確率を示す。な
お視野半径ra15mとした。
A positive CT device is a device that displays the concentration distribution of a ninth-order electron radioactive isotope (hereinafter referred to as a radiation source) administered into a living body on a plane perpendicular to the body axis. Here, the position information of the radiation source is obtained by simultaneous counting between a large number of gamma ray detectors surrounding the human body in a ring shape or a regular polygon shape. This method is described in detail in Japanese Unexamined Patent Publication No. 56-6175. ,
- A pair of annihilation gamma rays emitted from a radiation source distributed inside a living body undergoes gamma ray absorption in the human body through different routes depending on the location of the radiation source and the direction in which the annihilation gamma rays are emitted. IIi uniformly in the field of view! When the sources are distributed, the probability that a pair of annihilation gamma rays will reach the gamma ray detector without being absorbed is affected by the difference in gamma i-ray absorption rate due to the difference in the transmission paths. In FIG. 1K, a pair of annihilation gamma rays pass through the periphery of the visual field smoothly in the field of view. In FIG. 1, the horizontal axis t represents the distance from the visual field center 0 to the transmission path p, and the vertical axis represents the transmission probability. Note that the field of view radius was 15 m.

従来のポジトロンCT用ガンマ線検出器系の構成を第2
a図、第2b図に示すと共に、視野全体に一様な線源が
分布する場合にかかる従来の検出器系で得られる同時計
数の投影で一部の一例を第3図に示し、その欠点につい
て説明する。従来の検出器系では、リング状に多数配列
されたシンチ長さのガンマ線吸収体2を挿入したb(第
2a図)、高空間分解能を達成するためポジトロンCT
装置の消滅ガンマ!IK対する検出感度を犠牲にし遇あ
るいは散乱にょb#接する検出器で検出されることを防
ぐことKのみ作用する。そのため、視野4全体に一様な
lI源が分布する場合の同時計数の投影データは第3図
に示すように消滅ガン□マ線透過確率の高い視野4周辺
部で同時計数率がきわめて高くなる。また、重金属プラ
グ3を装着した場合、視野中央部を透過し検出器にほぼ
垂直に入射する消滅ガンマ線5に対しては、シンチレー
タlの開口wi積が減少し、同時計数率が減少するとい
う問題点があった。さらi/c視野周辺部を透過し^射
角の大きな消滅ガンマIw6に対しては、重金属グラブ
3が台形あるいは半円状の形状をとるため、遮蔽効果は
小さくなり1上記ガンマ線吸収体2の場合と同様、同時
計数の投影データは視野周辺部できわめて大となる。
The configuration of the conventional positron CT gamma ray detector system was changed to a second one.
Fig. 3 shows an example of a coincidence projection obtained with a conventional detector system when a radiation source is uniformly distributed over the entire field of view, and its drawbacks are shown in Figs. I will explain about it. In the conventional detector system, a large number of cinch-length gamma ray absorbers 2 arranged in a ring shape are inserted (Fig. 2a), and positron CT is used to achieve high spatial resolution.
Device annihilation gamma! K only works by sacrificing the detection sensitivity for IK or preventing it from being detected by an adjacent detector due to scattering. Therefore, when the II source is uniformly distributed over the entire visual field 4, the coincidence rate is extremely high in the periphery of the visual field 4, where the probability of annihilation gamma ray transmission is high, as shown in Figure 3. . In addition, when the heavy metal plug 3 is attached, there is a problem that the aperture wi product of the scintillator 1 decreases and the coincidence rate decreases for annihilation gamma rays 5 that pass through the center of the field of view and enter the detector almost perpendicularly. There was a point. Furthermore, for the annihilation gamma Iw6 that passes through the periphery of the I/C field of view and has a large angle of incidence, the heavy metal glove 3 takes a trapezoidal or semicircular shape, so the shielding effect is small. As in the case, the coincidence projection data is extremely large at the periphery of the visual field.

ポジトロンCT装置により再生される線源濃度分布儂の
画質は雑音成分としての偶然同時計数と同時計数の統計
誤差とKより劣下する。偶然同時計数は、発生源の異な
る2つの消滅ガンi線が偶然に同時計数される事象で、
この確率は検出器計数率の二乗に比例する。一方、統計
誤差は同時計数の平方根で与えられる。さらに、検出器
の計数率が高くなると偶然同時計数以外(検出器回路、
同時計数回路、信号伝達系の不感時間が原因となる同時
計数の数え落としが増加し、ポジトロンCT装置の計数
率の線源濃度に対する直線性が保障されなくなる。
The image quality of the source concentration distribution reproduced by a positron CT apparatus is inferior to the random coincidence count as a noise component, the statistical error of the coincidence count, and K. Coincidence is an event in which two annihilated cancer i-rays from different sources are counted simultaneously.
This probability is proportional to the square of the detector count rate. On the other hand, the statistical error is given by the square root of the coincidence count. Furthermore, when the counting rate of the detector becomes high, it is possible to
Due to dead time in the coincidence counting circuit and signal transmission system, the number of coincidence counts increases, and the linearity of the counting rate of the positron CT apparatus with respect to the source concentration is no longer guaranteed.

従来構成では上述したとおり、視野中央部を通過する消
滅ガンマ線の同時計数率が最も低く統計誤差による雑音
が高いため、再生画像の画質はこの視野中央部を通過す
る消滅ガンマ線の統計雑音で決まる。これに対し、視野
周辺部を通過する消滅ガンi線の高い同時計数率は、小
さな統計雑音により視野周辺の画質向上には寄与するが
、最も関心の高い視野中央部の画質改善には寄与しない
As mentioned above, in the conventional configuration, the coincidence rate of annihilation gamma rays passing through the center of the visual field is the lowest and the noise due to statistical errors is high, so the image quality of the reproduced image is determined by the statistical noise of the annihilation gamma rays passing through the center of the visual field. On the other hand, the high coincidence rate of the annihilated cancer i-rays passing through the periphery of the visual field contributes to improving the image quality in the periphery of the visual field due to small statistical noise, but does not contribute to improving the image quality in the central part of the visual field, which is of most interest. .

むしろ、検出器の計数率増加による偶然同時計数および
同時計数の数え落としの増加要因となり、ポジトロンC
T装置の最大計数率および計数率の線源濃度に対する直
線性を劣下させる要因となっていた。
Rather, the increase in the counting rate of the detector causes an increase in coincidental coincidences and uncounted coincidences, and the positron C
This was a factor that deteriorated the maximum counting rate of the T device and the linearity of the counting rate with respect to the source concentration.

本発明は線源の位置情報を持つ視野周辺からの消滅ガン
i線の一部を、シンチレータ関にこれよね長いガンマ線
吸収体を挿入することKより低減し、雑音成分となる偶
然同時計数率およびポジトロンCT装置の計数率の非直
線性をもたらす同時計数の数え落としの低減を図ること
を目的としたものである。
The present invention reduces a part of the annihilated gamma rays from the periphery of the field of view that have positional information of the source by inserting a longer gamma ray absorber in the scintillator, and reduces the chance coincidence rate that becomes a noise component. The purpose of this is to reduce the number of coincidence counts that cause non-linearity in the counting rate of positron CT devices.

放射線検出部間にそれより長い放射線吸収体を挿入する
方法はXJIICTでは公知である(例えば特開昭53
m−11451711号公報)、シかし、X線CTては
Xs源は体外に存在し検出器との位置関係は、ポジトロ
ンCT装置とは異なり一意的に決まる、放射線吸収体は
このX線源と検出器開口で決まるXll1!通過路以外
から混入する散乱X線を除去することを目的とする。つ
まり、X#CTKおける放射線吸収体の使用目的は再生
画像の雑音成分となる散乱X線を除去することKある。
A method of inserting a longer radiation absorber between the radiation detection parts is known in XJIICT (for example, Japanese Patent Laid-Open No. 53
However, in X-ray CT, the Xs source exists outside the body, and the positional relationship with the detector is uniquely determined, unlike in positron CT equipment. and Xll1 determined by the detector aperture! The purpose is to remove scattered X-rays that enter from sources other than the passage. In other words, the purpose of using the radiation absorber in X#CTK is to remove scattered X-rays that become noise components of reproduced images.

したが−って放射線吸収体は投影データに対し何ら影譬
を及埋さない、さらに、視野周辺を透過するX#に対し
てはX#l吸収率が低いため投影データは視野周辺で大
となる。これに対し、本発明によるポジトロンCT装置
のガンマ線吸収体は、位置情報を持ち画像再生に使用可
能な消滅ガンマ線を低減し同時計数投影データを平滑化
することにより、偶然同時計数、数え落としを減じ、ポ
ジトロンCT装置の計数率特性向上を目ざしたもので、
X線CTとは目的、効果を全く異にする。
Therefore, the radiation absorber does not affect the projection data in any way.Furthermore, since the absorption rate of X#l is low for becomes. In contrast, the gamma ray absorber of the positron CT apparatus according to the present invention reduces the number of annihilated gamma rays that have positional information and can be used for image reproduction, and smoothes the coincidence projection data, thereby reducing accidental coincidences and missed counts. , aimed at improving the count rate characteristics of positron CT equipment.
The purpose and effects are completely different from X-ray CT.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第4図は本発明によるポジトロンCT装置の一実施例の
要部を示す図であり、ガンマ線検出器系の構成を示す0
図において、lOは本発明に係るE記ガンi線吸収体で
ある。視野中央部を透過し、シンチレータIKfi直に
入射するガンマ線5に対してはガンマ線吸収体10は障
害とならない、一方、視野周辺部を透過し、入射角の大
きなガンマ線6は、ガンマ線吸収体10による吸収を一
部受けた後シンチレータIK到達するため、同時計数率
は減少する。このガンマ線吸収体10の効果を定量的に
評価する丸め、一様な吸収体中(ガンマ線吸収係数μ)
KM源が分布する場合の検出器対での真の同時計数率を
求める計算式を導出した。
FIG. 4 is a diagram showing the main parts of an embodiment of the positron CT apparatus according to the present invention, and shows the configuration of the gamma ray detector system.
In the figure, lO is the E-class Gunn i-ray absorber according to the present invention. The gamma ray absorber 10 does not interfere with the gamma rays 5 that pass through the center of the field of view and directly enter the scintillator IKfi.On the other hand, the gamma rays 6 that pass through the periphery of the field of view and have a large angle of incidence are blocked by the gamma ray absorber 10. Since the scintillator IK is reached after some absorption, the coincidence rate decreases. Rounding and uniform absorber to quantitatively evaluate the effect of this gamma ray absorber 10 (gamma ray absorption coefficient μ)
We have derived a calculation formula for determining the true coincidence rate for a pair of detectors when the KM source is distributed.

C*(’)”//8#o (X e 7 )” −””
 ’ ” ” ” (’ e ” If(”s F )
’ ” F・・・・・・・・・(1) 上式において、C1(#)は入射角−で検出器対に入射
するガンマ線の真の同時計数率である。8はスライス幅
、pe(x a y )は線源濃度分布% ’(’ I
 ” )は入射角−で入射するガンマ線の検出効率、f
Fy)は座1m(1,7)に線源が存在する場合の幾何
学的な同時計数効率% t(a IX)はガンマ線透過
路の長さを意味する。婢野4(半径r)全体1c 一様
に線源が分布する場合には、上式は次式のように書き直
せる。
C*(')"//8#o (X e 7)"-""
' ” ” ” (' e ” If(”s F )
'''F... (1) In the above equation, C1 (#) is the true coincidence rate of gamma rays incident on the detector pair at an incident angle of -.8 is the slice width, pe (x a y ) is the source concentration distribution % '(' I
”) is the detection efficiency of gamma rays incident at an incident angle of -, f
Fy) is the geometric coincidence efficiency % when the source is located at the locus 1m (1, 7). t(a IX) means the length of the gamma ray transmission path. When the radiation source is uniformly distributed in the whole 1c of Uno 4 (radius r), the above equation can be rewritten as the following equation.

C・(リー/”F(##X)dX 但し、71≦R,IX−ω1/ω 但し、)’l>RIIX−ω1/ω ここで、 B、=Bcos# * z(lsixθ+bcos # )/ 2Y*=(
”   (X+x l)曹)V鵞x 1 = 1sis
 # −1Camθa;シンチレータ長さ  (第4図
参照)b;シンチレータ幅   (第4図参照)几;検
出器リング半径 である。−例としてガンマ線吸収体10をタングステン
とし、シンチレータ2を24X24X12(8x a 
X b ) am” IDk’xwxジャーiネイト(
BGO)シンチレータ、視野40半径rを12.5m、
ガンマ線検出器リング7の半径Bを25cIRとし、視
野全体に一様に線源が分布した時の同時計数投影データ
を計算した。ただし、#(##X)は入射角−で(”*
7t)を通るガンマ線のシンチレータによる吸収を、シ
イエレーシ四ン計算することに↓り得た。
C・(Lee/"F(##X)dX However, 71≦R, IX-ω1/ω However,)'l>RIIX-ω1/ω Here, B,=Bcos#*z(lsixθ+bcos#)/ 2Y*=(
” (X + x l) Cao) V x 1 = 1sis
#-1Camθa: scintillator length (see Figure 4) b: scintillator width (see Figure 4); detector ring radius. - As an example, the gamma ray absorber 10 is made of tungsten, and the scintillator 2 is made of 24X24X12 (8x a
X b ) am” IDk'xwxjer i Nate (
BGO) scintillator, field of view 40 radius r 12.5m,
The radius B of the gamma ray detector ring 7 was set to 25 cIR, and coincidence projection data was calculated when the radiation source was uniformly distributed over the entire field of view. However, #(##X) is an incident angle of −(”*
We were able to calculate the absorption of gamma rays by the scintillator through the scintillator.

結果を第5a〜if図に示す。なお、図において、横軸
はガンマ線入射角# 、g軸は〔真の同時計数率〕/(
p・5i”74g)を示し、曲線の−(ラメータは、タ
ングステン板の厚さがとっである。
The results are shown in Figures 5a-if. In the figure, the horizontal axis is the gamma ray incident angle #, and the g axis is [true coincidence rate]/(
p・5i"74g), and the -(rammeter) of the curve is determined by the thickness of the tungsten plate.

第5、構図はシンチレータより4■短いガンマ線吸収体
をシンチレータ間に挿入した場合である。
The fifth composition is a case where a gamma ray absorber, which is 4 cm shorter than the scintillator, is inserted between the scintillators.

タングステン板を厚くするにつれ、隣接BGOとの距離
が増すため、隣接BGOのガ/マ線鐘蔽効果が低下し、
視野周X辺付近での同時計数率が増加する。このように
%BGOより短いタングステン板を800間に挿入する
ことkより、視野周辺部の同時計数率低減化は不可能で
ある。第5b〜′5f図は、それぞれシンチレータより
0wm+4鱈。
As the thickness of the tungsten plate increases, the distance between it and the adjacent BGO increases, so the G/M ray shielding effect of the adjacent BGO decreases.
The coincidence rate near the X side of the visual field increases. In this way, by inserting a tungsten plate shorter than %BGO between 800 and 800, it is impossible to reduce the coincidence rate in the peripheral part of the visual field. Figures 5b to '5f show 0wm+4 cod from the scintillator, respectively.

8mm512m、16−長hガンi線吸収体をシンチレ
ータ間に挿入して、シンチレータ表面より吸収体の一部
を上記の長さだけ突出させた場合である。これらの図か
ら明らかなように%BGO表面誹りタングステン板の一
部を突出させた場合、タレゲステン板の長さ及び厚さを
増すにりれ、視野周辺部を透過する消滅ガンマ線の同時
計数率が減少する。しかしながら、タングステン板の厚
さの増加は、ガンマ線検出器リング6中0BGO実装密
度の低下を招くため、その厚さには限界があり、好まし
くは4−以下で、最本好ましい範囲は0,5〜2wsで
あり、投影データを平滑化するKはタングステン板の長
さを調節すればよい、第6図は、ガンマ線入射角θ−2
B’ で、タングステン板の長さを変えた時の同時計数
率の変化を示す図である。タングステン板長さ+4−1
厚さ1−て同時計数率はタングステン板がない一合に比
べ約10係減少し長さ+12m以上ではは?’! 40
 S減少する。これより最適タングステン板長は+12
−と、)傘減少率が小さく、従来構成に比べ大きな利点
は11Iめられない6以上の説明より1上記構成では厚
、10.5〜2−1長さはシンチレータ表面より4−以
上突出し九タングステン板が適する。上記以外の構成の
ポジトロンCTでもシンチレータ表面より4−以上タン
ゲステン板を突出させiば視野周辺部の同時計数率低下
効果は期待てきる。
This is a case where an 8 mm, 512 m, 16-long H gun i-ray absorber is inserted between scintillators, and a part of the absorber protrudes from the surface of the scintillator by the above length. As is clear from these figures, when a part of the tungsten plate with a %BGO surface is made to protrude, as the length and thickness of the tungsten plate are increased, the coincidence rate of annihilation gamma rays passing through the peripheral part of the visual field increases. Decrease. However, since an increase in the thickness of the tungsten plate causes a decrease in the mounting density of the 0BGO in the gamma ray detector ring 6, there is a limit to the thickness, which is preferably 4- or less, and the most preferable range is 0,5. ~2 ws, and K for smoothing the projection data can be adjusted by adjusting the length of the tungsten plate. Figure 6 shows the gamma ray incident angle θ-2
B' is a diagram showing the change in the coincidence rate when the length of the tungsten plate is changed. Tungsten plate length +4-1
At a thickness of 1-1, the coincidence rate decreases by a factor of about 10 compared to a case without a tungsten plate, and at a length of +12 m or more, isn't it? '! 40
S decreases. From this, the optimal tungsten plate length is +12
- and) The umbrella reduction rate is small, which is a big advantage compared to the conventional configuration. 6 From the above explanation, 1. In the above configuration, the thickness, 10.5 to 2-1. Tungsten plate is suitable. Even in a positron CT having a configuration other than the above, if 4 or more tungsten plates are made to protrude from the surface of the scintillator, an effect of reducing the coincidence rate in the peripheral area of the visual field can be expected.

(1)シンチレータサイズ同一で検出器リングが大とな
る場合 視野半径が大となり1視野中央部を通過するガンマ線の
透過率が一段と低下し、視野周辺部の同時計数率が相対
的に高まる。視野周辺部の同時計数率を視野中央部と調
和がとれるs−に減少するにはリング径の小さな検出器
系でのタングステン板の長さより長くしなければならな
い。
(1) When the scintillator size is the same and the detector ring is larger, the field of view radius becomes larger, the transmittance of gamma rays passing through the center of one field of view further decreases, and the coincidence rate of the peripheral part of the field of view increases relatively. In order to reduce the coincidence rate in the peripheral part of the field of view to s-, which is in harmony with the central part of the field of view, the ring diameter must be longer than the length of the tungsten plate in a small detector system.

現在使用されるレンチレータ幅は、これに接合する光電
子増倍管(PMT)tイズで制−される。市販の最小径
PMTはφ1/2“であり、これに適合する最小幅は約
7−で、これが実用限界となる。この最小幅シンチレー
タに対し、最適タングステン長祉約71とな如、シンチ
レータ表面より4−以上突出させるという条件を満たす
The width of the lentilator currently used is controlled by the size of the photomultiplier tube (PMT) to which it is connected. The minimum diameter PMT on the market is φ1/2", and the minimum width compatible with this is about 7", which is the practical limit. For this minimum width scintillator, the scintillator surface has an optimal tungsten length of about 71 The condition of protruding by 4 or more is satisfied.

上記のとおり・、+4−以上の長さのタングステン板は
視野周辺部の同時計数率を減少させ、投影データの平滑
化に有効である。しかし、第5f図に示されるように、
タングステン板の長さが長くなると視野周辺部のみなら
ず中央部の同時計数率も減少しガンマ線に対するシステ
ム感度低下という問題が発生する。これはタングステン
板の突出させる長さの上限を30mとする仁とにより防
ぐことが可能であった。
As mentioned above, a tungsten plate with a length of +4- or more reduces the coincidence rate at the peripheral part of the visual field and is effective in smoothing the projection data. However, as shown in Figure 5f,
As the length of the tungsten plate becomes longer, the coincidence rate not only in the peripheral part of the visual field but also in the central part decreases, causing a problem of lower system sensitivity to gamma rays. This could be prevented by setting the upper limit of the protruding length of the tungsten plate to 30 m.

ガンマ線吸収体lはタングステン板のみならず、511
KI消滅ガンマ線に対し吸収係数の高い鉛などの重金属
や目つ化水銀などの化合物でも適用可能であり、タング
ステンと同じ効果が得られた。
Gamma ray absorber l is not only tungsten plate but also 511
Heavy metals such as lead, which have a high absorption coefficient for KI annihilation gamma rays, and compounds such as mercury nitrate can also be applied, and the same effect as tungsten can be obtained.

以上詳述したように1本発911によれば、ガンマ線吸
収体をシンチレータ間に挿入することくより前像雑音の
原因となる偶然同時計数率を低減し、締数車の直線性の
良好なポジトロンCT装置を提体することができる。
As detailed above, according to the single-shot 911, by inserting a gamma ray absorber between the scintillators, the chance coincidence rate that causes front image noise can be reduced, and the linearity of the tightening wheel can be improved. Positron CT equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、視野内に一様に線源が分布し、一対の消滅ガ
ンマ線がこの視野内で吸収されることなくガンマ線検出
器へ到達する確率を示す図、第3m及び第2b図は従来
の放射線検出器系を示す図、第3図は、視野全体に一様
線源が分布した時に従来方式で得られる同時計数の投影
データを示す図、第4図は、本発明による放射線検出器
系を示す図、第5a〜第5f図は、それぞれ本発明に係
る検出器系による同時計数投影データを示す図、第6図
はタングステン板長と同時計数率の関係を示す図である
。 特許出願人 工業技術院長 石板誠− ′vJ1図 ¥1 211  口 、vi  Zb  図 第 3 図 ′¥ 4 図 fJ 5α 図 内炎 VJ sb 図 西  友 ’jj、  Sc  口 45沈 日 第 5e 図
Figure 1 is a diagram showing the probability that a pair of annihilation gamma rays will reach the gamma ray detector without being absorbed within the field of view when the source is uniformly distributed within the field of view, and Figures 3m and 2b are conventional 3 is a diagram showing coincidence projection data obtained by the conventional method when a radiation source is uniformly distributed over the entire field of view, and FIG. 4 is a diagram showing a radiation detector system according to the present invention. Figures 5a to 5f showing the system are diagrams showing coincidence projection data by the detector system according to the present invention, respectively, and Figure 6 is a diagram showing the relationship between the tungsten plate length and the coincidence rate. Patent Applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology - 'vJ1 Figure ¥1 211 Mouth, vi Zb Figure 3 Figure '¥ 4 Figure fJ 5α Figure Inner Flame VJ sb Figure Nishi Tomo'jj, Sc Mouth 45 Sunset 5e Figure

Claims (1)

【特許請求の範囲】 1、陽電子崩壊過程において生成する陽電子(ポジトロ
ン)の消滅時に発生する1対の消滅ガンマ線を検出する
ことにより陽電子放射性同位元素の生体内での浸度分布
像を得るポジトロンCT装置において、上記消滅ガンi
線を検出するためのシンチレータの表面より視野中心方
向に突出させ、消滅ガンマ線の一部を吸収するガンマ線
吸収体を有することを特徴としたポジトロンCT装置。 2 上記ガンマ線吸収体のシンチレータ表面より突出さ
れた部分の視野中心方向に沿う長さが4−以上30■以
下であることを特徴とする特許請求の範囲第1項記載の
ポジトロンCT装置。 3、上記ガンマ線吸収体の厚さ、が4■・以下であるこ
とを特徴とする特許請求の範囲第1項又は第2項に記載
のポジトロンCT装置。 4、上記ガンマ線吸収体の上記厚さが0.5■以上2■
以下であることを特徴とする特許請求の範囲第1項又は
#I2項に記載のポジ)cyンCT装置。 & 上記ガンマ線吸収体がタングステンからなることを
特徴とする特許請求の範fiIIJ項乃至第4項のいず
れかに記載のポジトロンCT装置。
[Scope of Claims] 1. Positron CT that obtains an in-vivo immersion distribution image of positron radioactive isotopes by detecting a pair of annihilation gamma rays generated when positrons (positrons) generated in the positron decay process are annihilated. In the device, the above extinguishing gun i
A positron CT device comprising a gamma ray absorber that protrudes toward the center of the visual field from the surface of a scintillator for detecting rays and absorbs a portion of annihilated gamma rays. 2. The positron CT apparatus according to claim 1, wherein the length of the portion of the gamma ray absorber protruding from the surface of the scintillator along the direction of the center of the visual field is from 4 to 30 cm. 3. The positron CT apparatus according to claim 1 or 2, wherein the thickness of the gamma ray absorber is 4 mm or less. 4. The thickness of the gamma ray absorber is 0.5■ or more 2■
A positive) cyn CT apparatus according to claim 1 or #I2, characterized in that: & The positron CT apparatus according to any one of claims fiIIJ to 4, wherein the gamma ray absorber is made of tungsten.
JP20623181A 1981-12-22 1981-12-22 Positron ct apparatus Granted JPS58108482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20623181A JPS58108482A (en) 1981-12-22 1981-12-22 Positron ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20623181A JPS58108482A (en) 1981-12-22 1981-12-22 Positron ct apparatus

Publications (2)

Publication Number Publication Date
JPS58108482A true JPS58108482A (en) 1983-06-28
JPS6351511B2 JPS6351511B2 (en) 1988-10-14

Family

ID=16519926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20623181A Granted JPS58108482A (en) 1981-12-22 1981-12-22 Positron ct apparatus

Country Status (1)

Country Link
JP (1) JPS58108482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287359A (en) * 2017-12-25 2018-07-17 北京永新医疗设备有限公司 radioactive source positioning system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599087A (en) * 1979-01-23 1980-07-28 Shimadzu Corp Emission type tomography
JPS566175A (en) * 1979-06-19 1981-01-22 Thompson Christopher John Scintillation detector osed for positron extinguishment radiation type tomogram device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599087A (en) * 1979-01-23 1980-07-28 Shimadzu Corp Emission type tomography
JPS566175A (en) * 1979-06-19 1981-01-22 Thompson Christopher John Scintillation detector osed for positron extinguishment radiation type tomogram device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287359A (en) * 2017-12-25 2018-07-17 北京永新医疗设备有限公司 radioactive source positioning system and method
CN108287359B (en) * 2017-12-25 2019-11-05 北京永新医疗设备有限公司 Radioactive source positioning system and method

Also Published As

Publication number Publication date
JPS6351511B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US5087818A (en) Beta scintillation probe
US4109150A (en) Scintillation camera with the scintillators in different planes
JPH01260388A (en) Gamma camera adapted to uniformize image by energy correction offset
JPH04220589A (en) Positron-collapse display device
US9031303B2 (en) Image processing method, nuclear medicine diagnosis apparatus, and storage medium
Sawant et al. Theoretical analysis and experimental evaluation of a CsI (Tl) based electronic portal imaging system
JPS58108482A (en) Positron ct apparatus
Terasaki et al. Evaluation of basic characteristics of a semiconductor detector for personal radiation dose monitoring
JP4003978B2 (en) Positron emission tomography apparatus and control method for attenuation correction of emission data in positron emission tomography apparatus
Katagiri et al. Development of an omnidirectional Compton camera using CaF2 (Eu) scintillators to visualize gamma rays with energy below 250 keV for radioactive environmental monitoring in nuclear medicine facilities
JPH1199148A (en) Transmission ct device
Han et al. Development of a diverging collimator for environmental radiation monitoring in the industrial fields
JP3340949B2 (en) Collimator and gamma ray detector
JPH10319122A (en) Radiation image pick-up device
Gear The Scintillation Camera
JP6478754B2 (en) Radioactivity measuring device
KR102568800B1 (en) Radiation detection collimator and radiation detection device using the same
JP2004170107A (en) Method for obtaining omnidirectional radiation spectrum distribution
KR20100103249A (en) Compton camera
Sanders et al. Suitability of detectors for imaging applications
Wang et al. Rapid determination of Sr-89/Sr-90 in radwaste by low-level background beta counting system
MacIntyre et al. The use of data blending to reduce statistical fluctuations in radioisotope scanning
JPH03295493A (en) Detector for x-ray ct
JPH0425509B2 (en)
JP2001264272A (en) METHOD AND DEVICE FOR MEASURING POSITRON ANNIHILATION gamma RAY