JPS58108447A - Measuring electrode for carbon dioxide gas - Google Patents

Measuring electrode for carbon dioxide gas

Info

Publication number
JPS58108447A
JPS58108447A JP56206100A JP20610081A JPS58108447A JP S58108447 A JPS58108447 A JP S58108447A JP 56206100 A JP56206100 A JP 56206100A JP 20610081 A JP20610081 A JP 20610081A JP S58108447 A JPS58108447 A JP S58108447A
Authority
JP
Japan
Prior art keywords
electrode
carbon dioxide
gas
external electrolyte
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56206100A
Other languages
Japanese (ja)
Inventor
Noriaki Ono
小野 憲秋
Hisashi Kamiyama
上山 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP56206100A priority Critical patent/JPS58108447A/en
Priority to US06/449,700 priority patent/US4440620A/en
Priority to DE19823247575 priority patent/DE3247575A1/en
Publication of JPS58108447A publication Critical patent/JPS58108447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4162Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To provide a measuring electrode which miniaturizes a pH-sensitive member, has a low impedance, is difficult to ride on noise, is excellent in strength, and has a rapid answering speed, by using a pH electrode in which a thin pH-sensitive film is formed as a pH electrode on a semiconductor substrate. CONSTITUTION:If a portion of a gas permeable film 25 at a point of a measuring electrode 21 is immersed in liquid to be measured, gas dissolved in the liquid to be measured permeates the permeable film 25, and moves to an external electrolyte layer 38 side. Carbon dioxide gas moving to the external electrolyte layer 38 reacts with water in an external electrolyte 26 and is brought into a balancing state. An H<+> ion changes pH of the external electrolyte layer 38. It is selectively sensed by a pH-sensitive film 28 of a pH electrode 36, and a difference in phase field potential corresponding to pH is caused at an interface between the pH-sensitive film 28 and the external electrolyte 26. The difference in potential is amplified by an external potential detector, and a carbon dioxide gas concentration is found by operating a computing element.

Description

【発明の詳細な説明】 本発vi4は、たとえtfjk液等の被検液中に溶存し
九炭酸ガスa度を測定するための炭酸ガス測定電極に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention VI4 relates to a carbon dioxide gas measuring electrode for measuring carbon dioxide gas dissolved in a test liquid such as TFJK liquid.

生体の代謝機能を検査する一手段として血液中に溶存す
る縦酸ガス濃度(炭酸ガス分圧)を測定することが行な
われている。この炭酸ガス濃度を#1定するために用φ
られるのが、炭酸ガス測定電極である。従来、この種電
極としてシビアリングハクス(SへT阻NGHALT8
 )朦亀働が知られ、これは「A Symposium
 On p)I and BloodGas M@as
ur@ment J P 124i 〜142、J &
 A。
BACKGROUND ART One means of testing the metabolic function of a living body is to measure the vertical concentration of acid gas (partial pressure of carbon dioxide) dissolved in blood. To determine this carbon dioxide concentration #1, use φ
What is used is a carbon dioxide measuring electrode. Conventionally, severe ring hax (S to T inhibit NGHALT8) was used as this kind of electrode.
) is known as ``A Symposium''.
On p)I and BloodGas M@as
ur@ment JP 124i ~ 142, J &
A.

Churchill Ltd、 19541.  に詳
しく述べられているが、亀1図は、そのシビアリングハ
ウス型の炭酸ガス掬定電&lの構造を示す。
Churchill Ltd, 19541. As described in detail in Figure 1, the structure of the severe ring house type carbon dioxide gas pumping electric current &l is shown.

すなわち、この炭酸ガス測定電極1は外筒2の先端に、
0リングSで装着したガス透過性膜4と、その外筒2内
に収容した外部電解液5と、外筒2内で外部電解液5中
に浸漬させ九pH電極6と参照を極1とからなっている
。上記ガス透過性膜4#i被検液中の溶存ガスは透過す
るが、水やイオンtit透過させないものである。外部
電解液SFiガス透過性膜4を透過した炭酸ガスと反応
してpHが変化する、たとえば重炭酸ナトリウムの希薄
溶液などが使用される。tた、この外mastj内にF
i後述するように参照電極1にAg/AgCj  電極
を用いる開係上、その参照電極1の電位を一定に保つた
めにNaCj  のような塩化物が一定濃度tまれてi
る。参照電極1は針金状に形成した鉄線の表面をMCI
 溶液中で電気分解し塩化銀化したもので、外部電解液
5のPHが変化してもその電位は変らない。
That is, this carbon dioxide measuring electrode 1 is placed at the tip of the outer cylinder 2,
A gas permeable membrane 4 attached with an O ring S, an external electrolyte 5 housed in the outer cylinder 2, a nine pH electrode 6 immersed in the external electrolyte 5 in the outer cylinder 2, and a reference electrode 1. It consists of The gas permeable membrane 4 #i allows the dissolved gas in the test liquid to pass therethrough, but does not allow water or ions to pass therethrough. The external electrolyte used is, for example, a dilute solution of sodium bicarbonate, which reacts with the carbon dioxide gas that has passed through the SFi gas-permeable membrane 4 and changes its pH. t, F inside this outside mastj
i As will be described later, in order to maintain the potential of the reference electrode 1 at a constant concentration when using an Ag/AgCj electrode as the reference electrode 1, a chloride such as NaCj is added at a constant concentration t.
Ru. Reference electrode 1 is a wire-like surface of an iron wire formed by MCI.
It is electrolyzed in a solution to form silver chloride, and its potential does not change even if the pH of the external electrolyte 5 changes.

Put他GFi内筒8の一端に周知のpH感応ガラス膜
9を張設するとともに、その内筒8内に、pH感応ガラ
ス膜9と電気的接触を保つ、pHが一定のリン酸aS液
などからなる内部電解液10と、この内部電解液10と
電気的接触を保つようにAg/AgCj 電極からなる
内部電極11とを配設したものである。
A well-known pH-sensitive glass membrane 9 is stretched over one end of the GFi inner tube 8, and a phosphoric acid aS solution with a constant pH or the like is placed inside the inner tube 8 to maintain electrical contact with the pH-sensitive glass membrane 9. An internal electrolytic solution 10 consisting of the above-mentioned internal electrolytic solution 10 and an internal electrode 11 consisting of an Ag/AgCj electrode are arranged so as to maintain electrical contact with the internal electrolytic solution 10.

このpH11&gのpH感応ガラス9と上記ガス透過性
膜4とはセロファンなどの親水性のスベーt12を介し
て相対向するように配置されている。そして、上記スペ
ーサ12には上記外部電解液5が浸入して外部電解液層
JJを形成している。
This pH-sensitive glass 9 with a pH of 11&g and the gas permeable membrane 4 are arranged to face each other with a hydrophilic substrate 12 such as cellophane interposed therebetween. The external electrolyte 5 enters the spacer 12 to form an external electrolyte layer JJ.

そこで、この炭酸ガス測定電&lのカス透過性1j、4
をたとえは血液などの被検液中に浸漬すると、そのガス
透過性膜4Jd被検沿、中に浩存し九ガスのみを外部電
解液層51mに透過させるが、被検液やイオンなどは透
過させなi。透過された炭酸ガスは外部電解液層IJの
水と反応して次の式で示すような平衡状態に達する。
Therefore, the gas permeability 1j, 4 of this carbon dioxide measuring voltage &l
For example, when immersed in a test liquid such as blood, the gas permeable membrane 4Jd permeates along the test sample and only nine gases permeate into the external electrolyte layer 51m, but the test liquid and ions, etc. Don't let it pass through. The permeated carbon dioxide reacts with water in the external electrolyte layer IJ to reach an equilibrium state as shown in the following equation.

COI +l(、0’;i H* COI 、 H+n
col″この反応によって産出され九Hイオンが外部電
解液層I3のpHを変化させ、これはpH感応ガラス膜
9にて選択的に感応されてそのpH感感応ガラスリ9外
部電解WjL層I3との界面にpHに応じ九相界電位差
が生じる。この電位差は内部電解液10を通じて内部1
1[@lrに伝わり、この内部電極11と参照亀&7と
の間にはそのpHに応じた電位差が生じる。そこで、こ
の電位差を外部の電位検出装置により測定し、その結果
から炭酸ガス濃度を間接的に知るのである。
COI +l(,0';i H* COI, H+n
col'' The 9H ions produced by this reaction change the pH of the external electrolyte layer I3, which is selectively sensitized by the pH-sensitive glass membrane 9 and causes the pH-sensitive glass membrane 9 to interact with the external electrolyte WjL layer I3. A nine-phase field potential difference occurs at the interface depending on the pH.This potential difference is applied to the internal 1
1[@lr, and a potential difference is generated between this internal electrode 11 and the reference turtle &7 according to its pH. Therefore, this potential difference is measured by an external potential detection device, and the carbon dioxide concentration is indirectly known from the result.

しかしながら、このよ6な従来の炭酸ガス測定電極lで
は外部電解@iのpHの変化を検知するpH電極6とし
てpH感応ガラス膜9を使用しているため、どうしても
その炭酸ガス測定電極lの外観形状が大きくなって測定
に際し血液なとの被検液が大量に必要になるとφう欠点
がある。これはpH電極6のpkl l&応ガラス膜9
を小さく形成することによっである程度改善できるが、
七のpH感応ガラス膜9を小さくすると、抵抗が著しく
高くな9ノイズの誘導を招き易く正確な測定ができなi
という重大な不都合を生じる。また、PH感応ガラス誤
りを非常に薄くすると、その抵抗を下けることはできる
が、材質がガラスなので機棹的強度が落ち、使用に耐え
得ない0さらに、pH電極gFi上述したようにその内
部に内部電解液10を貯留するようになって−るため、
ある穂変以上は小さくすることができ、ず、そO結果、
pH電極6を内蔵する炭酸ガス調定電極lが大形になら
ざるを得なかった。
However, since such a conventional carbon dioxide measuring electrode l uses a pH-sensitive glass membrane 9 as the pH electrode 6 for detecting changes in pH of external electrolysis @i, the appearance of the carbon dioxide measuring electrode l is unavoidable. When the size becomes large and a large amount of sample liquid such as blood is required for measurement, there is a disadvantage of φ. This is the pkl l of pH electrode 6 & reaction glass membrane 9
Although it can be improved to some extent by making it smaller,
If the pH-sensitive glass membrane 9 in step 7 is made smaller, the resistance will be significantly higher, which will easily induce noise and make accurate measurements impossible.
This causes a serious inconvenience. In addition, by making the pH-sensitive glass very thin, its resistance can be lowered, but since the material is glass, its mechanical strength decreases, making it unusable.Furthermore, as mentioned above, the internal Since the internal electrolyte 10 is stored in the
It is possible to reduce the size beyond a certain level, and as a result,
The carbon dioxide gas adjusting electrode l containing the pH electrode 6 had to be large in size.

本発明は上述した事情に着目してなされたもので、その
目的とするところは小形化できるとともに、小形化して
もインピーダンスが低く、かつノイズかのシにく\、さ
らに機械的強度にもすぐれ、応答性のよ一巌酸ガス測定
電極を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and aims to achieve miniaturization, low impedance and low noise resistance, and excellent mechanical strength. The object of the present invention is to provide a highly responsive acid gas measuring electrode.

すなわち、本発明はガス透過性膜、電解液、PHt極お
よび参照を極とを具備してなる脚酸ガス測定電極におい
て、上記pH1l、極は牛導体基板上に、窒化珪素膜、
酸化アルミニウム膜および五1化タンタル膜のうち少な
くとも一つの膜を形成してこの膜をpHの変化に選択的
に感応するイオン感応膜としてなることを特徴とするも
のである。
That is, the present invention provides a leg acid gas measuring electrode comprising a gas permeable membrane, an electrolytic solution, a PHt electrode, and a reference electrode.
The present invention is characterized in that at least one of an aluminum oxide film and a tantalum pentachloride film is formed, and this film serves as an ion-sensitive film that is selectively sensitive to changes in pH.

以下、第2図およびgaoを参照にして本発明の一実施
例を詳述する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. 2 and gao.

112図はこの爽施例に係る縦酸ガス測定−極21を示
し、この炭酸ガス測定電極jlIfd外筒22と、この
内部に同軸的に配設される内筒23とを具備し、上記外
筒2zの下#i開OSにiiOリング24で懐着したガ
ス透過性膜2Iiが展着逼れている。ガス透過性膜;t
aFiたとえばテフロン樹脂、シリコン樹脂などのガス
透過性で、かつ疎水性の合成樹脂膜で形成されてお)、
被検液中に溶存したガスのみを選択的に透過するが、水
やイオンは透過させないようになっている。
FIG. 112 shows a vertical acid gas measurement electrode 21 according to this refreshing example, which is equipped with an outer cylinder 22 and an inner cylinder 23 disposed coaxially inside the outer cylinder 22. The gas permeable membrane 2Ii attached to the #i open OS under the tube 2z with the ii O-ring 24 is spread out. Gas permeable membrane; t
aFi is made of a gas-permeable and hydrophobic synthetic resin film such as Teflon resin or silicone resin),
It selectively allows only the gas dissolved in the test liquid to pass through, but does not allow water or ions to pass through.

外筒21の内部にはガス透過性膜26を透過した炭酸ガ
スと反応してpHが変化する外部電解11iZ6が収容
されている。この外部電解液26としては重炭酸ナトリ
ウムの希薄溶液などでなり、ガスが透過しないときにも
あるpH値を採るよう罠なって−る。さらに、この外部
電解液26には後述する参照電極の電位を一定に保つた
めに、たとえばNaCjのような塩化物が一定濃度含ま
れてiる。
Inside the outer cylinder 21, an external electrolyte 11iZ6 whose pH changes by reacting with carbon dioxide gas that has passed through the gas permeable membrane 26 is accommodated. This external electrolyte 26 is made of a dilute solution of sodium bicarbonate, etc., and acts as a trap to maintain a certain pH value even when gas does not pass through. Further, the external electrolyte 26 contains a chloride such as NaCj at a constant concentration in order to keep the potential of a reference electrode, which will be described later, constant.

内筒23の下端開口部には後述するようにシリコン基板
zr上にpH感応膜28を形成し九pH感応部材z9を
貼着あるいは融着してな炊そのpH感応部材2#社外部
電解液26に浸漬されるようになっている。上記pH感
応部材29:183図で示すように牛導体基板、たとえ
ばシリコン基板21上に、電、化珪素(81s Na 
) s販化アルミニウム(Ajt Os )  および
五酸化タンタル(Ta鵞Os)  のうち少なくとも一
つからなる膜を真空蒸着、スパッタリング、CVD (
Ch@m1cal Vapour Depositio
n )法などによシ形成してこれをpH感応膜28とし
たものである。
As will be described later, a pH sensitive film 28 is formed on a silicon substrate zr at the lower end opening of the inner cylinder 23, and a pH sensitive member z9 is pasted or fused thereon. 26. Said pH sensitive member 29: As shown in the figure 183, on a conductor substrate, for example, a silicon substrate 21, a conductor, silicon oxide (81s Na
) A film consisting of at least one of commercial aluminum (AjtOs) and tantalum pentoxide (TaOs) is deposited by vacuum evaporation, sputtering, or CVD (
Ch@m1cal Vapor Depositio
The pH-sensitive film 28 is formed by forming the film by a method such as n).

さらに、シリコン基板21の裏面には導電性樹脂(接着
剤)JJを介してリード線3zの芯線3Sに接続されて
いる。なお、リード線3zの芯線32を半田付けする場
合にはシリコン基板zrK@接半田付けできないので第
4図で示すようにシリコン基板z1のpHg応膜2Bを
被着した側とは反対側にAj を極FtII34を蒸着
しさらにその上にCr −Cu を極1@35を蒸着す
ることによりその上に半田付けする。そして、上記内筒
713、pH感応部材29、リード線32の芯線33か
らpHt436を構成し、蟻 pH感応部材29のpH感応層28で生じた桓界亀位を
検出できるようになっている。
Furthermore, the back surface of the silicon substrate 21 is connected to the core wire 3S of the lead wire 3z via a conductive resin (adhesive) JJ. In addition, when soldering the core wire 32 of the lead wire 3z, since it cannot be soldered directly to the silicon substrate zrK, as shown in FIG. The electrode FtII 34 is evaporated, and the Cr-Cu electrode 1@35 is further soldered thereon by evaporation. The inner tube 713, the pH sensitive member 29, and the core wire 33 of the lead wire 32 form a pHt 436, and the phlegm that occurs in the pH sensitive layer 28 of the ant pH sensitive member 29 can be detected.

また、外筒2z内においてガス透過性膜25とpH感応
部材2#との間には必要に応じてセロファンなど01に
水性のスペーサ31が介在している。そして、外部電解
液z6の一部はその親水性のスペーtsrに浸み込んで
おシ、これ唖 により上記ガス透過性膜25とpH感応Nxsとの間に
外部電解液層J8を形成して−る。
Further, in the outer cylinder 2z, an aqueous spacer 31 made of cellophane or the like is interposed between the gas permeable membrane 25 and the pH sensitive member 2# as necessary. Then, a part of the external electrolyte z6 penetrates into the hydrophilic space tsr, thereby forming an external electrolyte layer J8 between the gas permeable membrane 25 and the pH-sensitive Nxs. -ru.

さらに、上記外筒z2内にFipH1極36と極側6参
照電極J9がその一端を外部電解液26に浸漬する状態
で設けられて−る。この参照電極39は針金状に形成し
九銀縁からなシ、その嵌置をHCj溶液中での電気分解
により塩化銀化したものである。この参照電極39にお
ける電位は前述したように外部電解液26中にNaCj
などの塩化物が一定l!I度で含まれている丸め、一定
である。
Furthermore, a FipH1 pole 36 and a pole side 6 reference electrode J9 are provided in the outer cylinder z2 with one end thereof immersed in the external electrolyte 26. This reference electrode 39 is formed in the shape of a wire and has a silver rim, and the electrode 39 is made of silver chloride by electrolysis in an HCj solution. The potential at this reference electrode 39 is determined by the potential of NaCj in the external electrolyte 26 as described above.
Chlorides such as are constant l! Rounding included in I degrees is constant.

このように構成した炭酸ガス測定亀&2Jを用いて血液
などの被検液中の炭酸ガス濃度を測定する場合には前述
し良従来のものと同様にその先端のガス透過性膜250
部分を被検液中に浸漬させる。すると、被検液中に溶存
したカスはそのガス透過性膜z6を透過し、IAs電解
液層38側へ移動する。なお、被検液やイオンなどはガ
ス透過性膜25を透過することがない。
When measuring the carbon dioxide concentration in a sample liquid such as blood using the carbon dioxide measuring turtle & 2J constructed in this way, the gas permeable membrane 250 at the tip of the carbon dioxide gas measuring turtle 2J as described above is used.
The part is immersed in the test liquid. Then, the residue dissolved in the test liquid passes through the gas permeable membrane z6 and moves to the IAs electrolyte layer 38 side. Note that the test liquid, ions, etc. do not pass through the gas permeable membrane 25.

また、透過するガスは炭酸ガスのみに限られず、被検液
中に溶存する他のガス、たとえはO,ガスなど4透過す
るが、炭酸ガス以外のガスは以下の反応に関与しない。
Further, the gas that permeates is not limited to only carbon dioxide gas, but other gases dissolved in the test liquid, such as O and gas, permeate, but gases other than carbon dioxide gas do not participate in the following reaction.

外部電解液層38に移送した炭酸ガスはその外部電解液
26中の水と反応して前述したと同様に次の式で示すよ
うな平衡状態に達する。
The carbon dioxide gas transferred to the external electrolyte layer 38 reacts with the water in the external electrolyte 26 to reach an equilibrium state as shown in the following equation, as described above.

COI + n、 0コnmcoa;n  +l(CO
mそして、この反応で産出されたHイオンはに感応され
、そのpH感応農z8と外部電解液26との界面にFi
pHK応じた相界電位差が生じる。この電位差はシリコ
ン基板2rおよび導電性樹脂31を通じてリード@aX
の芯線33に伝わり、この芯線3Jと参照電@、:I9
との間にはその外部電解液層38におけるpH値に応じ
一九電位差が現われる。そして、七のpHの変ヒ 化tl ヘンダーソンーハッセルパルlk (HEND
ER−8ON −HASSELJIAL、CM ) O
式からlog P C(h K比例することが知られて
いる。したがって、上記電位差を外部の電位検出装置に
よ)増幅するとともに、演算器で演算することによシ炭
酸ガス濃度を求めることができる。
COI + n, 0 nmcoa; n + l (CO
Then, the H ions produced in this reaction are sensitive to , and Fi is generated at the interface between the pH-sensitive material z8 and the external electrolyte 26.
A phase field potential difference occurs depending on pHK. This potential difference is applied to the lead @aX through the silicon substrate 2r and the conductive resin 31.
It is transmitted to the core wire 33, and this core wire 3J and the reference voltage @, :I9
Depending on the pH value in the external electrolyte layer 38, a 19-potential difference appears between the two. And the pH change of 7 tl Henderson-Hasselpal lk (HEND
ER-8ON-HASSELJIAL, CM) O
From the formula, log P C (h K is known to be proportional. Therefore, it is possible to calculate the carbon dioxide concentration by amplifying the above potential difference using an external potential detection device) and calculating it with a calculator. can.

ところで、上記pH電極36のpH感応膜28は前述し
たように真空蒸着、スパッタリング、CVD法などによ
ってシリコン基板sr上に形成されるが、これらはきわ
めて薄くかつ均一に形成することができる。It7t、
pH感応膜厚さを限定する理由はpH感応膜18の厚さ
を5ooX未満とすると、その厚さが不均一になったり
、ピンホールなどの欠陥が生じやすく、その結果、歩留
9が急くなるとともに、耐久性にも愚i影譬を及はす。
By the way, as described above, the pH sensitive film 28 of the pH electrode 36 is formed on the silicon substrate sr by vacuum evaporation, sputtering, CVD, etc., and these films can be formed extremely thin and uniformly. It7t,
The reason for limiting the pH-sensitive film thickness is that if the thickness of the pH-sensitive film 18 is less than 5ooX, the thickness becomes uneven and defects such as pinholes are likely to occur, resulting in a rapid increase in yield 9. At the same time, durability also suffers.

さらにpH感応膜28を500OAを越えた厚さにする
と、pH感応農z8のインピーダンスが上シ雑音を誘導
しゃすく、かつ応答速度が遅くなるためである。
Furthermore, if the pH-sensitive film 28 is made thicker than 500 OA, the impedance of the pH-sensitive film z8 will increase the noise, and the response speed will become slow.

tた、シリコン基板;tr、Fi半導体産業で一般的に
使用されるものであり、安価でかつエツチング郷により
その表面はきわめて凹凸の少ない鏡面仕上げが可能であ
るという特徴を有している。さらに、シリコン氷板27
はpH感応膜28の基板としての機能をもち機械的強度
を高めるとともに、pH$応膜28に生じた相界電位差
をリード線32の芯@3111C伝える役目をしている
。したがって、この場合、シリコン基板z yFip!
I!ある%fhtin型のいずれの導1蚤でもよいし、
また単結晶でも多結晶性のものでよい。pH感応膜2#
Fi前述したごとく非常に薄くかつ均一に形成されなけ
ればならないが、そのシリコン基板21は容易に鏡面仕
上げが可能なので、ピンホールなどのない良好なpHJ
ll層膜21シリコシ基板17上に形成することができ
る0さらに、上記シリコン基板21はその厚さが任意で
よ−ので機械的強直も強くすることができる。
Silicon substrates; TR, FI are commonly used in the semiconductor industry, and are characterized by being inexpensive and allowing for a mirror finish with very little unevenness on the surface due to etching. Furthermore, silicon ice plate 27
serves as a substrate for the pH-sensitive film 28 and increases its mechanical strength, and also serves to transmit the phase field potential difference generated in the pH-sensitive film 28 to the core @3111C of the lead wire 32. Therefore, in this case, the silicon substrate z yFip!
I! Any lead flea of a certain %fhtin type may be used,
Moreover, it may be single crystal or polycrystalline. pH sensitive membrane 2#
As mentioned above, the silicon substrate 21 must be formed very thin and uniformly, but since the silicon substrate 21 can be easily mirror-finished, it has a good pHJ without pinholes.
11 layer film 21 can be formed on the silicon substrate 17.Furthermore, since the silicon substrate 21 can have any thickness, its mechanical toughness can be increased.

以上説明したように本発明によれは外部゛電解液のpH
の変化を検知するPHIK極として半導体基板上に薄い
pIi感応膜を形成したものを用りるので、そのpH感
応部材部分を小形化できるとともに、インピーダンスが
低く、かつノイズかのシにくい。さらに、機械的強直に
優れ、tた応答速度の早い炭酸ガス測定電極を提供でき
る0
As explained above, according to the present invention, the pH of the external electrolyte
Since a thin pIi sensitive film formed on a semiconductor substrate is used as a PHIK electrode for detecting changes in pH, the pH sensitive member portion can be made smaller, and its impedance is low and noise is less likely to occur. Furthermore, it is possible to provide a carbon dioxide measuring electrode with excellent mechanical stiffness and a fast response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のliN&ガス1llj定電極の断面図、
第2図は本発明の一実施例の断面図、183図は同じく
その実施例におけるpH感応部材の断面図、第4図は他
の実施例としてのpH感応部材の断面図である。 21・・・炭酸ガス測定電極、26・・・ガス透過膜、
26・・・外部電解液、zy・・・シリコン基板、28
・・・pH感応膜、36・・・pHt極、39・・・参
照電極O 出願人代理人 弁理士 鈴  江  武  彦第1図 第211 jI3図 第41
Figure 1 is a cross-sectional view of a conventional liN & gas 1llj constant electrode.
FIG. 2 is a cross-sectional view of one embodiment of the present invention, FIG. 183 is a cross-sectional view of a pH-sensitive member in the same embodiment, and FIG. 4 is a cross-sectional view of a pH-sensitive member as another embodiment. 21... Carbon dioxide gas measuring electrode, 26... Gas permeable membrane,
26...External electrolyte, zy...Silicon substrate, 28
...pH sensitive membrane, 36...pHt pole, 39...reference electrode O Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 211 jI3 Figure 41

Claims (1)

【特許請求の範囲】[Claims] 被検液中に溶在し九ガスのみを選択的に透過させるガス
透過性腺と、このガス透過性膜によ?て透過されたガス
と反応してPRが変化する電解液と、仁の電解液のφH
の変化に応答するpH1極と、上鮎電解液中に一部が挿
入され九参照電極とを具備し、上記PH1極は半導体基
板上に、窒化珪素膜、酸化アル< =ラム膜および五酸
化タンタル膜のうち少なくとも一つの膜酸ガス#j定電
極。
Gas-permeable glands that are dissolved in the sample liquid and selectively permeate only nine gases, and this gas-permeable membrane? The electrolytic solution whose PR changes by reacting with the gas that permeates through it, and the φH of the electrolytic solution
A pH1 electrode that responds to changes in the electrolyte, and a reference electrode that is partially inserted into the electrolyte, and the pH1 electrode is formed of a silicon nitride film, an aluminum oxide film, an aluminum oxide film, and a rum pentoxide film on a semiconductor substrate. At least one tantalum film acid gas #j constant electrode.
JP56206100A 1981-12-22 1981-12-22 Measuring electrode for carbon dioxide gas Pending JPS58108447A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56206100A JPS58108447A (en) 1981-12-22 1981-12-22 Measuring electrode for carbon dioxide gas
US06/449,700 US4440620A (en) 1981-12-22 1982-12-14 Measuring electrode device
DE19823247575 DE3247575A1 (en) 1981-12-22 1982-12-22 ELECTRODE MEASURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56206100A JPS58108447A (en) 1981-12-22 1981-12-22 Measuring electrode for carbon dioxide gas

Publications (1)

Publication Number Publication Date
JPS58108447A true JPS58108447A (en) 1983-06-28

Family

ID=16517799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56206100A Pending JPS58108447A (en) 1981-12-22 1981-12-22 Measuring electrode for carbon dioxide gas

Country Status (1)

Country Link
JP (1) JPS58108447A (en)

Similar Documents

Publication Publication Date Title
JPS61122846A (en) Po2 pco2 electrochemical detector
JP2546786Y2 (en) Graphite-based solid-state polymer membrane ion-selective electrode
US6746583B2 (en) Microchip-based carbon dioxide gas sensor
US9304100B2 (en) Miniaturised electrochemical sensor
JP3700878B2 (en) Planar bicarbonate sensor and method for making and using the same
Lutze et al. Stabilized potentiometric solid-state polyion sensors using silver-calixarene complexes as additives within ion-exchanger-based polymeric films
CN103185740B (en) calibration method
US3763850A (en) Or measuring the partial pressure of a gas in a fluid
US3357908A (en) Electrolytic sensor with water diffusion compensation
US4018660A (en) Gas electrode
JPS58108447A (en) Measuring electrode for carbon dioxide gas
GB2096324A (en) Conductimetric gas sensor
JP2003075394A (en) Detector for oxidizing-gas
JPH03172755A (en) Oxygen detector
JPH01239446A (en) Gas sensor
CN113924481A (en) Metal ferrocyanide-doped carbon as ion-selective electrode converter
JP2001281204A (en) Diaphragm-type sensor
JPS6129458B2 (en)
JPS58108448A (en) Measuring electrode for ammonia gas
JP3650919B2 (en) Electrochemical sensor
JPH055717A (en) Ph-measuring electrode and its manufacture
JPS6332363A (en) Hydrogen peroxide electrode
JPH0375552A (en) Enzyme electrode
JPH0328928B2 (en)
JPH03237350A (en) Ph sensor and production thereof