JPS58108422A - Omnidirectional vibration sensor - Google Patents

Omnidirectional vibration sensor

Info

Publication number
JPS58108422A
JPS58108422A JP20686581A JP20686581A JPS58108422A JP S58108422 A JPS58108422 A JP S58108422A JP 20686581 A JP20686581 A JP 20686581A JP 20686581 A JP20686581 A JP 20686581A JP S58108422 A JPS58108422 A JP S58108422A
Authority
JP
Japan
Prior art keywords
sensor
magnetic
pendulum
magnetic sensor
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20686581A
Other languages
Japanese (ja)
Other versions
JPH0131577B2 (en
Inventor
Kuniomi Suzuki
鈴木 国臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20686581A priority Critical patent/JPS58108422A/en
Publication of JPS58108422A publication Critical patent/JPS58108422A/en
Publication of JPH0131577B2 publication Critical patent/JPH0131577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable omnidirectional vibrations to be sensed by a single vibration sensor, and permit the sensor to be utilized as a compact inexpensive seismometer sensor, by constituting an omnidirectional vibration sensor by a magnetic sensor provided on the end of a vibratile round rod spring, and a cylindrical magnet. CONSTITUTION:One end of a wire-like round rod spring 4 is vertically secured so as to act as a pendulum shaft. A magnetic sensor 5 such as a Hall element and a magnetic diode is mounted on the other end of the pendulum shaft 4 so as to serve also as the weight for the pendulum. A cylindrical magnet 6 is secured around the pendulum shaft 4 in order to apply a uniform magnetic field change to the magnetic sensor 5 with respect to the swing of the pendulum in any direction. If the pendulum spring 4 is fixed so that the magnetic sensor 5 is in the center of the magnet 6 or equally distant therefrom, the magnetic sensor 5 is subjected to a uniform magnetic change applied in all two-dimensional directions and therefore can sense omnidirectional vibrations.

Description

【発明の詳細な説明】 (技術分野) 本発明は、小形で単純構造にして2次元全方位に対し均
一な振動感度が得られる振動検知器に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a vibration detector that is small and has a simple structure, and can provide uniform vibration sensitivity in all two-dimensional directions.

(背景技術) 従来、地震計等に利用される振動センサーは単方向感度
を有するものであり、防災用地震計等では水平無指向性
の検知器が必要とされるが、単独で満足する有効なもの
はなく、現在では第1図のような水平単方向の検知器を
2ヶ用い、互いに直交方向に設置し、それらを電子回路
を用い増幅及びベクトル演算を行なって、全方位振動出
力を得ている。ここで1は板バネ、2はコイル、3は磁
石で板バネの(イ)の方向の振動に伴ってコイル2に誘
起電圧を発生するものである。従って、検知器並びに増
幅器を各2式必要とし、それらを合成する演算回路等を
含め機械的、電気的に複雑であり、かつ大型で高価な欠
点があった。又磁気を利用したもので、従来の構造のよ
うなものでは周囲の磁界の影響を受けやすい欠点もあっ
た。
(Background technology) Conventionally, vibration sensors used in seismometers, etc. have unidirectional sensitivity, and seismometers for disaster prevention, etc. require horizontal omnidirectional detectors, but there are no effective sensors that can be used alone. Currently, we use two horizontal unidirectional detectors as shown in Figure 1, installed in orthogonal directions, and use electronic circuits to amplify and perform vector calculations to generate vibration output in all directions. It has gained. Here, 1 is a leaf spring, 2 is a coil, and 3 is a magnet, which generates an induced voltage in the coil 2 as the leaf spring vibrates in the direction (A). Therefore, it requires two sets of detectors and two amplifiers, and is mechanically and electrically complex, including an arithmetic circuit for synthesizing them, and has the disadvantage of being large and expensive. Furthermore, since it uses magnetism, conventional structures had the disadvantage of being susceptible to the influence of surrounding magnetic fields.

(発明の課題) 本発明の目的はこれらの欠点を解決し、1ケの検知器で
2次四方向にわたって均一な振動感度が得られ、又外部
磁界の影響の小さた振動センサーを提供することにあり
、その特徴は垂直に固定され、振動可能な丸棒バネと、
その先端にもうけられる磁気センサーと、該磁気センサ
ーの周囲の平面内に固定され2次元任意方向の振動によ
る磁界変化を磁気センサーに与える円筒状磁石とを有す
るごとき全方位振動センサーにある。以下実施例を説明
する。
(Problems to be solved by the invention) An object of the present invention is to solve these drawbacks and provide a vibration sensor that can obtain uniform vibration sensitivity in four secondary directions with one detector and is less affected by external magnetic fields. Its features are a round bar spring that is fixed vertically and can vibrate,
The omnidirectional vibration sensor includes a magnetic sensor provided at the tip thereof, and a cylindrical magnet fixed in a plane around the magnetic sensor to apply magnetic field changes to the magnetic sensor due to vibrations in two-dimensional arbitrary directions. Examples will be described below.

(発明の構成及び作用) 第2図(a) 、 (b)は本発明の実施例であって、
4は針金状の丸棒バネでありその一端を垂直に固定して
振り子軸とし、5はホール素子あるいは磁気ダイオード
等の磁気センサーであり、振り子の重りを兼ねて振り子
軸4の先端に取り付けられる。振り子の任意方向の振れ
に対し50ホール素子、あるいは磁気ダイオード等の磁
気センサーに均一な磁界変化を与えるため6の円筒状磁
石を周囲に固定し1こものである。以下、5は磁気セン
サーという。振動センサー5からは出力リード線8が引
き出される。磁石6は実施例では図示のごとく磁石の直
径方向に磁化されている。
(Structure and operation of the invention) FIGS. 2(a) and 2(b) show embodiments of the present invention,
4 is a wire-like round bar spring, one end of which is fixed vertically to serve as a pendulum shaft, and 5 is a magnetic sensor such as a Hall element or a magnetic diode, which is attached to the tip of the pendulum shaft 4 and also serves as the weight of the pendulum. . In order to give a uniform magnetic field change to a magnetic sensor such as a 50 Hall element or a magnetic diode when the pendulum swings in any direction, six cylindrical magnets are fixed around the pendulum. Hereinafter, 5 is referred to as a magnetic sensor. An output lead wire 8 is drawn out from the vibration sensor 5. In the embodiment, the magnet 6 is magnetized in the diametrical direction of the magnet as shown.

第1の実施例では、第2図のごと(振り子バネ4は断面
が丸いため、そのバネ軸に直交する2次元面全方向にお
いての振動に対しては、振り子バネ4の先端部の磁気セ
ンサー5は、一定の振動入力に対しいずれの方向にも同
一・の振動変位を得るものである。そこで、円筒状磁石
6の中心又は等距離の位置に磁気センサー5が来るよう
に撮り子バネ4を固定しておけば、2次元全方向に対し
、均一な磁気変化を磁気センサー5は受けることになり
、全方位振動を検知できる。
In the first embodiment, as shown in FIG. 5 obtains the same vibration displacement in any direction in response to a constant vibration input.Therefore, the photographic spring 4 is arranged so that the magnetic sensor 5 is located at the center of the cylindrical magnet 6 or at a position equidistant from the cylindrical magnet 6. If it is fixed, the magnetic sensor 5 will receive uniform magnetic changes in all two-dimensional directions, and can detect vibrations in all directions.

以上説明したように、従来2ケ使用した検知器を1ケで
置換することができ、かつ増幅回路も1つでよ(、スペ
クトル合成回路も不要となり、システムとして非常に安
価に構成できる。又、磁気センサー5の周囲を円筒状磁
石6で囲んでいるので、これがシールド効果をもち、磁
気センサー5自身が外部磁界の影響を受ける割合が少な
く、その面での利点もある。
As explained above, the conventional two detectors can be replaced with one, and only one amplifier circuit is required (there is also no need for a spectrum synthesis circuit, so the system can be constructed at a very low cost. Since the magnetic sensor 5 is surrounded by the cylindrical magnet 6, this has a shielding effect, and the magnetic sensor 5 itself is less affected by external magnetic fields, which is an advantage.

第1の実施例では単に振動に対する検知として説明した
が、振り子バネ4の共振周波数を材質、太さ、長さ等を
選ぶことにより自由に変えらハるので、共振域より比較
的低い周波数領域の振動測定に用いれば加速度計として
有効であり、又共振域より比較的高い領域で用いれば変
位計として使用することができる。
In the first embodiment, the description was made simply as detection of vibrations, but since the resonant frequency of the pendulum spring 4 can be freely changed by selecting the material, thickness, length, etc. It is effective as an accelerometer when used for vibration measurement, and can be used as a displacement meter when used in a region relatively higher than the resonance region.

第3図(a)及び(b)は本発明の修飾例で、10は台
、12は台10に固定される第1円筒、7は第2円筒で
、第1円筒とネジを介して係合するb円筒磁石6は第2
円筒7の内周に固定される。丸棒4は円筒7及び12の
中心軸に一致して固定されるものとする。
3(a) and (b) show modified examples of the present invention, in which 10 is a stand, 12 is a first cylinder fixed to the stand 10, and 7 is a second cylinder, which is engaged with the first cylinder via a screw. The matching b cylindrical magnet 6 is the second
It is fixed to the inner circumference of the cylinder 7. It is assumed that the round bar 4 is fixed in alignment with the central axes of the cylinders 7 and 12.

実用上の問題として、振動に対する感度のバラツキを合
せる必要があるが、第3図(a)及び(blの円筒状磁
石6を磁気センサー5から近づけるあるいは遠ざけるた
め、外筒7を回転させることによって磁気センサー5と
円筒状磁石6の相対距離が変わることにより、機械的に
感度を合せることができる。
As a practical problem, it is necessary to balance the variation in sensitivity to vibration, but in order to bring the cylindrical magnet 6 in FIGS. By changing the relative distance between the magnetic sensor 5 and the cylindrical magnet 6, the sensitivity can be mechanically adjusted.

(発明の効果) 本発明は、1ケで全方位振動を検知することができ、バ
ネの共振域を用途に応゛じ適切に設計することが容易で
あるので、地震計加速度センサーとして設計すれば、小
型安価な地震計のセンサーとして利用することができる
。又、その構造上外部磁界の影響を受けにくい効果があ
る。
(Effects of the Invention) The present invention can detect vibrations in all directions with a single device, and it is easy to appropriately design the resonance region of the spring depending on the application, so it can be designed as a seismic acceleration sensor. For example, it can be used as a small and inexpensive seismometer sensor. Furthermore, its structure makes it less susceptible to external magnetic fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al及び(b)は従来の板バネ型の単方向振動
検知器の構造例、第2図(a)及び(b)は本発明によ
る全方位振動センサーの構造例、第3図(a)及び(b
lは本発明による全方位振動センサーの別の構造例であ
る。 1・・・・・・板ハネ、2・・・・・・コイル、3・・
・・・・磁石、   (イ)・・・・・・感度方向4・
・・・・・丸棒バネ、  5・・・・・・磁気センサー
(重り)、6・・・・・・円筒状磁石、7,12・・・
円筒特許出願人 沖電気工業株式会社 特許出願代理人 弁理士  山  本  恵  − 手続補正書(自発) 昭和n年/2月7日 特許庁長官 若 杉 和 夫  殿 1、事件の表示 昭和56年特許願第206865号 2、兄明の名称 全方位振動センサー 3、補正をする者 事件との関係  特許出願人 名 称 (029)沖電気工業株式会熱明細書の特許請
求の範囲の欄及び発明の詳細な説明の欄ゝ7サー5」と
袖正す6・  310以 上特許請求の範囲 (II  垂直に固定され振動可能な丸棒バネと、その
先端にもうけられる磁気センサーと、該磁気センサーの
周囲の平面内に固定され2次元任意方向の振動による磁
界変化を磁気センサーに与える円筒状磁石とを有するこ
とを特徴とする全方位振動センサー。 (2)  前記円筒状磁石が丸棒バネを軸として垂直方
向に調節可能で、磁気センサーに与えられる磁界が調節
可能であるごとき特許請求の範囲第1項記載の全方位振
動センサー。
Figures 1 (al and b) are structural examples of a conventional leaf spring type unidirectional vibration detector, Figures 2 (a) and (b) are structural examples of an omnidirectional vibration sensor according to the present invention, and Figure 3. (a) and (b)
1 is another structural example of the omnidirectional vibration sensor according to the present invention. 1...Plate spring, 2...Coil, 3...
...Magnet, (a) ... Sensitivity direction 4.
... Round bar spring, 5 ... Magnetic sensor (weight), 6 ... Cylindrical magnet, 7, 12 ...
Cylindrical Patent Applicant Oki Electric Industry Co., Ltd. Patent Application Agent Megumi Yamamoto - Procedural Amendment (Spontaneous) February 7, 1972 Commissioner of the Japan Patent Office Kazuo Wakasugi 1, Indication of Case 1988 Patent Application No. 206865 2, Brother Akira's name Omnidirectional vibration sensor 3, Relationship with the amended case Patent applicant name (029) Oki Electric Industry Co., Ltd. Claims column and details of the invention in the thermal specification Claims 6.310 and above (II) A round bar spring that is fixed vertically and can vibrate, a magnetic sensor provided at the tip of the spring, and a magnetic sensor provided around the magnetic sensor. An omnidirectional vibration sensor characterized by having a cylindrical magnet fixed in a plane and giving the magnetic sensor a magnetic field change due to vibration in two-dimensional arbitrary directions. (2) The cylindrical magnet is vertically aligned with a round bar spring as an axis. An omnidirectional vibration sensor according to claim 1, wherein the omnidirectional vibration sensor is adjustable in direction and the magnetic field applied to the magnetic sensor is adjustable.

Claims (1)

【特許請求の範囲】 (11垂直に固定され振動可能な丸棒バネと、その先端
にもうけられる磁気センサーと、該磁気センサーの周囲
の平面内に固定され2次元任意方向の振動による磁界変
化を磁気センサーに与える円筒状磁石とを有することを
特徴とする全方位振動センサー。 (2)前記円筒状磁石が丸棒バネを軸として垂直方向に
調節可能で、振動センサーに与えられる磁界が調節可能
であるごとき特許請求の範囲第1項記載の全方位振動セ
ンサー。
[Scope of Claims] (11) A round bar spring fixed vertically and capable of vibrating; a magnetic sensor provided at the tip of the spring; An omnidirectional vibration sensor comprising: a cylindrical magnet that is applied to a magnetic sensor. (2) The cylindrical magnet is vertically adjustable around a round bar spring, and the magnetic field applied to the vibration sensor can be adjusted. An omnidirectional vibration sensor according to claim 1.
JP20686581A 1981-12-23 1981-12-23 Omnidirectional vibration sensor Granted JPS58108422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20686581A JPS58108422A (en) 1981-12-23 1981-12-23 Omnidirectional vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20686581A JPS58108422A (en) 1981-12-23 1981-12-23 Omnidirectional vibration sensor

Publications (2)

Publication Number Publication Date
JPS58108422A true JPS58108422A (en) 1983-06-28
JPH0131577B2 JPH0131577B2 (en) 1989-06-27

Family

ID=16530314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20686581A Granted JPS58108422A (en) 1981-12-23 1981-12-23 Omnidirectional vibration sensor

Country Status (1)

Country Link
JP (1) JPS58108422A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151431A (en) * 1984-12-25 1986-07-10 Namiki Precision Jewel Co Ltd Vibration detection sensor
US5027657A (en) * 1988-12-09 1991-07-02 Alfred Teves Gmbh Acceleration sensor with cantilevered bending beam
FR2776078A1 (en) * 1998-03-10 1999-09-17 Tomoo Matsuo APPARATUS FOR PREDICTING LAND CHANGE
JP2006513445A (en) * 2003-01-09 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video projection apparatus having image stabilization means
JP2007165384A (en) * 2005-12-09 2007-06-28 Hitachi Ltd Malfunction detector for superconducting coil
GB2593191A (en) * 2020-03-18 2021-09-22 Thales Holdings Uk Plc A sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431712A (en) * 1977-08-15 1979-03-08 Toshiba Corp Magnetic recorder-reproducer with electronic counter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431712A (en) * 1977-08-15 1979-03-08 Toshiba Corp Magnetic recorder-reproducer with electronic counter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151431A (en) * 1984-12-25 1986-07-10 Namiki Precision Jewel Co Ltd Vibration detection sensor
US5027657A (en) * 1988-12-09 1991-07-02 Alfred Teves Gmbh Acceleration sensor with cantilevered bending beam
FR2776078A1 (en) * 1998-03-10 1999-09-17 Tomoo Matsuo APPARATUS FOR PREDICTING LAND CHANGE
JP2006513445A (en) * 2003-01-09 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Video projection apparatus having image stabilization means
JP2007165384A (en) * 2005-12-09 2007-06-28 Hitachi Ltd Malfunction detector for superconducting coil
JP4705844B2 (en) * 2005-12-09 2011-06-22 株式会社日立製作所 Superconducting coil abnormality detection device
GB2593191A (en) * 2020-03-18 2021-09-22 Thales Holdings Uk Plc A sensor

Also Published As

Publication number Publication date
JPH0131577B2 (en) 1989-06-27

Similar Documents

Publication Publication Date Title
US2511178A (en) Magnetostrictive stress-responsive device and system embodying the same
US3564921A (en) Torsionally resonant gravity gradient sensor
US2916279A (en) Acceleration and velocity detection devices and systems
US4314202A (en) Flexural vibration sensor with magnetic field generating and sensing
JPH01187424A (en) Torque sensor
GB1105491A (en) System for measurement of static force field gradients
US5485748A (en) Magnetically levitated force/weight measurement system
US2627400A (en) Angular velocity responsive apparatus
US3513711A (en) Subminiature single axis accelerometer
US3113463A (en) Inertial angular velocity sensing instrument
JPS58108422A (en) Omnidirectional vibration sensor
US2968950A (en) Accelerometer
CN110068390B (en) Piezoelectric and electromagnetic coupling vibration sensor
US3067615A (en) Condition responsive apparatus
RU2291450C1 (en) Compensation pendulum type accelerometer
US3153351A (en) Vibrating string transducer devices and systems employing the same
US4802364A (en) Angular rate sensor
US3052127A (en) Sensing apparatus
EP3892973A2 (en) Force sensor
US4506221A (en) Magnetic heading transducer having dual-axis magnetometer with electromagnet mounted to permit pivotal vibration thereof
US4255973A (en) Digital pressure transducer for use at high temperatures
US3453870A (en) Self-contained mass measurement system
US3307410A (en) Accelerometer
CN111442771B (en) Flat resonance gyro
US4471303A (en) Flexural vibration transducer with magnetic field generating