JPS58108405A - Air micrometer having corrector - Google Patents

Air micrometer having corrector

Info

Publication number
JPS58108405A
JPS58108405A JP20697281A JP20697281A JPS58108405A JP S58108405 A JPS58108405 A JP S58108405A JP 20697281 A JP20697281 A JP 20697281A JP 20697281 A JP20697281 A JP 20697281A JP S58108405 A JPS58108405 A JP S58108405A
Authority
JP
Japan
Prior art keywords
differential pressure
output voltage
value
adder
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20697281A
Other languages
Japanese (ja)
Inventor
Susumu Aiuchi
進 相内
Mineo Nomoto
峰生 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20697281A priority Critical patent/JPS58108405A/en
Publication of JPS58108405A publication Critical patent/JPS58108405A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids

Abstract

PURPOSE:To automatically correct errors due to zero-shift temperature characteristics, by shutting off the pressure supply air to present a state of differential pressure 0, detecting and storing the output voltage value, and subtracting the value from the output voltage value in the measurement carried out later. CONSTITUTION:When a solenoid valve 16 is closed, both pressures inside differential pressure chambers 1, 2 become equal to the atmospheric pressure. In other words, the differential pressure chambers 1, 2 have a pressure difference DELTAp=0 therebetween, and the output voltage Vout of a differential pressure converter 13 at this time is b'. A controller 18 receives and stores the value of b'. The solenoid valve 16 is opened, and the positive and negative signs are inverted to calculate -b', which is applied to an adder 17 through a feedback line 21. The adder 17 adds -b' to the value of the output signal from the differential pressure converter 13 and delivers the result as a corrected output voltage. Since -b' is added to the output voltage characteristic curve 15 after change, the curve 15 downwardly moves parallelly by the dimension of b'.

Description

【発明の詳細な説明】 本発明位エア・マイクロメータに関するもので、特に、
電気的検出1表示手段を備えたエア・マイクロメータに
訃いて外界条件の変化によるドリフトに起因する誤差を
自動的に補正し得るように構成したエア・マイクロメー
タに関するものであるO第1図は電気的検出手段を備え
た従来形のエア書マイクロメータの作用原理を説明する
ための断面図である。
[Detailed Description of the Invention] The present invention relates to an air micrometer, and in particular,
Figure 1 relates to an air micrometer equipped with an electrical detection display means and configured to automatically correct errors caused by drift due to changes in external conditions. FIG. 2 is a cross-sectional view for explaining the working principle of a conventional air micrometer equipped with an electric detection means.

エア・マイクロメータには基準用の差圧室lと計測用の
差圧室2とが設けられ、基準用の差圧室lはノズル3を
介して固定ギャップ形成具4に対向し、その間隔を所定
の固定ギャップxOに固定されている〇 計測用の差圧室2はノズル5を介して被測定物6に対向
せしめられ、その間隔Xが測定対象のギャップである。
The air micrometer is provided with a reference differential pressure chamber l and a measurement differential pressure chamber 2, and the reference differential pressure chamber l faces a fixed gap forming device 4 via a nozzle 3, and the gap between them is is fixed at a predetermined fixed gap xO. The differential pressure chamber 2 for measurement is opposed to the object to be measured 6 via the nozzle 5, and the distance X is the gap to be measured.

上記の二つのノズル3,5は同形同寸に形成される。The two nozzles 3 and 5 mentioned above are formed to have the same shape and size.

−ロ 前記双方の差圧室1.2はそれぞれノズル7゜8を介し
て供給室9に連通されておシ、この供給室には圧力空気
源lOがら空気管路11を介して圧力空気が送入される
-B The two differential pressure chambers 1.2 are each communicated with a supply chamber 9 via a nozzle 7.8, and this supply chamber is supplied with pressurized air via an air line 11 from a pressure air source 10. sent.

エアeマイクロメータの使用条件によっては上記の空気
の代〕に窒素などの気体が用いられる場合もある。本発
明において空気とはエア・マイクロメータに用いられる
気体を意味するものとする。
Depending on the usage conditions of the air e-micrometer, a gas such as nitrogen may be used instead of the above air. In the present invention, air means a gas used in an air micrometer.

12は供給室9に送入する空気圧を一足にするための圧
力調整弁である。
Reference numeral 12 denotes a pressure regulating valve for keeping the air pressure fed into the supply chamber 9 constant.

前記のノズル7と同8とは同形同寸に形成される。The nozzles 7 and 8 are formed to have the same shape and size.

前記の基準用の差圧室l内の気圧、及び、計測用の差圧
室2内の気圧はそれぞれ差圧変換器13に接続連通され
ている0差圧変換器13は上記双方の気圧の差を検出し
て気圧差に比例する電圧を発生し、かつ、上記の電圧を
一足の割合で増幅して出力電圧V。utを出力する。最
近では差圧検出用として半導体感圧素子が多く用いられ
、出力電圧増幅用として半導体増幅回路が多く用いられ
ている。
The atmospheric pressure in the reference differential pressure chamber 1 and the atmospheric pressure in the measurement differential pressure chamber 2 are connected to and communicated with the differential pressure converter 13, respectively. The difference is detected and a voltage proportional to the pressure difference is generated, and the above voltage is amplified at a rate of one foot to produce an output voltage V. Output ut. Recently, semiconductor pressure-sensitive elements are often used for differential pressure detection, and semiconductor amplifier circuits are often used for output voltage amplification.

11間昭5s−tos4os(2) 以上のような従来形のエア・マイクロメータ(第1図)
を用いて測定ギャップXを計測する方法を次に述べる。
11Sho 5s-tos4os (2) Conventional air micrometer as above (Fig. 1)
A method of measuring the measurement gap X using the following will be described below.

供給室9には圧力−整弁12を介(7て一定圧力の空気
が供給されておシ、この圧力空気はノズル7.8をそれ
ぞれ介して基準用の差圧室l及び計測用の差圧室2に流
入し、更にノズル3.5をそれぞれ流通して大気中に放
出される。
Air at a constant pressure is supplied to the supply chamber 9 via a pressure regulating valve 12 (7), and this pressure air is supplied to a reference differential pressure chamber l and a measurement differential pressure chamber via nozzles 7 and 8, respectively. It flows into the pressure chamber 2, flows through the nozzles 3.5, and is discharged into the atmosphere.

既述のようにノズル7と同8、並びにノズル3と同4と
はそれぞれ互いに同形同寸に形成されているので、測定
ギャップXが固定ギャップX。と等しい場合には計測用
の差圧室2内の気圧は基準用の差圧室l内の気圧に等し
くなる。従って、差圧変換器13の出力電圧V。utが
零になる。
As described above, nozzles 7 and 8 and nozzles 3 and 4 are formed to have the same shape and size, so the measurement gap X is the fixed gap X. , the atmospheric pressure in the measurement differential pressure chamber 2 becomes equal to the atmospheric pressure in the reference differential pressure chamber l. Therefore, the output voltage V of the differential pressure converter 13. ut becomes zero.

また、測定ギャップXが固定ギャップXI)と異なる場
合はノズル3から流出する空気流量とノズル5から流出
する空気流量とに差を生じ、これに伴って計測用の差圧
室2内の気圧と基準用の差圧室l内の気圧との間に圧力
差が発生する。従って、差圧変換器13は上記の圧力差
に対応する出力電圧v、utを出力するので、測定ギャ
ップXと固定ギヤツブXOとの差の変化に対応する出方
電圧V。utの変化状態を予め調べておいてこれと比較
することによって測定ギ斗ツブXの値を算定し得る。
Furthermore, when the measurement gap X is different from the fixed gap XI), a difference occurs between the air flow rate flowing out from the nozzle 3 and the air flow rate flowing out from the nozzle 5, and accordingly, the atmospheric pressure in the differential pressure chamber 2 for measurement A pressure difference occurs between the atmospheric pressure in the reference differential pressure chamber l. Therefore, the differential pressure converter 13 outputs an output voltage v, ut corresponding to the above pressure difference, so that the output voltage V corresponds to a change in the difference between the measurement gap X and the fixed gear tooth XO. By checking the state of change of ut in advance and comparing it with this, the value of the measuring force X can be calculated.

従来形のエア・マイクロメータは以上のようにして1μ
mオーダーの微小寸法を計測することかできるが、更に
0.1 #mオーダーの極微小寸法を計測しようとした
場合欠配のような技術的問題がある。
The conventional air micrometer is 1μ as described above.
Although it is possible to measure extremely small dimensions on the order of m, there are technical problems such as missing parts when attempting to measure extremely small dimensions on the order of 0.1 #m.

(イ)供給空気の温度、湿度が僅かに変わっても、0.
1μmオーダーの計測にとって無視できない程度に測定
値が変化する。
(a) Even if the temperature and humidity of the supplied air change slightly, the 0.
Measured values change to an extent that cannot be ignored for measurements on the order of 1 μm.

(ロ) 差圧変換器13の差圧検出部および信号増幅部
の温度特性のため、室温の通常程度の変化によっても0
.14mオーダーの計測にとって無視できない程度に測
定値が変化する。
(b) Due to the temperature characteristics of the differential pressure detection section and signal amplification section of the differential pressure converter 13, even normal changes in room temperature
.. For measurements on the order of 14 m, the measured value changes to an extent that cannot be ignored.

上述の変化を第2図に示す。横軸には基準用の差圧室l
内の気圧と計測用の差圧室2内の気圧との圧力差ΔPを
と)、縦軸には差圧変換器13の出力電圧V。utをと
っである。
The above changes are shown in FIG. The horizontal axis shows the reference differential pressure chamber l.
The pressure difference ΔP between the atmospheric pressure inside the chamber and the atmospheric pressure inside the differential pressure chamber 2 for measurement is expressed as the vertical axis, and the output voltage V of the differential pressure converter 13 is plotted on the vertical axis. I took ut.

カーブ14はエア・マイクロメータの点検調整を完了し
た時点におけるΔP−vout初期特性を示し、仁の初
期特性線は次の1次式tl)で充分に近似される。
A curve 14 shows the initial characteristic of ΔP-vout at the time when the inspection and adjustment of the air micrometer is completed, and the initial characteristic line of the curve is sufficiently approximated by the following linear equation (tl).

vout ” ’・Δp+b   廂・・・・・・・・
・・団・・・・・旧・・・・・・団−fl)第2図に例
示した初期特性M14はb−oに調整され良状態を示し
ているので、この場合においてはvout ” ’・Δ
P     ・・・・・・・・・・・開用・・・・・・
・・・用出用・(ケで表わされる。
vout ” '・Δp+b 廂・・・・・・・・・
...Group...Old...Group-fl) The initial characteristic M14 illustrated in Fig. 2 has been adjusted to b-o and is in good condition, so in this case, vout ''・Δ
P・・・・・・・・・・・・Opening・・・・・・・
・・・Ujouyo・(Represented by ke.

上記のごとく調整を完了した浸酸る時間経通して大気温
度、湿度などが変化すると上述のΔP −vout特性
線が例えばカーブ15のように変化し、次式で近似され
るようになる。
When the atmospheric temperature, humidity, etc. change over the period of immersion after completing the adjustment as described above, the above-mentioned ΔP-vout characteristic line changes as shown by curve 15, and is approximated by the following equation.

vout ” a’・Δp+b’  ・旧・・・・・卵
重・・・川・・・川・・旧・・+21上記の式において
、a、’a’は圧カー電圧′利得係数であシ、b、b′
はオフセット電圧である。
vout ” a'・Δp+b' ・Old...Egg weight...River...River...Old...+21 In the above formula, a and 'a' are pressure car voltage' gain coefficients. , b, b′
is the offset voltage.

例えば半導体感圧素子を用いた場合、この素子の零点移
動温度特性によって゛(2)式のbl (オフセット電
圧)が発生して誤差要因となる。上記の零点移動温度特
性は、例えば1.2 X 10’ Kf/m2/Cとい
ったオーダーのものである。
For example, when a semiconductor pressure-sensitive element is used, bl (offset voltage) of equation (2) occurs due to the zero-point shift temperature characteristics of this element, which becomes an error factor. The above zero point shift temperature characteristic is, for example, on the order of 1.2 x 10' Kf/m2/C.

また、前記の感圧素子の出力電圧を増幅する増□増器に
もドリフトがあシ、利得安定誤差によって初期状態にお
ける圧力−電圧利得系数aがa′に変化して誤差の要因
となる@上記のドリフトは、例えば0.5 X 10−
2mV (入力換算値)、利得安定度は例えば0.O1
%/℃といつ九オーダーのものである。
In addition, the amplifier that amplifies the output voltage of the pressure-sensitive element has drift, and due to gain stability error, the pressure-voltage gain coefficient a in the initial state changes to a', causing an error. The above drift is, for example, 0.5 x 10-
2mV (input conversion value), gain stability is, for example, 0. O1
%/°C and is on the order of nine times.

上述のような誤差要因によ)、第2図において差圧−P
の値がΔp2である場合、初期の出方電圧特性線14に
よれば出力v、utがマ2であるべきところ、変化後の
出力電圧特性lll115によるとマ2′となシσ2の
誤差を生じる。
Due to the error factors mentioned above), the differential pressure -P in Figure 2
When the value of is Δp2, according to the initial output voltage characteristic line 14, the output v, ut should be ma2, but according to the changed output voltage characteristic lll115, it becomes ma2'. arise.

上記の誤差を減少させるには差圧ΔPを小さくすること
が有効である・これを異体的に言うと第1図における測
定ギャップXをなるべく固定ギャップX。に近づけ、計
測用の差圧室2内の気圧が基準用の差圧室l内の気圧と
大差が無い状態で計測を行うことによって誤差を減少せ
しめることができる。
In order to reduce the above error, it is effective to reduce the differential pressure ΔP. To put this differently, the measurement gap X in FIG. 1 should be fixed as much as possible. Errors can be reduced by performing measurement in a state where the pressure in the differential pressure chamber 2 for measurement is not significantly different from the pressure in the differential pressure chamber 1 for reference.

第2因において差圧ΔPがjplめときは、初期の出力
電圧特性@14によれば出力V。utがマlであるべき
ところ変化後の出力電圧特性a15によるとマ1′とな
シ、σ1の誤差を生じることになるがこの場合の誤差σ
1は前述の場合の誤差σ2に比較して著しく減少してい
る。
In the second factor, when the differential pressure ΔP is about jpl, the output is V according to the initial output voltage characteristic @14. According to the output voltage characteristic a15 after the change, where ut should be 1, it becomes 1', which results in an error of σ1, but in this case, the error σ
1 is significantly reduced compared to the error σ2 in the above case.

しかし、差圧ΔPを極限的に小さくしてΔp−oの状態
にしても、変化後の出力電圧特性1I115と縦軸との
交点の縦座標値b’に相当する誤差が残る。
However, even if the differential pressure ΔP is minimized to a state of Δpo-o, an error corresponding to the ordinate value b' of the intersection of the output voltage characteristic 1I115 after the change and the vertical axis remains.

本発明は上述の事情に鑑みて為され、前述の零点移動温
度特性に起因する誤差b′を自動的に補正して高精度の
計測を可能ならしめる補正装置を備えたエア・マイクロ
メータを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides an air micrometer equipped with a correction device that automatically corrects the error b' caused by the above-mentioned zero point movement temperature characteristic and enables highly accurate measurement. The purpose is to

上記の目的を達成するため、本発明は、エア・マイクロ
メータに供給している圧力供給空気を遮断することによ
ってΔP−0の状態を現出させ、この状態における出力
電圧V。utの値(第2図におけるb/)を検出してこ
れを記憶し、その後の計測に訃ける出力電圧V。ut 
” ” ”Δp+b’から前述のようにして記憶してい
たb′を減算することによシ出力電圧をvout ””
 ”・ΔPに補正し得るような構成を研究した結果完成
したものであって、詐しくけ、本9  頁 発明は空気管路中に供給空気を遮断するための電磁弁を
介装接続するとともに、差圧変換器の出力回路中に誤差
(第2図におけるb′)を減算するための加算器を介装
接続し、かつ、上記と別体にコントローラを設けてこの
コントローラに出力電圧を記憶する機能と、上記記憶値
の正負符号を反転させる演算機能と、上記のごとく反転
させた記憶値を前記の加算器に与える機能と、前記の電
磁弁を開閉作動させる機能とを持たせるように構成して
、差圧変換器の温度特性に起因する零点移動を自動的に
補正し得るようKしたことを特徴とする。
To achieve the above object, the present invention creates a state of ΔP-0 by cutting off the pressure supply air supplied to the air micrometer, and the output voltage V in this state. Output voltage V that detects the value of ut (b/ in FIG. 2) and stores it for subsequent measurements. ut
`` ``By subtracting b', which was stored as described above, from Δp+b', the output voltage is vout.
”・The invention was completed as a result of research on a configuration that can correct for ΔP, and the invention on page 9 of this book involves intervening and connecting a solenoid valve to cut off the supply air in the air pipe line. , an adder for subtracting the error (b' in Figure 2) is connected to the output circuit of the differential pressure converter, and a controller is provided separately from the above, and the output voltage is stored in this controller. A calculation function to invert the sign of the stored value, a function to give the inverted stored value to the adder, and a function to open and close the solenoid valve. The present invention is characterized in that it is configured such that zero point movement caused by temperature characteristics of the differential pressure converter can be automatically corrected.

次に、本発明の一実施例を第3図について説明する。第
1図と同一の図面参照番号を附した構成部材は第1図(
従来装置)におけると同様の構成部材であるから説明を
省略する。
Next, one embodiment of the present invention will be described with reference to FIG. Components with the same drawing reference numbers as in Figure 1 are shown in Figure 1 (
Since the components are the same as those in the conventional device, their explanation will be omitted.

空気管路11に電磁弁16を介装接続する。A solenoid valve 16 is interposed and connected to the air pipe line 11.

差圧変換器13の出力回路中に加算器17を介装接続す
る。
An adder 17 is connected to the output circuit of the differential pressure converter 13.

上記と別体にコントローラ18を設ける。このコントロ
ーラは次のような機能を有するように構成する〇 (1)  出力電圧V。utの値を信号ライン19を介
して受は取シ、これを記憶する機能。
A controller 18 is provided separately from the above. This controller is configured to have the following functions: (1) Output voltage V. Function to receive and store the value of ut via the signal line 19.

(1)  上記の出力電圧値を受は取る期間中、制御ラ
イン加を介して電磁弁16を閉弁作動させる機能0al
l)  上記の信号ライン19を介して受は取った出力
電圧vc、utの正負符号を反転させる演算機能。
(1) During the period when the above output voltage value is received, the solenoid valve 16 is operated to close via the control line.
l) An arithmetic function that inverts the sign of the output voltages vc and ut received via the signal line 19.

4V)  上記の演算結果をフィードバックライン21
を介して加算器17に与え、該加算器17をして差圧変
換器13の出力電圧に上記の演算結果を加算せしめる機
能◎ 本発明は以上のように構成しであるのでこれを用いるこ
とにより欠配のようにして自動的に補正を行わせること
ができる。
4V) The above calculation result is fed back to the feedback line 21.
to the adder 17 via the adder 17, and causes the adder 17 to add the above calculation result to the output voltage of the differential pressure converter 13. The present invention is configured as described above, so this can be used. This allows for automatic corrections to be made, such as when there is a shortage.

コントローラ18に予めプログラムを組みこんでおいて
、初期点検1iIl整を終了した後、一定時間ごとに、
若しくは一定回数の計測作動をするごとに次のような補
正作動を行わせる。
A program is installed in the controller 18 in advance, and after the initial inspection and adjustment are completed, the controller 18 is programmed at regular intervals.
Alternatively, the following correction operation is performed every time a certain number of measurement operations are performed.

a)、ボン)(1−ラ18から加算器17に対して加算
作動の指令をしていない状態において、電磁弁16を閉
弁させる。
a), BON) (1-The solenoid valve 16 is closed when the adder 17 is not commanded to perform addition from the controller 18.

第3図に示した構成から明らかなように、電磁弁′i6
が閉じられると双方の差圧室1.2内は共に大気圧に等
しくなる。これを第2図についてみると二つの差圧室1
.2間の圧力差ΔP−0の状態となる。従って、このと
きの差圧変換器13の出力電圧V。utはb′となる・ b)8次にコン)o−ラ18は上記のb′の値を受は取
って記憶する。
As is clear from the configuration shown in FIG.
When the differential pressure chambers 1.2 are closed, the pressure inside both differential pressure chambers 1.2 becomes equal to atmospheric pressure. Looking at this in Figure 2, there are two differential pressure chambers 1
.. A state is reached where the pressure difference between the two is ΔP-0. Therefore, the output voltage V of the differential pressure converter 13 at this time. ut becomes b'. b) 8th controller) The o-ra 18 receives and stores the value of b' mentioned above.

C)、電磁弁16を開弁させる。C), the solenoid valve 16 is opened.

d)、記憶した値b′の正負符号を反転して−b′を算
出する。
d) Calculate -b' by inverting the sign of the stored value b'.

e)、この−b′をフィードバックライン21を介して
加算器17に与える。加算器17は差圧変換器13の出
力信号値に−b′を加え、これを補正済の出力電圧とし
て出力する。
e) This -b' is applied to the adder 17 via the feedback line 21. Adder 17 adds -b' to the output signal value of differential pressure converter 13 and outputs this as a corrected output voltage.

上述のような作動の結果、第2因について説明した初期
の出力電圧特性線14が成る時間後に出力電圧特性線1
5のように変化した場合、この変化後の出力電圧特性1
II15に−b′が加算されるので、b′寸法だけ下方
に平行移動され、仮襲線で示した補正特性1l122の
ようになる。
As a result of the above-described operation, the output voltage characteristic line 1 after a period of time when the initial output voltage characteristic line 14 described for the second factor is formed.
5, the output voltage characteristic 1 after this change
Since -b' is added to II15, it is translated downward by the dimension b', resulting in the correction characteristic 1l122 shown by the tentative attack line.

上記の補正特性、I!22は座標原点を通シ、座標原点
において初期の出力電圧特性11114と交わる。
The above correction characteristics, I! 22 passes through the coordinate origin and intersects with the initial output voltage characteristic 11114 at the coordinate origin.

以上のようにして、本発明装置の作用により、時間経過
によって変化した出力電圧特性@15が補正特性線ρの
ごとく補正されるので、差圧ΔPがΔp2のとき、上記
の補正特性線nによシ出力電圧v、utとしてマ2“が
得られる。そして差圧ΔPがplのとき出力電圧V。u
tとしてマ1“が得られる〇このようにして、本発明に
よると差圧変換器の温度特性に起因する零点移動による
誤差(第2図に訃けるbl )が自動的に補正されるの
で、測定精度が著しく向上する。第2図に示した特性図
から明かなように、本発明を連用した場合の補市特性線
ρによれば、ΔPがなるべく小さい状態で計測を行うほ
ど誤差が少なくなるから、第1図について説明した測定
ギャップXを固定ギャップX。に近くして測定を行うこ
とが望ましい。すなわち、X′−vX(1のとき、ΔP
!;0となシ、差圧変換器■3の温度特性に起因する誤
差を無視し得るようになる。
As described above, due to the action of the device of the present invention, the output voltage characteristic @15 that has changed over time is corrected as shown in the correction characteristic line ρ, so that when the differential pressure ΔP is Δp2, the above correction characteristic line n Then, as the output voltage v, ut, ma2'' is obtained.And when the differential pressure ΔP is pl, the output voltage V.u
In this way, according to the present invention, the error due to zero point movement caused by the temperature characteristics of the differential pressure converter (bl shown in Fig. 2) is automatically corrected. The measurement accuracy is significantly improved.As is clear from the characteristic diagram shown in Fig. 2, according to the complementary characteristic line ρ when the present invention is used continuously, the error is reduced as the measurement is performed with ΔP as small as possible. Therefore, it is desirable to perform measurements with the measurement gap X explained with reference to FIG. 1 close to the fixed gap X. In other words, when X'-v
! ; 0, the error caused by the temperature characteristics of the differential pressure converter (3) can be ignored.

第4−は、従来装置におけるオフセット電圧の経時変化
をカーブ田で、前記の実施例におけるオフセット電圧の
経時変化をカーブ冴でそれぞれ示した図表である・この
ように本発明によってオフセット電圧の経時的変化を±
10−2mV 以内に収め得るようになった結果、従来
的±0.5μmであったエア・マイクロメータの測定精
度を±0.1μmに向上せしめることができた。
The fourth figure is a chart showing the change in offset voltage over time in the conventional device using a curve, and the change over time in the offset voltage in the above embodiment using a curve. ± change
As a result, the measurement accuracy of the air micrometer can be improved from the conventional ±0.5 μm to ±0.1 μm.

以上説明したように、本発明は、空気管路中に電磁弁を
介装接続するとともに差圧変換器の出力回路中に加算器
を介装接続し、かつ、上記と別体にコントローラを設け
てこのコントa−ラに出力電圧を記憶する機能と、上記
記憶値の正負符号を反転させる演稗機能と、反転させた
記憶値を加算器に与える機能と、電磁弁を開閉作動させ
る機能とを持たせるように構成することにより、差圧変
換器の温度特性に起因する零点移動を自動的に補正して
高精度の計測をすることができる。
As explained above, the present invention connects a solenoid valve in an air pipe line, connects an adder in an output circuit of a differential pressure converter, and provides a controller separately from the above. A function to store the output voltage in the lever controller, a calculation function to reverse the sign of the stored value, a function to give the reversed stored value to the adder, and a function to open and close the solenoid valve. By configuring the differential pressure converter to have , it is possible to automatically correct the zero point movement caused by the temperature characteristics of the differential pressure converter and perform highly accurate measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般に用いられているエア・マイクロメー
タの断面図、第2図は差圧変換器の出力電圧特性を示す
図表、第3図は本発明に係る補正装置を備えたマイクロ
メータの一実施例を示し、従来装置における第11kに
対応する因、第4図は上記の実施例と従来装置とについ
てオフセット電圧の経時的変化を表わした図表である。 l・・・基準用の差圧室、2・・・計測用の差圧室、3
゜5.7.8・・・ノズル、4・・・固定ギャップ形成
具、6・・・被測定物、9・・・供給室、11・・・空
気管路、12・・・圧力調整弁、13・・・差圧変換器
、14・・・初期における出力電圧特性線、15・・・
成る時間経過後の出力電圧特性線、16・・・電磁弁、
17・・・加算器、18・・・コントローラ、19・・
・信号ライン、加・・・制御ライン、21・・・フィー
ドバックライン、ρ・・・補正特性線、n・・・従来形
エア・マイクロメータに訃けるオフセット電圧の経時変
化カーブ、瀕・・・本発明の一実施例に係る補正装置を
備えたエア・マイクロメータにおけるオフセット電圧の
経時変化カーブ。 代理人 弁理士 秋 本 正 実 舘1図 第2図 第3図 第4図
Fig. 1 is a sectional view of a conventionally commonly used air micrometer, Fig. 2 is a chart showing the output voltage characteristics of a differential pressure converter, and Fig. 3 is a diagram of a micrometer equipped with a correction device according to the present invention. FIG. 4, which shows one embodiment and corresponds to the factor 11k in the conventional device, is a chart showing the change in offset voltage over time for the above embodiment and the conventional device. l...Differential pressure chamber for reference, 2...Differential pressure chamber for measurement, 3
゜5.7.8... Nozzle, 4... Fixed gap forming device, 6... Measured object, 9... Supply chamber, 11... Air pipe line, 12... Pressure adjustment valve , 13... Differential pressure converter, 14... Output voltage characteristic line at initial stage, 15...
Output voltage characteristic line after the elapse of time, 16... Solenoid valve,
17... Adder, 18... Controller, 19...
・Signal line, adjustment...control line, 21...feedback line, ρ...correction characteristic line, n...offset voltage change curve over time of conventional air micrometer, dying... 3 is a curve of offset voltage over time in an air micrometer equipped with a correction device according to an embodiment of the present invention. Agent Patent Attorney Tadashi Akimoto MitsudateFigure 1Figure 2Figure 3Figure 4

Claims (1)

【特許請求の範囲】[Claims] ノズルを介して固定ギャップ形成具に対向する基準用の
差圧室と、ノズルを介して被測定物に対向する計測用の
差圧室と、上記双方の差圧室にそれぞれノズルを介して
連通された供給室と、上記の供給室に一足圧の空気を送
入する空気管路と、前記双方の差圧室の間の圧力差を検
出して圧力差に比例した電気信号を出力する差・圧変換
器とを備、tたエア・マイクロメータに訃いて、前記の
空気管路中に電磁弁を介装接続するとともに、前記の差
圧変換器の出力回路中に加算器を介装接続し、かつ、前
記の出力電気信号の値を記憶する機能と、上記の記憶値
に基づいて演算を行う機能と、上記の演算結果を前記の
加算器に与える機能と、前記の電磁弁を開閉作動せしめ
る機能とを有するコントローラとを設けることによシ、
前記の差圧変換器の温度特性に起因する零点移動を自動
的に補正し得べく為し九ることを特徴とする補正装置を
備え九エア・マイクロメータ。
A reference differential pressure chamber facing the fixed gap forming tool through a nozzle, a measurement differential pressure chamber facing the object to be measured through a nozzle, and both of the above differential pressure chambers are communicated through the nozzle, respectively. a pressure difference between the supplied supply chamber, an air pipe line for supplying air at a certain pressure to the supply chamber, and both differential pressure chambers, and output an electrical signal proportional to the pressure difference.・Equipped with a pressure transducer, a solenoid valve is interposed and connected in the air pipe line, and an adder is interposed in the output circuit of the differential pressure converter. and a function of storing the value of the output electric signal, a function of performing calculation based on the stored value, a function of providing the result of the calculation to the adder, and the function of the electromagnetic valve. By providing a controller with a function of opening and closing,
An air micrometer equipped with a correction device, characterized in that it is capable of automatically correcting zero point movement caused by temperature characteristics of the differential pressure converter.
JP20697281A 1981-12-23 1981-12-23 Air micrometer having corrector Pending JPS58108405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20697281A JPS58108405A (en) 1981-12-23 1981-12-23 Air micrometer having corrector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20697281A JPS58108405A (en) 1981-12-23 1981-12-23 Air micrometer having corrector

Publications (1)

Publication Number Publication Date
JPS58108405A true JPS58108405A (en) 1983-06-28

Family

ID=16532048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20697281A Pending JPS58108405A (en) 1981-12-23 1981-12-23 Air micrometer having corrector

Country Status (1)

Country Link
JP (1) JPS58108405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298003A (en) * 2000-04-14 2001-10-26 Disco Abrasive Syst Ltd Cutting device
JP2002277384A (en) * 2001-03-19 2002-09-25 Ishikawajima Inspection & Instrumentation Co Method and device for detecting defect
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016564A (en) * 1973-06-09 1975-02-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016564A (en) * 1973-06-09 1975-02-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298003A (en) * 2000-04-14 2001-10-26 Disco Abrasive Syst Ltd Cutting device
JP4675451B2 (en) * 2000-04-14 2011-04-20 株式会社ディスコ Cutting equipment
JP2002277384A (en) * 2001-03-19 2002-09-25 Ishikawajima Inspection & Instrumentation Co Method and device for detecting defect
JP2003065742A (en) * 2001-08-29 2003-03-05 Tokyo Seimitsu Co Ltd Method and device for measuring inside diameter

Similar Documents

Publication Publication Date Title
US9870006B2 (en) Pressure type flow control system with flow monitoring
KR101722304B1 (en) Mass flow controller
US10073469B2 (en) Flow meter and flow control device provided therewith
US9791867B2 (en) Flow control device equipped with flow monitor
TWI235825B (en) Automatic zero point-correcting device for pressure sensor, pressure controller, and pressure-type flow rate controller
US8015995B2 (en) System and method for flow monitoring and control
US5141021A (en) Mass flow meter and mass flow controller
WO1984003769A1 (en) Pressure change detection type leakage water inspection device
JP3546153B2 (en) Orifice clogging detection method and detection apparatus for pressure type flow control device
JPS58108405A (en) Air micrometer having corrector
CN111103020B (en) Flow detection device, flow control system and flow detection method
CN112461489B (en) Electronic scanning valve reference pressure control system for low-pressure measurement and application method
KR102162046B1 (en) Flow measurement method and flow measurement device
JP6940441B2 (en) Thermal flow sensor device and flow rate correction method
WO2020026784A1 (en) Flow rate control system and flow rate measurement method
JPS58168933A (en) Calibrating device of pressure gauge
KR102162312B1 (en) Method of performing calibration of mass flow and apparatus therefor
JPS6311827A (en) Zero point corrector for differential manometer
JP2011081548A (en) Pressure control device
JPH0449527Y2 (en)
JP2001141592A (en) Diaphragm pressure gage and its error measuring method
JPS58215521A (en) Water leakage detector
US20230229177A1 (en) Fluid control device, fluid control method, and fluid control program
JPS5924964Y2 (en) air micrometer
JPH03295434A (en) Measuring instrument of pressure sensor device