JPS58108202A - Preparation of hydroxyalkyl ether of galactomannan - Google Patents

Preparation of hydroxyalkyl ether of galactomannan

Info

Publication number
JPS58108202A
JPS58108202A JP20613781A JP20613781A JPS58108202A JP S58108202 A JPS58108202 A JP S58108202A JP 20613781 A JP20613781 A JP 20613781A JP 20613781 A JP20613781 A JP 20613781A JP S58108202 A JPS58108202 A JP S58108202A
Authority
JP
Japan
Prior art keywords
galactomannan
reaction
water
component
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20613781A
Other languages
Japanese (ja)
Other versions
JPS6256882B2 (en
Inventor
Naoki Mochida
望田 直規
Taku Tabuchi
田淵 卓
Masao Kobayashi
雅夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Acetate Co Ltd
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Acetate Co Ltd
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Acetate Co Ltd, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Acetate Co Ltd
Priority to JP20613781A priority Critical patent/JPS58108202A/en
Publication of JPS58108202A publication Critical patent/JPS58108202A/en
Publication of JPS6256882B2 publication Critical patent/JPS6256882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To obtain inexpensively the titled compound capable of keeping an aqueous solution of galactomannan at high viscosity free from reduction in viscosity caused by decomposition, by reacting galactomannan with an alkylene oxide in a galactomannan suspension to which a nitrogen-containing basic substance is added. CONSTITUTION:In a suspension obtained by adding (D) a nitrogen-containing basic substance (e.g., ammonia, etc.) to a mixture of (A) a hydrophilic organic solvent (preferably acetone, etc.), (B) water, and (C) galactomannan, the component C is reacted with (E) an alkylene oxide (e.g., ethylene oxide, etc.) in an amount to give preferably 0.1-2mol based on unit anhydro saccharide of the component C usually at 30-100 deg.C, and the reaction product is dried, to give the desired compound. A weight ratio of the component A to the component B is preferably (30:70)-(95:5). EFFECT:When it is dissolved in water, powdery particles will not cause solid granulation and a high-quality compound with low ash is obtained.

Description

【発明の詳細な説明】 本発明はガラクトマンナンのヒドロキシアルキルエーテ
ルの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hydroxyalkyl ether of galactomannan.

ガラクトマンナンとはマンノースを構造単位とする主鎖
にガラクトース単位が側鎖として構成される中性多糖類
であって自然界には主として豆科植物の種子に多く含有
されている。特にグア豆を原料とするグアガム、ローカ
ストビーンを原料とするローカストビーンガムはその代
表的なガラクトマンナンを主成分とする植物ガム質であ
る。これらの植物ガム質は植物粘質物であって、水に溶
解して極めて高い粘性を示すことから食品分野及び工業
分野に広く利用されている。しかしながらこれらのガラ
クトマンナンは水溶液にしようとするとき「ママコ」と
呼ばれる粉体粒子の団粒化を引起し易くまたガラクトマ
ンナンの水溶液はバクテリアの攻撃をうけやすく経時的
に腐敗゛し粘度低下を起こすという欠点をもっている。
Galactomannan is a neutral polysaccharide composed of a main chain having mannose as a structural unit and galactose units as side chains, and is mainly contained in large amounts in the seeds of leguminous plants in nature. In particular, guar gum made from guar beans and locust bean gum made from locust beans are representative vegetable gums containing galactomannan as a main component. These plant gums are plant mucilage substances, and because they exhibit extremely high viscosity when dissolved in water, they are widely used in the food and industrial fields. However, when these galactomannans are made into an aqueous solution, they tend to cause agglomeration of powder particles called "mamako", and aqueous solutions of galactomannans are susceptible to attack by bacteria and deteriorate over time, causing a decrease in viscosity. It has a drawback.

本発明者らはガラクトマンナン水溶液の特徴である極め
て高い粘度を維持しつつ、かかる欠点を克服できた性質
を有する変性ガラクトマンナンを開発することを目的と
して検討した結果本発明に到達したものである。
The present inventors have arrived at the present invention as a result of their studies aimed at developing a modified galactomannan that overcomes these drawbacks while maintaining the extremely high viscosity that is characteristic of galactomannan aqueous solutions. .

本発明によって得られるガラクトマンナンのヒドロキシ
アルキルエーテルはガラクトマンナンが本来具備してい
る非イオン性を損うことな(バクテリアによる水溶液の
経時粘度変化を減少せしめpH12以下の液性で水溶液
粘度が安定でありかつ多価イオンを含む各種塩類の高濃
度の存在下でもυ八・水溶液粘度を維持できると℃・う
特性も合わせもつものである。かかる特性から本発明に
なるガラクトマンナンのヒドロキシアルキルエーテルは
主として製紙、化粧品、塗料、土木、建築、石油、火薬
等の産業分野に使用されるものである。
The hydroxyalkyl ether of galactomannan obtained by the present invention does not impair the inherent nonionic properties of galactomannan (it reduces the viscosity change over time of an aqueous solution caused by bacteria, and the viscosity of the aqueous solution is stable at a pH of 12 or less). The hydroxyalkyl ether of galactomannan of the present invention can maintain the viscosity of an aqueous solution at υ8°C even in the presence of high concentrations of various salts containing polyvalent ions. It is mainly used in industrial fields such as paper manufacturing, cosmetics, paints, civil engineering, architecture, petroleum, and explosives.

従来開発されてきたガラクトマンナンのヒドロキシアル
キルエーテル類の製造方法としては米国特許第2496
670号に開示された方法があり、かかる方法はガラク
トマンナンをアルカリ下に水を媒体としてグリセリンモ
ノハロヒトリント反応させる方法であって、ガラクトマ
ンナンをアルカリ化せしめしかるのちグリセリンモノハ
ロヒドリンと反応させるものである。
U.S. Patent No. 2496 is a method for producing hydroxyalkyl ethers of galactomannan that has been developed so far.
There is a method disclosed in No. 670, in which galactomannan is reacted with glycerin monohalohydrin in an alkaline environment using water as a medium, and the galactomannan is alkalized and then reacted with glycerin monohalohydrin. It is something that makes you

かかる方法によれば第1にガラクトマンナンのヒドロキ
シアルキルエーテル化反応は脱塩反応によって進行する
ものであるから製品中に多大な塩の残留を余儀なくされ
る。” ’4−かる事実は製品中の過大な灰分の存在と
いう使用者側から見て重大な欠点を有するものとなる。
According to this method, firstly, the hydroxyalkyl etherification reaction of galactomannan proceeds by a desalting reaction, which inevitably leaves a large amount of salt in the product. ``4-This fact poses a serious drawback from the user's point of view of the presence of excessive ash content in the product.

第2に反応は水を媒体として℃・るた”めガラクトマン
ナン及びその反応生成物は水中に浴解し極めて高粘度の
状態を呈した状態で反応を進行させねばならず従って、
製造過程における反応の不均一性、中和の不均一性、攪
拌、輸送、乾燥等の困難さを生じ好ましい方法とは言え
ない。更に第3には同一容積の反応釜を用いた場合水の
みを反応媒体とする当該方法と、親水性有機溶剤と水と
の混合物中にガラクトマンナンを懸濁する本発明になる
方法とを比較した場合−回の反応に仕込むことができる
ガラクトマンナンの量は本発明の方が多量となる。
Second, since the reaction takes place in water as a medium, galactomannan and its reaction products must be dissolved in water and the reaction must proceed in an extremely highly viscous state.
This is not a preferred method because it causes non-uniform reaction, non-uniform neutralization, and difficulties in stirring, transportation, drying, etc. during the manufacturing process. Furthermore, thirdly, we compared the method using only water as a reaction medium using a reaction vessel of the same volume with the method of the present invention in which galactomannan is suspended in a mixture of a hydrophilic organic solvent and water. In this case, the amount of galactomannan that can be charged in the second reaction is larger in the present invention.

また、米国特許第3326890号に開示され在方法は
反応媒体として本発明と類似の懸濁法を用いているが当
該特許に示される方法に代表される懸濁法は親水性溶剤
の水溶液に対しガラクトマンナンを懸濁せしめた状態で
ヒドロキシアルキルエーテル化反応を行わしめるもので
あり反応の進行に伴い生成するガラクトマンナンのヒド
ロキシアルキルエーテルが該懸濁媒に対し膨潤もしくは
溶解し極めて可動性に乏しい懸濁液状となるため反応終
了後の中和、精製等を行う場合に不都合を生ずる。すな
わち反応終了後の溶液の中和を行う場合、酸を添加する
わけであるが、酸として希酸を用いた場合には該、懸濁
媒中の親水性溶剤の比率が更に低下する結果生成したガ
ラクトマンナンのヒドロキシアルキルエーテルは更に水
によって膨潤もしくは溶解し、媒体の可動性に乏しい懸
濁液状となり、懸濁液の攪拌を困難ならしめ、ひいては
中和の不均一化を誘起し良好な中和を妨げる結果を招く
。更には中和以後の工程を水によって膨潤もしくは溶解
したガラクトマンナンのヒドロキシアルキルエーテルを
含有する液粘性の高い状態で進行するため、工程が繁雑
となり、かつ、個々の単位操作が極めて困難となる結果
を招く。一方、上記の弊害を避けるために中和操作を濃
厚な酸を用いて行う方法があるがかかる方法は極めて可
動性に乏しいガラクトマンナンのヒドロキシアルキルエ
ーテルの懸濁液に濃厚な酸を添加するわけであるから完
全に均一な中和を行うことが難し′く局部的に過剰な酸
が添加される結果、生成したヒドロキシアルキルエーテ
ルは局部的に強度な酸性雰囲気にさらされもって生成し
たヒドロキシアルキルエーテル化ガラクトマンナンは局
部的な酸加水分解を引起こし結果としてヒドロキシアル
キルエーテル化ガラクトマンナンとして期待される製品
の水溶液粘度を達成し得ない等の製品の劣悪化を招くた
め中和工程を容易に通過させることは困難である。
Furthermore, the existing method disclosed in U.S. Pat. The hydroxyalkyl etherification reaction is carried out with galactomannan suspended, and as the reaction progresses, the hydroxyalkyl ether of galactomannan that is produced swells or dissolves in the suspension medium, resulting in extremely poor mobility. Since it becomes a cloudy liquid, it causes inconvenience when performing neutralization, purification, etc. after the reaction is completed. In other words, when neutralizing the solution after the completion of the reaction, an acid is added, but when a dilute acid is used as the acid, the ratio of the hydrophilic solvent in the suspending medium further decreases, resulting in the formation of The hydroxyalkyl ether of galactomannan further swells or dissolves in water, forming a suspension with poor mobility in the medium, making it difficult to stir the suspension, which in turn induces non-uniform neutralization, resulting in a good neutralization. This leads to the result of disturbing harmony. Furthermore, since the steps after neutralization proceed in a highly viscous state containing the hydroxyalkyl ether of galactomannan swollen or dissolved by water, the steps become complicated and individual unit operations become extremely difficult. invite. On the other hand, in order to avoid the above-mentioned disadvantages, there is a method in which the neutralization operation is performed using a concentrated acid, but such a method involves adding a concentrated acid to a suspension of hydroxyalkyl ether of galactomannan, which has extremely poor mobility. Therefore, it is difficult to neutralize completely uniformly, and as a result of locally adding excess acid, the formed hydroxyalkyl ether is exposed to a locally strong acidic atmosphere, resulting in the formed hydroxyalkyl ether. Galactomannan easily passes through the neutralization process because it causes local acid hydrolysis, resulting in deterioration of the product, such as not being able to achieve the aqueous solution viscosity expected of hydroxyalkyl etherified galactomannan. It is difficult to do so.

更に固液分離のプロセスにおいては多大な労力を要する
こととなる。すなわち、懸濁媒に対し膨潤もしくは溶解
し極めて可動性の乏しい懸濁状のガラクトマンナンのヒ
ドロキシアルキルエーテルを固液分離する場合溶解の状
態にあれば固液分離は全く不可能であり、一方、膨潤の
状態にあれば濾過操作は極めて多大な困難を伴うことと
なる。
Furthermore, the solid-liquid separation process requires a great deal of effort. That is, when performing solid-liquid separation of a suspended hydroxyalkyl ether of galactomannan that swells or dissolves in a suspending medium and has extremely poor mobility, solid-liquid separation is completely impossible if it is in a dissolved state; If it is in a swollen state, the filtration operation will be extremely difficult.

すなわち膨潤状態のガラクトマンナンのヒドロキシアル
キルエーテルは加圧、減圧等の外力が加わることによっ
て相互に接着し、かつ濾材を閉塞するからである。更に
、遠心分離によっても良好な分離が行われずかえって膨
潤状態の粒子が相互に接着しゲル状の大塊を生ずる結果
を招き、含液膨潤状態の不利を克服することは不能であ
る。
That is, the hydroxyalkyl ether of galactomannan in a swollen state adheres to each other and blocks the filter medium when external forces such as pressurization or vacuum are applied. Further, even by centrifugation, good separation is not achieved, and instead the particles in the swollen state adhere to each other to form a large gel-like mass, making it impossible to overcome the disadvantages of the liquid-containing swollen state.

以上論述した如〈従来開発されてきた懸濁法は水を媒体
とする方法に較べ好ましい方法であるが11、ガラクト
マンナンのヒドロキシアルキル化反応を終了してから製
品の精製、分離までのプロセスを容易に通過させること
は困難な現状にあった。本発明者らはかかる実状に鑑み
安価でかつ優良な品質を具備したガラクトマンナンのヒ
ドロキシアルキルエーテルを得るべく鋭意研究を重ねた
結果本発明に到達した。
As discussed above, the suspension method that has been developed in the past is more preferable than the method using water as a medium11, but the process from the completion of the hydroxyalkylation reaction of galactomannan to the purification and separation of the product is The current situation was that it was difficult to pass it easily. In view of the above circumstances, the present inventors have conducted extensive research to obtain a hydroxyalkyl ether of galactomannan that is inexpensive and of excellent quality, and as a result has arrived at the present invention.

本発明の要旨どするところは親水性有機溶剤と水とガラ
クトマンナンとの混合物に含窒素塩基性物質を添加して
得られる懸濁液にアルキレンオキサイドを反応させしか
るのち反応生成物を乾燥させることを特徴とするガラク
トマンナンのヒドロキシアルキルエーテルの製造方法を
提供することにある。
The gist of the present invention is to react a suspension obtained by adding a nitrogen-containing basic substance to a mixture of a hydrophilic organic solvent, water, and galactomannan with an alkylene oxide, and then drying the reaction product. An object of the present invention is to provide a method for producing a hydroxyalkyl ether of galactomannan, which is characterized by the following.

本発明の最も大きな特徴は捉来枝術では不可欠の−[程
とされていたガラクトマンナンのヒドロキシアルキルエ
ーテル化以後の後処理プロセスな著るしく簡略化しうる
点にある。従来上記後処理はガラクトマンナンのヒドロ
キシアルキルエーテル化反応時に必要な強アルカリの中
和及びこの中和反応により生成する灰分の主体をなす塩
類を除去し製品の品質の向上法の1つである灰分含有率
の低減化が図れるという利点を有することである。
The most significant feature of the present invention is that it can significantly simplify the post-processing process after the hydroxyalkyl etherification of galactomannan, which was considered to be an indispensable step in the retrieval technique. Conventionally, the above-mentioned post-treatment is one of the methods for improving product quality by neutralizing a strong alkali necessary for the hydroxyalkyl etherification reaction of galactomannan and removing salts, which are the main component of the ash produced by this neutralization reaction. This has the advantage that the content can be reduced.

従来かかるアルカリ性物の中和には無機酸及び有機酸が
用いられており特に無機酸を用いた場合には得られる製
品中の灰分量が増大するという欠点がありそれ故上記中
和には灰分6生成の原因となりにくい有機酸が多用され
ている。しかしながら化学量論量の有機酸による強アル
カリ物質の中和では十分な中和を行なうことが難かしく
得られた製品はアルカリ性となる現状にあった。
Conventionally, inorganic acids and organic acids have been used to neutralize such alkaline materials, but in particular, when an inorganic acid is used, the ash content in the resulting product increases. Organic acids that are less likely to cause 6 formation are often used. However, it is difficult to achieve sufficient neutralization by neutralizing a strong alkaline substance with a stoichiometric amount of an organic acid, and the resulting product is alkaline.

本発明者らはかかる現状に鑑みガラクトマンナ・ンのヒ
ドロキシアルカリ化にあたって使用す°る塩基性物質と
して弱アルカリ性でその反応を進行させること十分な能
力を有し、反応終了後は従来不可欠とされていた系の中
和工程を省略しうる方法を見出した。更にかかる弱アル
カリ性物質によるガラクトマンナンのヒドロキシアルキ
ルエーテル化は極めてスムーズに進行せしめることがで
きるため、そこに使用する塩基性物質の添加量を減少せ
しめることかでと、更装得られる製品中の灰分量を減少
せしめることができるのである。
In view of the current situation, the present inventors have sufficient ability to proceed with the reaction with weak alkalinity as a basic substance used in the hydroxyalkalization of galactomannan. We have discovered a method that can omit the neutralization step of the system. Furthermore, since the hydroxyalkyl etherification of galactomannan using such a weakly alkaline substance can proceed extremely smoothly, it is possible to reduce the amount of the basic substance used in the hydroxyalkyl etherification process, thereby reducing the ash in the resulting product. This allows the amount to be reduced.

本発明を実施するに際して用いるガラクトマンナンの形
態としては豆類を粗砕したいわゆるスプリットの状態で
あっても、更に細かく粉砕した粉状の状態であってもよ
い。更には粉状のガラクトマンナンをエーテル、アルコ
ール、ベンゼン等にて精製したものであってもよい。ま
た、熱分解。
The form of the galactomannan used in carrying out the present invention may be in the so-called split state obtained by coarsely pulverizing beans, or in the form of a powder obtained by further pulverizing the galactomannan. Furthermore, powdered galactomannan purified with ether, alcohol, benzene, etc. may also be used. Also pyrolysis.

酸化分解、酵素分解、酸加水分解等の操作を行ってその
分子量を低下せしめたガラクトマンナンも使用すること
ができる。また反応媒体として使用する親水性有機溶剤
とは少なくとも水を30重量係含有した状態で水と分離
せずに水と混合しうる有機溶剤をいうが、かかる有機溶
剤はガラクトマンナン、含窒素塩基性物質及びアルキレ
ンオキサイドのいずれとも反応しにくいものであること
が好ましい。これら親水性有機溶剤としてはメタノール
、エタノール、プロパツール、ブタノール等のアルコー
ル類、アセトン、メチルエチルケトン等のケトン類及び
それらの混合物などが具体例として例示されるが好まし
くは2−プロパツール。
Galactomannan whose molecular weight has been lowered by oxidative decomposition, enzymatic decomposition, acid hydrolysis, etc. can also be used. In addition, the hydrophilic organic solvent used as a reaction medium refers to an organic solvent that contains at least 30% water by weight and can be mixed with water without separating from it. It is preferable that it is difficult to react with both the substance and alkylene oxide. Specific examples of these hydrophilic organic solvents include alcohols such as methanol, ethanol, propatool and butanol, ketones such as acetone and methyl ethyl ketone, and mixtures thereof, with 2-propatool being preferred.

ターシャリ−ブタノール、アセトン、メチルエチルケト
ンなどである。親水性有機溶剤と水との比率は重量比で
30 j 70乃至95:5が好ましい。
These include tertiary butanol, acetone, and methyl ethyl ketone. The ratio of the hydrophilic organic solvent to water is preferably 30 j 70 to 95:5 by weight.

親水性有機溶剤と水との構成比率が95=5よりも水の
量が減じるとガラクトマンナンのヒドロキシアルキル化
の反応i度で顕著に低下し、殆んど反応は進行しなくな
ると共に反応終了後反応液中に残存するアルキレンオキ
サイド量が極めて多量となり好ましくない。親水性有機
溶剤と水との混合物に対する水の比率が上昇するにつれ
反応速度が増大し良好な反応条件を得ることがそきるよ
うになる。また反応終了後反応液中に残存するアルキレ
ンオキサイド量も減少し好ましく、更にはアルキレンオ
キサイドの有効利用率も増加し、80チの高率を達成す
ることができる。しカルながら親水性有機溶剤と水との
構成比力<30ニア0よりも水の量が増加すると反応の
途中より生成したガラクトマンナンのやドロキシアルキ
ルエーテルは懸濁媒中に安定した懸濁状態で存在するこ
とはでき、ず溶解し増粘するようになる。
When the amount of water decreases below the composition ratio of hydrophilic organic solvent and water of 95 = 5, the reaction rate of hydroxyalkylation of galactomannan decreases markedly, and the reaction hardly progresses, and even after the reaction is completed. This is not preferable since the amount of alkylene oxide remaining in the reaction solution becomes extremely large. As the ratio of water to the mixture of hydrophilic organic solvent and water increases, the reaction rate increases and it becomes possible to obtain favorable reaction conditions. In addition, the amount of alkylene oxide remaining in the reaction solution after the reaction is completed is preferably reduced, and furthermore, the effective utilization rate of alkylene oxide is increased, and a high rate of 80% can be achieved. However, when the amount of water increases beyond the composition ratio of hydrophilic organic solvent and water < 30 nia 0, galactomannan and droxyalkyl ether produced during the reaction become stable in suspension in the suspending medium. It can exist in this state, but it will dissolve and thicken.

本発明の方法によると前記組成の親水性有機溶剤水浴液
を用いているため、反応開始に先だち仕込むガラクトマ
ンナンの濃度を高くすることができることがある。以下
親水性有機溶剤水溶液に対するガラクトマンナンの重量
濃度をスラリー濃度と称する。一般に従来開示された方
法によってはスラリー濃度を高くするとガラクトマンナ
ンのヒドロキシプロピル化反応終了後の系の粘度が著る
しく増大中和及び固液分離を良好に実施することが不可
能になる。
According to the method of the present invention, since a hydrophilic organic solvent water bath solution having the above-mentioned composition is used, it may be possible to increase the concentration of galactomannan charged prior to the start of the reaction. The weight concentration of galactomannan in the hydrophilic organic solvent aqueous solution is hereinafter referred to as slurry concentration. In general, according to conventionally disclosed methods, when the slurry concentration is increased, the viscosity of the system after the completion of the hydroxypropylation reaction of galactomannan increases significantly, making it impossible to perform neutralization and solid-liquid separation satisfactorily.

本発明を実施するに際して用いる含窒素塩基性物質とし
てはアンモニア、有機アミン類、及びこ第1らの第4級
アンモニウム化合物などである。反Ll1、触媒として
上記含窒素塩基性物質を用いてガラクトマンナンのヒド
ロキシアルキルエーテル化を行フJ 5と、まず、使用
する触媒量が低減することができると共に、得られる反
応終了後の系は強℃・アルカリ性を呈することはないの
で従来法にては必要不可決な反応終了系の中和工程を全
く消略することができるため、従来法にては反応終了後
の系の中和による系全体の増粘によるその取扱い性の低
下が大きな問題となっていたのであるが、本発明に於て
は上述した如き触媒を用いることによって反応終了後の
系の中和工程を消略することに成巧し、その後の洗浄1
1分離などを行なう必要はない。本発明のガラクトマン
ナンのヒドロキシアルキルエーテル化反応終了後の系の
スラリー濃度は従来法に比べ著るしく高いため、反より
ガラクトマンナンのヒドロキシアルキルエーテル化物の
分離を行なうことなく、直ちに、次の乾燥工程は供され
るという大きな利点をも有しており、この乾燥工程−に
おいて含窒素塩基性物質は揮散回収し再利用するのであ
る。
Examples of nitrogen-containing basic substances used in carrying out the present invention include ammonia, organic amines, and the above-mentioned quaternary ammonium compounds. When the hydroxyalkyl etherification of galactomannan is carried out using the nitrogen-containing basic substance as a catalyst, the amount of catalyst used can be reduced, and the resulting system after the reaction is Since it does not exhibit strong °C or alkalinity, it is possible to completely eliminate the neutralization step of the reaction completion system, which is unnecessary in the conventional method. Deterioration in handling properties due to increased viscosity of the entire system has been a major problem, but in the present invention, by using the above-mentioned catalyst, the process of neutralizing the system after the completion of the reaction can be omitted. Clean and then wash 1
There is no need to perform 1 separation or the like. Since the slurry concentration of the system after the completion of the hydroxyalkyl etherification reaction of galactomannan according to the present invention is significantly higher than that in the conventional method, the hydroxyalkyl etherified galactomannan is not separated from the reaction mixture and the next drying process is carried out immediately. The process also has the great advantage of being used, and in this drying process, nitrogen-containing basic substances are volatilized and recovered and reused.

本発明を実施するに際して用いるアルキレンオキサイド
は低級アルキレンオキサイド例えばエチレンオキサイド
、プロピレンオキサイド、1,2ブチレンオキサイド、
ブタジェンモノオキザイド。
The alkylene oxide used in carrying out the present invention is a lower alkylene oxide such as ethylene oxide, propylene oxide, 1,2 butylene oxide,
Butadiene monooxide.

グリシド等が挙げられる。反応にあたってはこれらのも
のはガス状、液状によらずまた反応前に全量を仕込んで
も逐次反応′系に添加することも可能である。アルキレ
ンオキサイドの使用量はガラクトマンナンの変性の程度
に応じて任意に変えることができるが好ましくはガラク
トマンナンのアンヒドロ糖単位当り0.01モルから6
モルの間であり更に好ましくは0.1モルから2モルの
間である。
Examples include glycide. In the reaction, these substances can be added to the reaction system in either gaseous or liquid form, and even if the entire amount is charged before the reaction, it is possible to add them to the reaction system sequentially. The amount of alkylene oxide used can be arbitrarily changed depending on the degree of modification of galactomannan, but is preferably from 0.01 mol to 6 mol per anhydrosaccharide unit of galactomannan.
The amount is between 0.1 mol and 2 mol, more preferably between 0.1 mol and 2 mol.

反応は通常30℃乃至100℃の間で行われる反応時間
は所定の変性度(MS)が達成−きれるに充分な時間で
ある。好ましくは2時間乃至24時間である。反応容器
の形態は常圧リフラックス型容器加圧攪拌釜、加圧ニー
グー、加圧ブレングー等いずれでもよい。
The reaction is usually carried out between 30°C and 100°C, and the reaction time is sufficient to achieve a predetermined degree of modification (MS). Preferably it is 2 hours to 24 hours. The form of the reaction vessel may be any one such as a normal pressure reflux type vessel, a pressurized stirring vessel, a pressurized Nigu, a pressurized Brengu, etc.

本発明になる親水性有機溶剤と水とガラクトマンナンと
の混合物に塩基性物質を添加して得られる懸濁液にアル
キレンオキサイドを反応させてなる懸濁分散液を乾燥さ
せるには各種の方法が採用さ第1る。例えば懸濁分散液
をキャスティングして乾燥フィルムを製造ししかるのち
粉砕するが如き方法ドラムドライヤーで乾燥する方法、
かがる懸濁分散液をダイスより薄層として押出し乾燥す
る方法等が採用される。また乾燥にあたっては空気中で
あっても、窒素の如き不活性気体中であってもよい。ま
た、常圧下に乾燥しても減圧下に乾燥してもよい。
Various methods can be used to dry the suspension dispersion obtained by reacting an alkylene oxide with a suspension obtained by adding a basic substance to a mixture of a hydrophilic organic solvent, water, and galactomannan according to the present invention. First to be adopted. For example, methods such as casting a suspension dispersion to produce a dry film and then grinding; drying with a drum dryer;
A method of extruding a cloudy suspension dispersion through a die as a thin layer and drying it is employed. Further, drying may be performed in air or in an inert gas such as nitrogen. Further, drying may be performed under normal pressure or under reduced pressure.

以下実施例にて更に詳しく説明を加える。A more detailed explanation will be given below in Examples.

実施例1 スターン、冷却器、滴下ロート、温度計を装備した内容
積1tの4ツロフラスコに200−の2−プロバノール
と40−の水と水分率12%のグアガム粉末200fを
仕込み攪拌′して均一な懸濁分散液を作る。その後滴下
ロートにより徐々にトリエチルベンジルアンモニウムク
ロライド20gを50艷の水に溶解した水′酸化ナトリ
ウム水溶液を滴下する。その後1時間攪拌したのち15
fのプロピレンオキサイドを滴下ロートより滴下しフラ
スコ全体を水浴により70℃に昇温し3時間反応を続け
る。その後フラスコ内部を35℃以下に冷却し内容物を
取出し、ガラス板にキャスティングして70℃の真空乾
燥機で1昼夜乾燥した。その後粉砕し製品を得た。製品
収量は水分率22チで2701であった。本製品の灰分
は3.2係であった。
Example 1 In a 4-ton flask with an internal volume of 1 ton equipped with a stern, a condenser, a dropping funnel, and a thermometer, 200% of 2-probanol, 40% of water, and 200f of guar gum powder with a moisture content of 12% were charged and stirred to homogenize. Make a suspension dispersion. Thereafter, an aqueous sodium hydroxide solution containing 20 g of triethylbenzylammonium chloride dissolved in 50 bottles of water was gradually added dropwise through a dropping funnel. After stirring for 1 hour,
Propylene oxide (f) was added dropwise from the dropping funnel, and the entire flask was heated to 70°C in a water bath, and the reaction was continued for 3 hours. Thereafter, the inside of the flask was cooled to below 35°C, the contents were taken out, cast onto a glass plate, and dried in a vacuum dryer at 70°C for one day and night. Thereafter, it was crushed to obtain a product. The product yield was 2701 with a moisture content of 22%. The ash content of this product was 3.2.

実施例2 内容積1tの加圧型ニーダ−に水分率12%のグアガム
粉末500fと450−の2パロパノールと100−の
水を加え練合わせる。しかるのちトリメチルベンジルア
ンモニウムヒドロキシド25チ水溶液100gを加えた
ものを二ニゲー中に徐々に添加し練合せる。しかるのち
容器を閉じ窒素置換を竹ってからエチレンオキサイド7
22を徐々に添加し60℃で8時間反応をつづける反応
終了後反応器を常温にし再び窒素置換を行ってから内容
物を取出し薄板状に成形したのち真空乾燥機で1昼夜7
0℃で乾燥した。その後薄板を粉砕しグアガムのヒドロ
キシエチルエーテルを得た。かくして得られた製品の灰
分は2.0%であった。
Example 2 In a pressurized kneader having an internal volume of 1 ton, 500 f of guar gum powder with a water content of 12%, 450-2 paropanol, and 100-1 water were added and kneaded. Thereafter, 100 g of an aqueous solution of 25% trimethylbenzylammonium hydroxide was added gradually to the mixture and kneaded. After that, close the container, replace it with nitrogen, and then add ethylene oxide 7.
22 was gradually added and the reaction was continued at 60°C for 8 hours. After the reaction was completed, the reactor was brought to room temperature and replaced with nitrogen again. The contents were taken out and formed into a thin plate. After that, it was dried in a vacuum dryer for 1 day and 7 hours.
It was dried at 0°C. Thereafter, the thin plate was crushed to obtain guar gum hydroxyethyl ether. The ash content of the product thus obtained was 2.0%.

実施使1]”3 水分率10チのローカストビーンガム100fと150
−の2グロパノールと30m7!の水と共に実施例1と
同様の反応器に投入し攪拌して均一な懸濁分散液を製造
した。その後塩化3シン5fを50−の水に溶解した水
溶液を徐々に添加した。
Implementation mission 1] 3 Locust bean gum 100f and 150 with a moisture content of 10
-2 glopanol and 30m7! The mixture was put into the same reactor as in Example 1 together with water and stirred to produce a uniform suspension and dispersion. Thereafter, an aqueous solution of trichloride 5f dissolved in 50-g water was gradually added.

その後常温で1時間攪拌したのち301のプロピレンオ
キサイドを添加しフラスコ全体を水浴により60℃に昇
温し10時間反応を続けた。その後フラスコ内部を35
℃以下に冷却し内容物を取出した。かかる内容物を薄板
状にし1昼夜風乾したのち70℃の通風乾燥機で3時間
乾燥を行いその後粉砕してローカストピーンガムのヒド
ロキシプロピルエーテルを得た。かくして得られた製品
の灰分は4.5%であった。
After stirring at room temperature for 1 hour, propylene oxide 301 was added, the entire flask was heated to 60°C in a water bath, and the reaction was continued for 10 hours. After that, the inside of the flask was
It was cooled to below ℃ and the contents were taken out. The contents were formed into a thin plate, air-dried for one day and night, and then dried in a ventilation dryer at 70°C for 3 hours, and then crushed to obtain hydroxypropyl ether of locust pea gum. The ash content of the product thus obtained was 4.5%.

実施例4 内容積1tの加圧型ニーダ−に水分率12%のグアガム
粉末5002と400艷の2プロパツールと100−の
水を加え練り合わせる。しかる9ちジエチルアミン25
fを水100fと共にニーダ−に徐々に加え練合わせる
。しかるのち容器を閉じ窒素置換を行ってからエチレン
オキサイド721を徐々に添加し80℃で4時間反応を
続ける。
Example 4 Guar gum powder 5002 with a water content of 12%, 400 mm of 2-proper tool, and 100 mm of water were added to a pressure kneader having an internal volume of 1 ton and kneaded together. 9chi diethylamine 25
Gradually add f to the kneader together with 100 f of water and knead. Thereafter, the container was closed and replaced with nitrogen, and then ethylene oxide 721 was gradually added and the reaction was continued at 80° C. for 4 hours.

反応終了後反応器を常温にし再び窒素置換を行ってから
内容物を取出し薄板状に成形したのち1昼夜風乾し、そ
の後通風乾燥機70℃で6時間乾燥させた。その後薄板
を粉砕しグアガムのヒドロキシプロピルエーテルを得た
。かくして得られた製品の灰分は2.5%であった。
After the reaction was completed, the reactor was brought to room temperature and replaced with nitrogen again, and the contents were taken out and formed into a thin plate, which was air-dried for one day and night, and then dried in a ventilation dryer at 70°C for 6 hours. Thereafter, the thin plate was crushed to obtain hydroxypropyl ether of guar gum. The ash content of the product thus obtained was 2.5%.

特 許 出 願 人 三菱アセテート株式会社三菱レイ
ヨン株式会社 代理人 弁理士1)村 武 敏
Patent applicant Mitsubishi Acetate Co., Ltd. Mitsubishi Rayon Co., Ltd. Agent Patent attorney 1) Satoshi Muratake

Claims (1)

【特許請求の範囲】[Claims] 親水性有機溶剤と水とガラクトマンナンとの混合物に含
窒素塩基性物質を添加して得られる懸濁I中でアルキレ
ン、オキサイドを反応させ、しかるのち反応生成物を乾
燥させることを特徴とするガラクトマンナンのヒドロキ
シアルキルエーテルの製造方法。
Galacto, which is characterized by reacting alkylene and oxide in suspension I obtained by adding a nitrogen-containing basic substance to a mixture of a hydrophilic organic solvent, water, and galactomannan, and then drying the reaction product. Method for producing hydroxyalkyl ether of mannan.
JP20613781A 1981-12-22 1981-12-22 Preparation of hydroxyalkyl ether of galactomannan Granted JPS58108202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20613781A JPS58108202A (en) 1981-12-22 1981-12-22 Preparation of hydroxyalkyl ether of galactomannan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20613781A JPS58108202A (en) 1981-12-22 1981-12-22 Preparation of hydroxyalkyl ether of galactomannan

Publications (2)

Publication Number Publication Date
JPS58108202A true JPS58108202A (en) 1983-06-28
JPS6256882B2 JPS6256882B2 (en) 1987-11-27

Family

ID=16518390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20613781A Granted JPS58108202A (en) 1981-12-22 1981-12-22 Preparation of hydroxyalkyl ether of galactomannan

Country Status (1)

Country Link
JP (1) JPS58108202A (en)

Also Published As

Publication number Publication date
JPS6256882B2 (en) 1987-11-27

Similar Documents

Publication Publication Date Title
US4920214A (en) Process for producing modified cyclodextrins
JPH04306245A (en) High-solid, low-viscosity polysaccharide composition
US4451649A (en) Process for the production of hydroxypropyl starch
JP4950434B2 (en) Method for producing methyl hydroxyalkyl cellulose
JPS645601B2 (en)
EP1188772B1 (en) Ligand-modified cellulose products
KR20010080592A (en) Method for the Production of Low-viscous Water-soluble Cellulose Ethers
EP0018131A1 (en) Crosslinked, carboxyalkylated and deacetylated derivative of chitin, process for preparation thereof, and use thereof as an adsorbent material
JP2003171401A (en) Method for producing hydroxyalkyl cellulose
US4537958A (en) Process for preparing cellulose ethers
JPH11315102A (en) Preparation of amphoteric guar gum derivative
RU2079507C1 (en) Purified glucomannan and method of its preparing
JPH0649725B2 (en) Method for producing cationic chitosan derivative
JPS58108202A (en) Preparation of hydroxyalkyl ether of galactomannan
CA1039272A (en) Water soluble cellulose ethers
JP5118027B2 (en) Aminoalkyl group-containing guar derivatives
JP2007084680A (en) Easily water-soluble polymer and method for producing the same
JP5577331B2 (en) Process for producing silane-modified cationized polymer compound
JP5582882B2 (en) Method for producing hydroxyalkyl cellulose
JP5237518B2 (en) Process for producing at least alkylated water-soluble powdered nonionic cellulose ethers that can be wetted well
JPH061801A (en) Process for cationing nongranular polysaccharide
JPH0649726B2 (en) Method for producing anionic chitosan derivative
JPS59172501A (en) Ethylhydroxyalkylmethylcellulose ether
JPS58109502A (en) Production of hydroxyalkyl ether of galactomannan
JPH0140841B2 (en)