JPS58108116A - Mixing device for gas in urethane material - Google Patents

Mixing device for gas in urethane material

Info

Publication number
JPS58108116A
JPS58108116A JP20780581A JP20780581A JPS58108116A JP S58108116 A JPS58108116 A JP S58108116A JP 20780581 A JP20780581 A JP 20780581A JP 20780581 A JP20780581 A JP 20780581A JP S58108116 A JPS58108116 A JP S58108116A
Authority
JP
Japan
Prior art keywords
raw material
density
tank
urethane raw
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20780581A
Other languages
Japanese (ja)
Inventor
Takahisa Ohara
大原 孝久
Yoshinori Sugimoto
杉本 良則
Yoshiyuki Sasaki
義之 佐々木
Tsuruichi Koyama
小山 鶴一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHO KIKAI KOGYO KK
Toyota Motor Corp
Original Assignee
TOHO KIKAI KOGYO KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHO KIKAI KOGYO KK, Toyota Motor Corp filed Critical TOHO KIKAI KOGYO KK
Priority to JP20780581A priority Critical patent/JPS58108116A/en
Publication of JPS58108116A publication Critical patent/JPS58108116A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/76Mixers with stream-impingement mixing head
    • B29B7/7615Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components
    • B29B7/7621Mixers with stream-impingement mixing head characterised by arrangements for controlling, measuring or regulating, e.g. for feeding or proportioning the components involving introducing a gas or another component in at least one of the components

Abstract

PURPOSE:To obtain a molded article having uniform quality, by measuring successively the density of urethane material, by mixing in the urethane material a gas in a quantity corresponding to a value obtained from measurement, and by maintaining thereby the density of the material at an arbitrary constant value. CONSTITUTION:Urethane material supplied to a material tank 1 is agitated by an agitator 1a, and most of it is supplied to a molding die via an injection pipe 4. Meanwhile, a part of it is sent to a gas mixing tank 6 through a subtank 5 and mixed with air in a cylinder 8 via a valve 10, and then is circulated in the material tank 1. A differential pressure oscillator 11 is attached to the abovementioned device to measure a pressure difference P between the upper- stream and down-stream sides of the subtank 5. The measured difference is converted into the density of the material urethane, and then this is sent to a metering-recording regulator 14 (a mark 14a denotes a display board) and compared with the set density of material. Based on a difference signal thus obtained, a quantity of air to be mixed in is controlled through the intermediary of the valve 10, and thereby the density of the urethane material 2 in the tank 1 is maintained at a prescribed value.

Description

【発明の詳細な説明】 本発明は、ウレタン原料気体混入装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a urethane raw material gas mixing device.

RIM成形を行なう場合、ウレタン原料に予め一定量の
徽細な気体、例えばエア又はその他の不活性ガスを混入
、させると、得られる成゛廖品の密度にバラツキがなく
、品質が向上することが知られている。従来、このウレ
タン原料への気体混入の方法は、ウレタン原料タンクか
ら一定量の原料を採取し、この□サンプルの密度′を測
定し、得られたサンプル密度から気体混入量を゛求め、
所定簀の気体をウレタン原料に混入していた。    
  ′ しかしながら、上記方法では、一定期間ごとにサンプリ
ングを行なって必要な気体混入量を計算するのであるか
ら、期間中のウレタン原料の密度に変動があった場合に
は迅速に対処することができず、また、操作がほとんど
手動式であるため労力がかかり、しかも測定精度が悪い
という問題があった。したがって、上述の方法ではウレ
タン原料に常に最適の気体量を連続して供給することが
できなかった。
When performing RIM molding, if a certain amount of fine gas, such as air or other inert gas, is mixed into the urethane raw material in advance, the density of the finished product will be uniform and the quality will be improved. It has been known. Conventionally, the method for mixing gas into urethane raw materials is to collect a certain amount of raw material from a urethane raw material tank, measure the density of this sample, and calculate the amount of gas mixed in from the obtained sample density.
A specified amount of gas was mixed into the urethane raw material.
' However, in the above method, sampling is performed at regular intervals to calculate the required amount of gas mixture, so if there is a change in the density of the urethane raw material during the period, it cannot be dealt with quickly. In addition, since most of the operations are manual, there are problems in that it is labor-intensive and the measurement accuracy is poor. Therefore, in the above-mentioned method, it was not possible to always continuously supply the optimum amount of gas to the urethane raw material.

本発明は、ウレタン原料の密度を連続して測定シフ、こ
の測定密度に対応する量の気体をウレタン原料に混入す
るととKより、ウレタン原料の密度を任意にしか本一定
に維持することのできる完全自動化気体混入装置を提供
するものである。
In the present invention, by continuously measuring the density of the urethane raw material and mixing an amount of gas corresponding to the measured density into the urethane raw material, the density of the urethane raw material can be maintained at a constant value. It provides a fully automated gas entrainment device.

すなわち、本発明ウレタン原料気体混入装置は、ウレタ
ン原料を充填した原料タンクと、この原料タンク中のウ
レタン原料の一部をタックから散出して循環させゐウレ
タン原料循環経路と、ウレタン原料循*a路の途中に設
けられたサブタンクと、気体発生装置と、この気体発生
装置から発生する気体をウレタン原料に供給する気体供
給経路と、この気体供給経路に介装された気体流量調整
弁と、前記サブタンクより下方に位置し、かつ、前記サ
ブタンク内を流下するウレタン原料の上流及び下流にお
ける設定点間の圧力差を検知してこれを密度に変換し、
信号として出力することのできるウレタン原料密度測定
装置と、この重度測定装置からの出力信号によりウレタ
ン原料の密度と設定密度とを比較して前記気体流量調整
弁を作動するための制御信号を出力することのできる比
較回路とからなることを特徴とする。
That is, the urethane raw material gas mixing device of the present invention includes a raw material tank filled with a urethane raw material, a urethane raw material circulation path in which a part of the urethane raw material in the raw material tank is released from a tack and circulated, and a urethane raw material circulation *a. a sub-tank provided in the middle of the path, a gas generator, a gas supply route for supplying the gas generated from the gas generator to the urethane raw material, a gas flow rate adjustment valve interposed in the gas supply route; Detecting the pressure difference between set points at the upstream and downstream of the urethane raw material located below the sub-tank and flowing down in the sub-tank, and converting this into density;
A urethane raw material density measuring device that can output a signal, and an output signal from this density measuring device to compare the density of the urethane raw material with a set density and output a control signal for operating the gas flow rate regulating valve. It is characterized by comprising a comparison circuit that can perform

以下、本発明装置を図面に基いて説明する。Hereinafter, the apparatus of the present invention will be explained based on the drawings.

なお、以下の例では、ウレタン原料に混入する気体とし
てエアを用いて説明するが、本発明においては特にエア
に限定されず、他の通算使用されているガス、例えばN
、、 He、 Ar、フロンガスでも適用可能なことは
勿論である。
In the following example, air will be used as the gas mixed into the urethane raw material, but the present invention is not limited to air, and other commonly used gases, such as N
,, Of course, He, Ar, and chlorofluorocarbon gases are also applicable.

第1図は本発明装置の一例を示す模式図である0図にお
いて、1はウレタン原料タンク(以下、単KJI料タン
クという)で、この原料タンク1には図示しない別の経
路によ抄ウレタン原料2が供給される。原料タンク1は
密閉式で、攪拌機1mを備え、この攪拌機1aij原料
タンク1の上面に取り付けられたモータ1bKより作動
する。
FIG. 1 is a schematic diagram showing an example of the apparatus of the present invention. In FIG. Raw material 2 is supplied. The raw material tank 1 is of a closed type and is equipped with a stirrer 1m, and this stirrer 1aij is operated by a motor 1bK attached to the upper surface of the raw material tank 1.

原料タンク1の底面には、ウレタン原料循環用管5と、
図示[、ない成形型へウレタン原料2を供給するための
成形型注入管4とが接続している。4mは、ウレタン原
料2を型へ供給するためのポンプである。
On the bottom of the raw material tank 1, there is a urethane raw material circulation pipe 5,
A mold injection pipe 4 for supplying the urethane raw material 2 to the mold (not shown) is connected. 4m is a pump for supplying the urethane raw material 2 to the mold.

循環用管3は、途中に、ウレタン原料の密度測定用のサ
ブタンク5とエア混入槽6とを備え、この管3にはポン
プ7により常にウレタン原料2の一部が循3j【、でい
る。
The circulation pipe 3 is provided with a sub-tank 5 for measuring the density of the urethane raw material and an air mixing tank 6 on the way, and a part of the urethane raw material 2 is constantly circulated through the pipe 3 by a pump 7 .

前記サブタンク5は、原料タンク1底面より下方に位置
し、ウレタン原料の流下方向に沿ってその長手軸が艷向
するようKV&置されている。
The sub-tank 5 is located below the bottom surface of the raw material tank 1, and is placed so that its longitudinal axis is parallel to the flow direction of the urethane raw material.

エア混入槽6には、ボンベ8から出るエア供給管9の一
端が接続し、このエア供給管9の途中にはエア流量調整
弁(バルブ)10が介装されている。また、エア混入槽
6は、図示しない攪拌機を備え、ウレタン原料とエアと
を十分攪拌混合することができる。
One end of an air supply pipe 9 coming out of the cylinder 8 is connected to the air mixing tank 6, and an air flow rate regulating valve 10 is interposed in the middle of the air supply pipe 9. Further, the air mixing tank 6 is equipped with a stirrer (not shown), and can sufficiently stir and mix the urethane raw material and air.

11は、サブタンク5を流れるウレタン原料の上流及び
下流における設定点間の圧力差(ΔP)を検知l1、こ
れを密度に変換する差圧発振器で、受圧部111とこの
受圧部111で検知した差圧(ΔP)を密度に変換【、
て信号として出力する増幅部112とからなる。受圧部
111は、高圧側受圧部111aと低圧側受圧部111
bとに分かれ、高圧側受圧部111aKは上流管12の
一端が接続し、低圧側受圧部111bKは下流管13の
一端が接続する。
11 is a differential pressure oscillator that detects the pressure difference (ΔP) between the upstream and downstream set points of the urethane raw material flowing through the sub-tank 5 and converts this into density; Convert pressure (ΔP) to density [,
and an amplifying section 112 that outputs it as a signal. The pressure receiving section 111 includes a high pressure side pressure receiving section 111a and a low pressure side pressure receiving section 111.
The high pressure side pressure receiving part 111aK is connected to one end of the upstream pipe 12, and the low pressure side pressure receiving part 111bK is connected to one end of the downstream pipe 13.

、上流管12の他端は前記サブタンク5の流下方向上部
の位置に開口し、下流管13の他端はサブタンク5の流
下方向下部の位置に開口1、シている。これら2つの管
12.1!Iのサブタンク5における開口部分の距離は
、所定の値、例えば!100mg設定する。上流管12
と下流管13は純ウレタン原料で満たされている。  
1、。
The other end of the upstream pipe 12 opens at the upper part of the sub-tank 5 in the downstream direction, and the other end of the downstream pipe 13 opens at the lower part of the sub-tank 5 in the downstream direction. These two tubes 12.1! The distance of the opening in the sub-tank 5 of I is a predetermined value, for example! Set 100mg. Upstream pipe 12
The downstream pipe 13 is filled with pure urethane raw material.
1.

差圧発振器11はサブタンク5の流下方向下部の開口よ
抄下方となる位置に設置されてぃれKfl定されない。
The differential pressure oscillator 11 is installed at a position below the opening of the lower part of the sub-tank 5 in the flow direction, so that Kfl is not determined.

差圧発振器11で測定されたウレタン原料の密度は、記
録調節計14へ信号15として送られる。
The density of the urethane raw material measured by the differential pressure oscillator 11 is sent to the recording controller 14 as a signal 15.

記録調節計14q、前記差圧発振器11と電気的Kll
続しており、この差圧発振器11力1ら送られる信号を
目盛とl、で表示し、さらに、予じめ設定しである密度
と比較することができる。
Recording controller 14q, the differential pressure oscillator 11 and electrical Kll
The signal sent from the differential pressure oscillator 11 is displayed on a scale and can be compared with a preset density.

これKより得られる比較信号16を、前記エア流量調整
弁10に接続し、エア流量を制御する。
A comparison signal 16 obtained from this K is connected to the air flow rate regulating valve 10 to control the air flow rate.

サブタンク5における差圧ΔPを測定し、これを密度に
換算する方法をさらに詳しく館2図に基いて説明する。
The method of measuring the differential pressure ΔP in the sub-tank 5 and converting it into density will be explained in more detail with reference to Figure 2.

第2図は、ウレタン原料の密度を検出する原理を示す説
明図である。図に示すように、循環用管5から供給され
るウレタン原料2(密度ρ0)はサブタンク5内を図中
矢印で示すように上方から流下する。上流管12と下流
管13には純原液ウレタン原料(密度p)が満たされ、
上流管12の下端は差圧発振器受圧部111の右半分(
高圧側) 1118に、更に、下流管13の下端は差圧
発振器受圧部−111の左半分(低圧側)111bK接
続している。
FIG. 2 is an explanatory diagram showing the principle of detecting the density of urethane raw material. As shown in the figure, the urethane raw material 2 (density ρ0) supplied from the circulation pipe 5 flows down into the sub-tank 5 from above as indicated by the arrow in the figure. The upstream pipe 12 and the downstream pipe 13 are filled with pure undiluted urethane raw material (density p),
The lower end of the upstream pipe 12 is connected to the right half of the differential pressure oscillator pressure receiving part 111 (
Further, the lower end of the downstream pipe 13 is connected to the left half (low pressure side) 111bK of the differential pressure oscillator pressure receiving section -111.

上゛記構酸の差圧発振器11において、高圧側に加わる
圧力HPは次式(1)で得られる。
In the differential pressure oscillator 11 described above, the pressure HP applied to the high pressure side is obtained by the following equation (1).

Hp=(he +3no)Xρ+(h−h、 −3no
)Xpo ” ’(II差圧発振器11の低圧側131
b[加わる圧力Lpは次式(2)で得られる。
Hp=(he +3no)Xρ+(hh, -3no
) Xpo "' (Low pressure side 131 of II differential pressure oscillator
b [The applied pressure Lp is obtained by the following equation (2).

LP=h@Xρ+(h  he )Xpo   ”  
(2)ただし、上式(1)、 、 (2)中、hは、差
圧発振器11上面を基準位としてサブタンク・5より上
方にある循環用管3の任意の位置までの高さを表わし、
hoFi差圧発振器11の基準位から下流管13のサブ
タンク5における開口位置までの高さを表わす。才た、
300は上流管12の開口位置と下流管15の開口位置
との距離(■)を表わす数値である。
LP=h@Xρ+(h he )Xpo”
(2) However, in the above formulas (1), , and (2), h represents the height from the top surface of the differential pressure oscillator 11 to an arbitrary position of the circulation pipe 3 above the sub-tank 5. ,
It represents the height from the reference position of the hoFi differential pressure oscillator 11 to the opening position of the downstream pipe 13 in the sub-tank 5. Talented,
300 is a numerical value representing the distance (■) between the opening position of the upstream pipe 12 and the opening position of the downstream pipe 15.

上記(Il、 (2)式より、差圧発振器11の高圧側
111mと低圧側111b間の圧力差(ΔP)は次式%
式% )() ここで上流管12の開口位置と下流管13の開口位置と
の差圧(ΔP)を75諺H鵞Oに設定し、純ウレタン原
料の密度をρ=1g/CCと仮定すると、(3)式より ΔP=300(1−po )=75 ρ・=α75 (#/CC) となる。したがって、差圧ΔF = 75mH10のと
きウレタン原料の密度ρ0は0.7517c cとなる
From the above formula (Il, (2)), the pressure difference (ΔP) between the high pressure side 111m and the low pressure side 111b of the differential pressure oscillator 11 is calculated by the following formula %
Formula % ) () Here, the differential pressure (ΔP) between the opening position of the upstream pipe 12 and the opening position of the downstream pipe 13 is set to 75, and the density of the pure urethane raw material is assumed to be ρ = 1 g/CC. Then, from equation (3), ΔP=300(1-po)=75 ρ·=α75 (#/CC). Therefore, when the differential pressure ΔF = 75 mH10, the density ρ0 of the urethane raw material is 0.7517cc.

また、差圧ΔP=口のときは、前記と同様の計算により
ウレタン原料の密度ρoId 111/c cとなる。
Further, when the differential pressure ΔP=mouth, the density of the urethane raw material is ρoId 111/cc by calculation similar to the above.

上記計算で得られる範囲の数値を記録調節計14に目盛
板141として表示する。
The numerical values in the range obtained by the above calculation are displayed on the recording controller 14 as a scale plate 141.

なお、純ウレタン原料の密度は必ずしもp=tOてはな
い、この場合には、使用する純ウレタン原料の密度(ρ
)を前記(3)式に導入し、差圧0〜75■H,OK対
応ずb密度を計算して目盛板を交換すればウレタン原料
の実質密度が得られる。
Note that the density of the pure urethane raw material is not necessarily p = tO. In this case, the density of the pure urethane raw material used (ρ
) into the above equation (3), calculate the differential pressure 0 to 75 µH, OK corresponding, b density, and replace the scale plate to obtain the actual density of the urethane raw material.

例えば、純ウレタン原料の密度がρ=105の場合には
、目盛板14aの表示は105〜0.6となる。
For example, when the density of the pure urethane raw material is ρ=105, the display on the scale plate 14a will be 105 to 0.6.

記録調節計14では、上述のごとくサブタンク5を流れ
るウレタン原料の密度を表示するとともに、計測された
値と設定値とを比較し、てエア混入量を制御するバルブ
10を作動する信号を発生することのできる比較回路を
内蔵している。
The recording controller 14 displays the density of the urethane raw material flowing through the sub-tank 5 as described above, compares the measured value with a set value, and generates a signal to operate the valve 10 that controls the amount of air mixed in. It has a built-in comparison circuit that can

上記構成の装fにおいて、ウレタン原料2は別経路によ
り原料タンク1へ供給される。供給されたウレタン原料
2は、その一部が循環用管3からサブタンク5を流下し
てガス混入槽6へ入り、さらに原料タンク2へと循1!
 L、ている。
In the device f having the above configuration, the urethane raw material 2 is supplied to the raw material tank 1 through a separate route. A portion of the supplied urethane raw material 2 flows down the sub-tank 5 from the circulation pipe 3, enters the gas mixing tank 6, and is further circulated to the raw material tank 2!
L, there.

サブタンク5を流下するウレタン原料2における上流及
び下流の圧力差を差圧発振!!11で測定し、密度を検
知する。この密度を差圧発振器11から出力信号15と
して計碌調節計14に伝達する。記録調節計14では、
この密度を表示板14暑で表示するとともに、予じめ設
定してある密度と比較する。
Differential pressure oscillation occurs in the upstream and downstream pressure difference in the urethane raw material 2 flowing down the sub tank 5! ! 11 to detect the density. This density is transmitted from the differential pressure oscillator 11 to the performance controller 14 as an output signal 15. In the recording controller 14,
This density is displayed on the display board 14 and compared with a preset density.

橢定密度が設定密度より大であると、バルブ10に信号
16を送りバルブ10を開と17、エアをガス混入槽6
へ供給する。ガス混入槽6にて供給エアと十分攪拌混合
されたウレタン原料は原料タンク1へ循環さ、れ、[7
たがって原料タンク1中のウレタン原料2にエアが混入
されることになる。
If the constant density is greater than the set density, a signal 16 is sent to the valve 10 to open the valve 17 and air is supplied to the gas mixing tank 6.
supply to The urethane raw material sufficiently stirred and mixed with the supplied air in the gas mixing tank 6 is circulated to the raw material tank 1, and then [7
Therefore, air is mixed into the urethane raw material 2 in the raw material tank 1.

以上のような動作を連続的に行なうことにより、原料タ
ンク1中のウレタン原料2の密度を、設定[、た値に近
ずけることができる。また、密度を、設定値近傍に調節
した後も、ウレタン原料を常時微積させるととKより密
度の変動を連続して検知することができるので、この密
度に応じて適宜エアの混入を行なえば、ウレタン原料v
R度を常に一定の値に保つことができる。また、記録調
節針−“Kおける。設定値を適宜変更することによ抄、
原料タンク1内のウレタン原料2の密度を変えることが
でき、したがってRIM成形用原料として使用する場合
などに成形条件に応じて最適密度、すなわち最適エア量
の混)[7た原料を得ることができるという利点を有す
る。
By continuously performing the above operations, the density of the urethane raw material 2 in the raw material tank 1 can be brought close to the set value. In addition, even after adjusting the density to near the set value, if the urethane raw material is constantly accumulated, changes in density can be continuously detected by K, so air can be mixed in as appropriate according to this density. For example, urethane raw material v
The R degree can always be kept at a constant value. In addition, the recording adjustment needle can be adjusted by changing the setting value appropriately.
The density of the urethane raw material 2 in the raw material tank 1 can be changed, and therefore, when used as a raw material for RIM molding, it is possible to obtain a raw material with an optimal density, that is, a mixture with an optimal amount of air, depending on the molding conditions. It has the advantage of being able to

また、第1図に示す装置においては、ウレタン原料とエ
アとをエア混入槽6で均一に混合した後、原料タンク1
へ投入するようにしたので、原料タンク1におけるウレ
タン原料2中のエアが微細均一に分散し、したがってR
IM成形時のウレタン製品中の密度が均一になる。ただ
し、原料タンク1に充分攪拌し7うる設備を備えてあれ
ば、エアをガス混入槽6に供給することなく直接原料タ
ンク1へ供給することもできる。
In addition, in the apparatus shown in FIG. 1, after uniformly mixing the urethane raw material and air in the air mixing tank 6,
Since the air in the urethane raw material 2 in the raw material tank 1 is finely and uniformly dispersed, the R
The density in the urethane product during IM molding becomes uniform. However, if the raw material tank 1 is equipped with sufficient stirring equipment, air can be supplied directly to the raw material tank 1 without being supplied to the gas mixing tank 6.

本発明装置は、以上の1載からも明らかなように、ウレ
タン原料のエア混入量を、ウレタン原料密度を測定する
ことにより調節するもので、この密度の測定は自動的に
連Iして行なうことができるものであるから、ウレタン
原料への気体の混入量を正確に制御することができる−
0したがちで、本械゛明装置をRIM成形システムに適
用すれば、微細な気体が均一に分散したポリウレタン原
料を得ることができるので、成形品全体が均一な密度分
布となり、得られる製品の物理的特性が向上するという
効果を有する。
As is clear from the above article, the device of the present invention adjusts the amount of air mixed into the urethane raw material by measuring the urethane raw material density, and this density measurement is automatically and continuously carried out. This makes it possible to accurately control the amount of gas mixed into the urethane raw material.
However, if this machine is applied to a RIM molding system, it is possible to obtain a polyurethane raw material in which fine gases are uniformly dispersed, so that the entire molded product has a uniform density distribution, and the resulting product has a uniform density distribution. It has the effect of improving physical properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す工程模式図、第2図は
上紀第1図の要部説明図、 を表わ2す。 図中、 1・・・[料タンク、2・・・ウレタン原料、3・・・
循環用管、5・・・サブタンク、6・・・エア混入槽、
9・・・エア供給管、1o・・・エア流量調整弁、11
・・・差圧発振器、111・・・受圧部、112・・・
増幅・部、12・・・上流管、15・・・下流管、14
・・・記録調節針、 特許出願人  トヨタ自動車工業株式会社東邦機械工業
株式会社 牙1図 [
FIG. 1 is a schematic process diagram showing an example of the apparatus of the present invention, and FIG. 2 is an explanatory diagram of the main part of FIG. In the figure, 1... [material tank, 2... urethane raw material, 3...
Circulation pipe, 5... sub tank, 6... air mixing tank,
9...Air supply pipe, 1o...Air flow rate adjustment valve, 11
... Differential pressure oscillator, 111 ... Pressure receiving section, 112 ...
Amplification section, 12... Upstream pipe, 15... Downstream pipe, 14
... Recording adjustment needle, Patent applicant Toyota Motor Corporation Toho Machinery Co., Ltd. Fig. 1 [

Claims (1)

【特許請求の範囲】 ウレタン原料を充填した原料タンクと、前記ウレタン原
料の一部を前記タンクから取出して循環させるウレタン
原料循環経路と、該ウレタン原料循環経路の途中に設け
られたサブタンクと、 気体発生装置と、 皺気体発生装置から発生する気体をウレタン原料に供給
する気体供給経路と、 皺気体供給経路に介装された気体流量調整弁と、   
   ゛ 前記サブタンクより下方に位置し、かつ、前記サブタン
ク内を流下するウレタン原料の上流及び下流の圧力差を
測定してこれを密度に変換し、信号として出力すること
のできるウレタン原料11度測定装置と、 該11度測定装置からの出力信号によりウレタン原料の
密度と膜室密度とを比較して前記気体流量調整弁を作動
するための制御信号を出力することのできる比較回路と
、からなるウレタン原料気体混入装置。
[Scope of Claims] A raw material tank filled with a urethane raw material, a urethane raw material circulation path that takes out a portion of the urethane raw material from the tank and circulates it, a sub-tank provided in the middle of the urethane raw material circulation path, and a gas. a gas generation device; a gas supply path for supplying the gas generated from the wrinkled gas generator to the urethane raw material; a gas flow rate adjustment valve interposed in the wrinkled gas supply path;
゛Urethane raw material 11 degree measuring device located below the sub-tank and capable of measuring the pressure difference between upstream and downstream of the urethane raw material flowing down in the sub-tank, converting it into density, and outputting it as a signal. and a comparison circuit capable of comparing the density of the urethane raw material and the membrane chamber density based on the output signal from the 11 degree measuring device and outputting a control signal for operating the gas flow rate regulating valve. Raw material gas mixing device.
JP20780581A 1981-12-22 1981-12-22 Mixing device for gas in urethane material Pending JPS58108116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20780581A JPS58108116A (en) 1981-12-22 1981-12-22 Mixing device for gas in urethane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20780581A JPS58108116A (en) 1981-12-22 1981-12-22 Mixing device for gas in urethane material

Publications (1)

Publication Number Publication Date
JPS58108116A true JPS58108116A (en) 1983-06-28

Family

ID=16545783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20780581A Pending JPS58108116A (en) 1981-12-22 1981-12-22 Mixing device for gas in urethane material

Country Status (1)

Country Link
JP (1) JPS58108116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416442A1 (en) * 1983-05-07 1984-11-08 Basf Ag, 6700 Ludwigshafen Process and device for producing a reactive mixture of at least two components for the production of foams
JPS60201917A (en) * 1984-03-27 1985-10-12 Niigata Eng Co Ltd Device for mixing gas with liquid
EP0175252A2 (en) * 1984-09-19 1986-03-26 Bayer Ag Method and apparatus for preparing a fluid foaming reaction mixture from fluid components stored in reservoirs
US7661871B2 (en) * 2005-02-03 2010-02-16 Robert Rinehart Hyatt Apparatus for storing, mixing, metering, and injecting polymeric slurries into pipelines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416442A1 (en) * 1983-05-07 1984-11-08 Basf Ag, 6700 Ludwigshafen Process and device for producing a reactive mixture of at least two components for the production of foams
JPS60201917A (en) * 1984-03-27 1985-10-12 Niigata Eng Co Ltd Device for mixing gas with liquid
JPH0471572B2 (en) * 1984-03-27 1992-11-16 Niigata Tetsukosho Kk
EP0175252A2 (en) * 1984-09-19 1986-03-26 Bayer Ag Method and apparatus for preparing a fluid foaming reaction mixture from fluid components stored in reservoirs
US7661871B2 (en) * 2005-02-03 2010-02-16 Robert Rinehart Hyatt Apparatus for storing, mixing, metering, and injecting polymeric slurries into pipelines

Similar Documents

Publication Publication Date Title
JP5647083B2 (en) Raw material vaporization supply device with raw material concentration detection mechanism
US4050896A (en) Method and apparatus for the production of reaction mixtures from liquid reaction components
JP2703694B2 (en) Gas supply device
US3948281A (en) Gas blending using null balance analyzer
US4089206A (en) Method and apparatus for measuring the proportion of undissolved gas in a liquid component for the production of foam materials
US3520657A (en) Method and apparatus for the analysis of off-gases in a refining process
US5886533A (en) Controlling water addition to grains using feedback to match a target microwave value
JPS58108116A (en) Mixing device for gas in urethane material
DE3061784D1 (en) Method and device for producing a fluidic reaction mixture forming particularly a foamed plastic
US20020096208A1 (en) Method for determination of mass flow and density of a process stream
JPS60141286A (en) Method and apparatus for culturing animal cell
JPH0994451A (en) Gas mixer
US4323474A (en) Method of producing foam material and apparatus therefor
US20060116835A1 (en) Measurement of batch properties
FI68917B (en) DOSERINGSANORDNING
JP2010535550A (en) Method and apparatus for keeping the pH of a chemical solution constant when flowing out of a container
CN112638607B (en) Apparatus for producing foamed building materials
JP3535566B2 (en) Method and apparatus for producing mixed gas of predetermined concentration
JPH07161638A (en) Organometallic compound gas feeding device of vapor growth device
SU812331A1 (en) Method of controlling loose material mixing process
JPH05284914A (en) Apparatus for producing food having overrun
RU2772918C1 (en) Apparatus for producing expanded building materials
SU828022A1 (en) Device for determination of liquid surface tension
JPH06205961A (en) Method and device for feeding gas particularly diborane and silane
JPH05339585A (en) Control of quality in production of coal/water slurry